CONSTRUCCIÓN DE GRÁFICAS
|
|
|
- Jaime Vidal Espejo
- hace 8 años
- Vistas:
Transcripción
1 Ing. En Energía UNIVERSIDAD NACIONAL DEL SANTA FÍSICA I LABORATORIO N 0 CONSTRUCCIÓN DE GRÁFICAS OBJETIVOS.- Aplicar las pautas necesarias para la confección de una gráfica. FUNDAMENTO TEÓRICO Al realizar el estudio de un fenómeno dentro de la naturaleza, se pueden observar la presencia de dos o más magnitudes relacionadas entre sí. Esta situación nos lleva a deducir que una de ellas es la función de la otra, de tal manera que podemos hablar de cierta proporcionalidad entre ellas. Proporcionalidad.- Muchas de las leyes dentro de la Física adoptan la forma de funciones matemáticas de la forma: n y = a (1.1 donde a y n son constantes reales (positivas o negativas. La epresión 1.1. nos indica la proporcionalidad que eiste entre dos variables é y, de tal manera que al variar independientemente, provocará la variación de y, en tal sentido a se le conoce como variable independiente(v.i y a y se le denomina variable dependiente(v.d. Ejemp: kq q F = r T 1, representa la Ley de Coulomb de la electrostática, donde: v.i : r, distancia entre las cargas v.d: F, fuerza entre las cargas q. l = π, representa el período para el péndulo simple, donde: g v.i: l, longitud del hilo del péndulo. v.d: T, período o tiempo Uso de las gráficas.- Presentan básicamente tres usos: Primero, permiten determinar el valor de alguna magnitud, generalmente la pendiente ó intersección de una recta representa la relación entre dos variables. Segundo, nos sirven de ayuda visual y tercero permite establecer una relación empírica entre dos variables. Construcción de gráficas a partir de datos eperimentales.- A continuación se tiene un conjunto de reglas que nos permitirán elaborar una gráfica en base a datos eperimentales. 1 Elegir el papel adecuado.- Esta elección dependerá del tipo de datos obtenidos y el problema a resolver, así tenemos el papel milimétrico, para coordenadas rectangulares uniformes, y que 1
2 nos permite mostrar el comportamiento del fenómeno, cuando la funciones son eponenciales y se quiere determinar algunos parámetros, se recurre al papel semilogarítmico, presenta un eje de coordenadas logarítmico y el otro de coordenadas rectangulares, permite convertir una función del tipo Y = Ab m en una recta, donde Y se representa en la escala logarítmica y X en la escala ordinaria; siendo útil cuando se tenga que representar una función potencial de la forma Y = AX m también tenemos el papel logarítmico, el que presenta ambos ejes con escala logarítmica. Elección de la escala.- Primero debemos considerar la variable independiente, ubicada a lo largo del eje X, segundo, debe ser tal que todos los puntos queden dentro del papel, para ello debe considerarse un margen alrededor del mismo, evitando trazar las coordenadas al borde del papel. Tercero, se debe procurar que la elección de las escalas sea tal que permita el trazado de la gráfica con una pendiente de 45, cuarto, Procurar que las escalas presenten múltiplos de, 4, 5 etc., y no de 3,7,9, a fin de agilizar la lectura., quinto, localizar los puntos considerando una distribución de acuerdo a una nomenclatura, tal que no permita confusión, seto, las escalas no se dibujan al borde, y seto las escalas no necesariamente necesitan empezar en cero, sino que la determinación se hará en función a los datos eperimentales a representar. Ejemp: Al ejecutar la Ley de Hooke, eperimentalmente, se tendrán dos variables, L, alargamiento del resorte y F, pesos agregados. L(m Situación que implica establecer una relación entre variables de la forma: L = f (F F(N Incorrecto Correcto
3 Trazado de la curva.- Se debe dibujar una línea continua que se ajuste mejor a los puntos trazados (ajuste visual. Si dentro de un mismo sistema de coordenadas se dibujan dos o más gráficas, entonces es necesario diferenciar cada una de ellas mediante un conjunto de símbolos que nos permitan distinguir una gráfica de otra. En cuanto al trazado, deberá hacerse con trazo fino de lápiz, y en el caso de ser una curva, deberá hacerse uso de los pistoletes, procurando un trazo continuo. 3
4 4 Pendiente Física.- Es importante dentro de la confección de una gráfica lograr una pendiente que nos permita el cálculo de una magnitud, en cuyo caso habremos determinado el valor de la pendiente física que rige al fenómeno en estudio, ésta a diferencia de la pendiente geométrica, presenta unidades. Carga(µC 1,0 0,8 0,6 0,4 y y 0,9 µ C m = = 150mm µ C m = 0,006 mm 0, Defleión(mm 5 Mínimos cuadrados.- Cuando se hace el trazado de una recta, ésta puede ser realizada mediante un ajuste visual, lo cual implica la mejor recta que ocupe la mayor cantidad de punto posibles, considerando que los punto más cercanos se encuentren equidistantes a la misma, de tal manera que la recta pueda ser observada en forma simétrica para su trazado. Sin embargo eiste la posibilidad de mejorar éste trazo haciendo uso del método de los mínimos cuadrados. Consideran que la ecuación de una recta esta regida por : y = m + b, para determinar la respectiva pendiente é intercepto, se tienen las siguientes epresiones: m = n ( i yi ( i ( yi n( i ( i b = ( i ( yi ( i ( i yi n( ( i i En algunos casos es necesario linealizar la curva, para ejecutar la gráfica respectiva, así tenemos, para el caso de la ecuación que gobierna el comportamiento de un termistor, es de la forma B T R = Ae, donde A y B son constantes y T es la temperatura medida en kelvin, sin embargo para desarrollar ésta gráfica es necesario realizar el cambio de variable respectivo a fin de brindarle la forma de una recta, así tenemos que al toma logaritmos en ambos miembros, se tiene: ln R = ln A + B/T, comparando con la ecuación de una recta, y = m + b, se tiene : y = ln R; b = ln A; = 1/T; m = B, de ésta manera haciendo uso de los mínimos cuadrados, se pueden hallar los valores de m y b, y por consiguiente los valores de A y B estarán establecidos, puesto que m = B y b A = e, resultados con los que podemos formular la 4
5 correspondiente ecuación empírica, que gobierne el comportamiento del termistor en estudio, al reemplazar los datos hallados en la ecuación para R. 6.- Gráficas de la función Y = a n.- Considerando los diferentes casos que se presentan dentro de la Física en relación a las variables involucradas, se aprecia que en su mayoría responden a funciones de la forma Y = a n, como se muestra continuación. n<0 n>1 n =1 0<n<1 A continuación se brindan algunas leyes y las transformaciones correspondientes. Si la ley elegida corresponde a los datos obtenidos (,y, entonces la gráfica de los puntos (,y debe ser aproimadamente una línea recta. Ley de las potencias y = a n = log y = log y Ley eponencial y = ae b = y = ln y Ley hiperbólica N 1 y = (a + b / = y = y Ley hiperbólica N y = (a + b = y = /y Para determinar las constantes que aparecen en las leyes se hace uso del gráfico construido, a partir de él se encuentra la pendiente m y la intersección b, de la recta con el eje y. A continuación desarrolla la eperiencia relacionada con la ley de Hooke, a fin de aplicar loa criterios estudiados, determinando la ecuación empírica a través de la gráfica hallada. 5
MANUAL DE LABORATORIO DE FÍSICA GENERAL 9ª Edición EXPERIENCIA N 02
GRÁFICAS EXPERIENCIA N René Descartes "Consideraría que no sé nada de Física si tan sólo fuese capaz de epresar cómo deben ser las cosas, pero fuese incapaz de demostrar que no pueden ser de otra manera
GRAFICAS LINEALES REGLAS GENERALES PARA LA CONSTRUCCIÓN DE GRÁFICAS
GRAFICAS LINEALES OBJETIVOS 1. Realizar linealización de gráficos por el método de cambios de variables. 2. Obtener experimentalmente la relación matemática, más adecuada, entre dos cantidades o magnitudes
RELACIONES DE PROPORCIONALIDAD Y GRÁFICOS
RELACIONES DE PROPORCIONALIDAD Y GRÁFICOS CONTENIDOS: Introducción. 3.1 Interpretación y representación gráfica entre magnitudes físicas. 3.2 Proporcionalidad directa entre una variable y otra elevada
LABORATORIO DE MECÁNICA ANÁLISIS GRÁFICO
No 0.2 LABORATORIO DE MECÁNICA DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Aprender a identificar las variables que intervienen en un experimento
1. Funciones de varias variables
Coordinación de Matemáticas III (MAT 023) 1 er Semestre de 2013 1. Funciones de varias variables 1.1. Definiciones básicas Definición 1.1. Consideremos una función f : U R n R m. Diremos que: 1. f es una
CM2 ENRICH CREUS CARNICERO Nivel 2
CM ENRICH CREUS CARNICERO Nivel Unidad Anexo Superficies en 3D 01 Anexo de la Unidad : Superficies en 3D Anexo 1: valor absoluto o módulo El valor absoluto o módulo de un número a, que se anota a, es la
DE LA EXPRESIÓN ALGEBRAICA A LA GRÁFICA
De la epresión algebraica a la gráfica 1 DE LA EXPRESIÓN ALGEBRAICA A LA GRÁFICA Rectas, Parábolas, Hipérbolas, Eponenciales y Logarítmicas LA RECTA Para representar gráficamente una recta de un modo rápido,
1 er Problema. 2 Problema
Facultad de Contaduría Administración. UNAM Lugares geométricos Autor: Dr. José Manuel Becerra Espinosa MATEMÁTICAS BÁSICAS LUGARES GEOMÉTRICOS Eisten dos problemas fundamentales en la Geometría Analítica:.
EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES
EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES 1 er PARCIAL 1. Obtén los valores reales que cumplen las siguientes condiciones: x+ x 3 5 x 1/ =1. Opera y expresa el resultado en notación científic (5,
CORRELACIÓN Y REGRESIÓN. Raúl David Katz
CORRELACIÓN Y REGRESIÓN Raúl David Katz 1 Correlación y regresión Introducción Hasta ahora hemos visto el modo de representar la distribución de frecuencias de los datos correspondientes a una variable
REPÚBLICA BOLIVARIANA DE VENEZUELA NÚCLEO COSTA ORIENTAL DEL LAGO PROGRAMA DE INGENIERÍA UNIDAD CURRICULAR: CÁLCULO I
REPÚBLICA BOLIVARIANA DE VENEZUELA NÚCLEO COSTA ORIENTAL DEL LAGO PROGRAMA DE INGENIERÍA UNIDAD CURRICULAR: CÁLCULO I FUNCIONES Instructivo de trabajo Autor: Ing. Roger J. Chirinos S., MSc. Ciudad Ojeda,
1. Simplificar las siguientes expresiones. 2. Simplificar y escribir como un producto de potencias: 3. Escribir en forma exponencial
. Simplificar las siguientes epresiones. 7 ( ) ( 8) b. + + 79 ( ) ( ) c. ( )( )( ) d. ( ) ( ) e. + f. 8 + 8 + 7 6 g. y ( + y ) ( + y ) ( y ) 0 y 8 h.. Simplificar y escribir como un producto de potencias:
Análisis Matemático I (Lic. en Cs. Biológicas)
Análisis Matemático I (Lic. en Cs. Biológicas) Primer cuatrimestre de 015 Práctica : Función logarítmica y función eponencial Notación: Para a > 0 indicaremos al logaritmo en base a de por log a. Usaremos
Matemáticas Currículum Universal
Matemáticas Currículum Universal Índice de contenidos 08-11 años 2013-2014 Matemáticas 08-11 años USOS DE LOS NÚMEROS NATURALES Reconocer la utilidad de los números naturales para contar y ordenar elementos.
UNIDAD 7: PROGRESIONES OBJETIVOS
UNIDAD 7: PROGRESIONES Reconocer sucesiones y deducir su regla de formación en los casos en que sea posible. Obtener distintos términos en sucesiones recurrentes. Distinguir si una sucesión es una progresión
Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio
A-09 - Incorporado a la Enseñanza Oficial COLEGIO SAN PATRICIO - 0 - Prof. Celia R. Sánchez MATEMÁTICA - TRABAJO PRÁCTICO Nº 8 AÑO FUNCIÓN EXPONENCIAL Y LOGARÍTMICA - ECUACIONES POTENCIACIÓN: Ejercicio
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: DIBUJO TÉCNICO II
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2013-2014 MATERIA: DIBUJO TÉCNICO II INSTRUCCIONES GENERALES Y CALIFICACIÓN Después
Coordenadas polares. Si P es un punto cualquiera del plano, su posición queda determinada con el par ( r, ), donde: Ejemplo
Coordenadas polares Sobre el plano elijamos un punto O, que denominamos Polo (u origen) y un rayo con origen O, que denominamos Eje Polar 1 2 Si P es un punto cualquiera del plano, su posición queda determinada
EJERCICIOS PROPUESTOS
EJERCICIOS PROPUESTOS ) Se dan los siguientes puntos por sus coordenadas: A(3, 0), B(, 0), C(0, ) y sea P un punto variable sobre el eje. i) Hallar la ecuación de la recta (AC) y de la recta (r) perpendicular
Chapter Audio Summary for McDougal Littell Algebra 2
Chapter 8 Exponential and Logarithmic Functions Al principio del capítulo 8 representaste gráficamente funciones exponenciales generales. Luego aprendiste sobre la base natural e. Examinaste la relación
SÓLO ENUNCIADOS. LA FUNCIÓN LOGARÍTMICA.
DP. - AS - 9 Matemáticas ISSN: 988-79X SÓLO ENUNCIADOS. LA FUNCIÓN LOGARÍTMICA. PROPIEDADES INMEDIATAS 00 log a a 00 log a 00 log a a 00 a a log Calcula algebraicamente el valor de las epresiones o el
5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES
Tema 5 : Funciones elementales - Matemáticas B 4º E.S.O. 1 TEMA 5 FUNCIONES ELEMENTALES 5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES 3º 5.1.1 - FUNCIONES DE PROPORCIONALIDAD: y = mx Las funciones de proporcionalidad
I. Análisis gráfico de un experimento físico
I. Análisis gráfico de un experimento físico Objetivos 1) Aprender a identificar las variables que intervienen en un experimento físico 2) Aprender a elaborar correctamente gráficas en papel milimetrado
Profr. Efraín Soto Apolinar. Lugares geométricos
Lugares geométricos En esta sección estudiaremos el concepto de lugar geométrico, concepto clave para el desarrollo del estudio de los conceptos de este semestre. Lugar geométrico El conjunto de todos
ANÁLISIS MATEMÁTICO I (2012)
ANÁLISIS MATEMÁTICO I (2012) TRABAJO PRÁCTICO 4 Etremos y teorema del valor medio Ejercicio 1. Decir si las siguientes afirmaciones son correctas. En caso contrario, justificar la respuesta. 1. El teorema
Guía de Ejercicios Funciones. Debes copiar cada enunciado en tu cuaderno y realizar el desarrollo, indica la respuesta correcta en la guía 2-1-
Colegio Raimapu Departamento de Matemática Guía de Ejercicios Funciones Nombre del Estudiante: IV Medio Debes copiar cada enunciado en tu cuaderno realizar el desarrollo, indica la respuesta correcta en
FUNCIONES DE PROPORCIONALIDAD: y = mx. Su pendiente es 0. La recta y = 0 coincide con el eje
Funciones elementales - Matemáticas B 4º E.S.O. FUNCIONES ELEMENTALES DISTINTOS TIPOS DE FUNCIONES LINEALES FUNCIONES DE PROPORCIONALIDAD: y = mx FUNCIÓN CONSTANTE: y = n Las funciones de proporcionalidad
Distribuciones Continuas
Capítulo 5 Distribuciones Continuas Las distribuciones continuas mas comunes son: 1. Distribución Uniforme 2. Distribución Normal 3. Distribución Eponencial 4. Distribución Gamma 5. Distribución Beta 6.
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO OPCIÓN A
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: DIBUJO TÉCNICO II Curso 2009-2010 INSTRUCCIONES GENERALES Y VALORACIÓN La prueba
REPASO MATEMÁTICO 1. Operaciones matemáticas. 2. Magnitudes físicas. 3. Factores de conversión. 4. Gráficas. 5. Vectores.
REPASO MATEMÁTICO 1. Operaciones matemáticas. 2. Magnitudes físicas. 3. Factores de conversión. 4. Gráficas. 5. Vectores. Física 1º bachillerato Repaso matemático 1 1. OPERACIONES MATEMÁTICAS 1.1 Operaciones
Guía de Laboratorio de Física Mecánica. ITM, Institución universitaria.
Guía de Laboratorio de Física Mecánica. ITM, Institución universitaria. Práctica 2. Gráficas. Implementos Hoja milimetrada, computador con Excel. Objetivos Aprender a elaborar tablas de datos y a graficarlas,
FACULTAD DE CIENCIAS EXACTAS Y NATURALES BIOFÍSICA I y LABORATORIO. REPRESENTACION y ANÁLISIS DE DATOS EXPERIMENTALES
FACULTAD DE CIENCIAS EXACTAS Y NATURALES BIOFÍSICA I LABORATORIO REPRESENTACION ANÁLISIS DE DATOS EXPERIMENTALES Objetivos 1) Presentar debidamente tablas de datos experimentales 2) Aprender el protocolo
PRÁCTICA Nº 1. Análisis y Representación Gráfica
UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO ÁREA DE TECNOLOGÍA DEPARTAMENTO DE FÍSICA Y MATEMÁTICA COORDINACIÓN DE LABORATORIOS DE FÍSICA PRÁCTICA Nº 1 Análisis
ECUACIÓN DE LA RECTA
MATEMÁTICA SEMANA 2 ECUACIÓN DE LA RECTA Todos los derechos de autor son de la exclusiva propiedad de IACC o de los otorgantes de sus licencias. No está permitido copiar, reproducir, reeditar, descargar,
REPASO MATE3171 Parcial 3
REPASO MATE3171 Parcial 3 ya estudie jeje!! voy lento, pero seguro!!! aún no he empezado!!! REPASO PARA EL TERCER PARCIAL (MATE3171)ISEM14-15 Profa: Ysela Ochoa Tapia Cap2 Transformaciones 1) La gráfica
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2013-2014 MATERIA: DIBUJO TÉCNICO II INSTRUCCIONES GENERALES Y CALIFICACIÓN Después
1 - TEORIA DE ERRORES : distribución de frecuencias
- TEORIA DE ERRORES : distribución de frecuencias CONTENIDOS Distribución de Frecuencias. Histograma. Errores de Apreciación. Propagación de errores. OBJETIVOS Representar una serie de datos mediante un
Elementos de geometría analítica
UNIDAD 7: APLIQUEMOS ELEMENTOS DE GEOMETRIA ANALITICA. Introducción Elementos de geometría analítica En esta unidad última nos ocuparemos del estudio de los conceptos más fundamentales de la geometría
UNIDAD II. VARIACION DIRECTAMENTE PROPORCIONAL Y FUNCIONES LINEALES
UNIDAD II. VARIACION DIRECTAMENTE PROPORCIONAL Y FUNCIONES LINEALES Al finalizar esta unidad: - Describirás verbalmente en que consiste el cambio y cuáles son los aspectos involucrados en él. - Identificarás
ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6.
ECUACIÓN DE LA RECTA 1. El ángulo de inclinación de una recta mide 53º y pasa por los puntos ( 3, n) y ( 5, 4). Hallar el valor de n. A) 1 /5 B) 8 /5 C) 1 /5 D) 8 /5 E) 7 /3. Qué tipo de triángulo es el
Practica I - Parte 3. Índice. 1. Introducción. Método de Ajuste por Mínimos Cuadrados. Introducción a las Ciencias de la Tierra y el Espacio I
Practica I - Parte 3 Método de Ajuste por Mínimos Cuadrados Introducción a las Ciencias de la Tierra y el Espacio I - 20 Índice. Introducción.. Fuerza de un Resorte Ley de Hooke)..............................2.
Matemáticas IV. Ing. Domingo Ornelas Pérez
Matemáticas IV Ing. Domingo Ornelas Pérez COMPETENCIA DE LA ASIGNATURA Formula y resuelve problemas sobre áreas y perímetros de polígonos, rectas y secciones cónicas de su entorno, a través de métodos
V. DISCUSIÓN DE ECUACIONES ALGEBRAICAS
V. DISCUSIÓN DE ECUACIONES ALGEBRAICAS 134 5.1. DISCUSIÓN DE UNA ECUACIÓN Discutir una ecuación algebraica representada por una epresión en dos variables de la forma f (, y) = 0, significa analizar algunos
EJERCICIOS RESUELTOS DE INECUACIONES
EJERCICIOS RESUELTOS DE INECUACIONES 1. Resolver las inecuaciones: a) 3-8 - 7 b) 6-5 > 1-10 a) Para resolver la inecuación, se pasan los términos con al primer miembro y los independientes al segundo quedando
GUIAS DE ACTIVIDADES Y DE TRABAJO PRACTICO N 15
GUIA DE TRABAJO PRACTICO Nº 5 PAGINA Nº 86 GUIAS DE ACTIVIDADES Y DE TRABAJO PRACTICO N 5 OBJETIVOS: Lograr que el Alumno: Interprete las Funciones Eponenciales Distinga Modelos Matemáticos epresados mediante
TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO
Ejercicios Selectividad Temas 6 y 7 Geometría en el espacio Mate II 2º Bach. 1 TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO EJERCICIO 1 : Julio 11-12. Optativa (3 ptos) Para los puntos A(1,0,2) y B(-1,2,4) y la
El análisis cartesiano (René Descartes ) descubrió que las ecuaciones pueden tener una representación gráfica.
Capítulo 4. Estudio de la línea recta El análisis cartesiano (René Descartes 1596-1650) descubrió que las ecuaciones pueden tener una representación gráfica. Para lograr esa representación gráfica es necesario
Matemáticas II Bachillerato Ciencias y Tecnología 2º Curso. Espacio euclídeo Determinación de ángulos
Espacio euclídeo 5.1. Determinación de ángulos.... - 2-5.1.1. Ángulo determinado por dos rectas secantes.... - 2-5.1.2. Ángulo determinado por planos secantes.... - 2-5.1.3. Ángulo determinado por una
Academia de Matemáticas T.M Geometría Analítica Página 1
INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS 10. CARLOS VALLEJO MÁRQUEZ PROBLEMARIO DE GEOMETRIA ANALITICA Distancia entre puntos 1.- Determina la distancia entre los puntos
-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva.
EJERCICIOS PARA PREPARAR EL EXAMEN GLOBAL DE ANÁLISIS ln ) Dada la función f ( ) = +, donde ln denota el logaritmo - 4 neperiano, se pide: a) Determinar el dominio de f y sus asíntotas b) Calcular la recta
I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS
Eamen Global Análisis Matemáticas II Curso 010-011 I E S ATENEA SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL PRIMERA EVALUACIÓN ANÁLISIS Curso 010-011 1-I-011 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES
UCV FACULTAD DE INGENIERIA CALCULO I 16/04/2010. Solución al primer examen parcial. x - x 3 1
UCV FACULTAD DE INGENIERIA CALCULO I 16/04/010 Solución al primer eamen parcial 1. Encuentre el conjunto de todos los números reales que satisfacen el sistema de inecuaciones - 3 4 4 0 1 1 1 Solución:
ITM, Institución universitaria. Guía de Laboratorio de Física Mecánica. Práctica 2: Gráficas. Implementos. Hoja milimetrada, computador con Excel.
ITM, Institución universitaria Guía de Laboratorio de Física Mecánica Práctica 2: Gráficas Implementos Hoja milimetrada, computador con Excel. Objetivos El objetivo fundamental de esta práctica es aprender
CASOS DE LA FUNCIÓN AFÍN
CASOS DE LA FUNCIÓN AFÍN Considera que el precio de un artículo es de Bs 80. Conocido el precio unitario (precio por unidad) es posible calcular fácilmente el precio de varios artículos con solo multiplicar
INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. en un intervalo al siguiente cociente:
INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES Crecimiento de una Función en un Intervalo Tasa de Variación Media (T.V.M.) Se llama tasa de variación media (T.V.M.) de una función y f() en un intervalo
La recta se define como el lugar geométrico de todos los puntos de un plano que al tomarse de dos en dos se obtiene la misma pendiente.
Formas de la ecuación de una recta. Hasta el momento, se han dado algunas características de la recta tales como la distancia entre dos puntos, su pendiente, su ángulo de inclinación, relación entre ellas,
Funciones racionales. Profa. Caroline Rodríguez UPRA MECU 3031
Funciones racionales Profa. Caroline Rodríguez UPRA MECU 01 Una función racional es una función que se puede epresar de la forma ( ( ( g f p donde f( y g( son funciones polinómicas. Ejemplos: g f y 9 (
REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL
REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se
. Por ejemplo, para ubicar los puntos, simplemente se localiza su respectivo valor en la numeración y se le marca.
MATEMÁTICAS BÁSICAS SISTEMAS COORDENADOS SISTEMA COORDENADO UNIDIMENSIONAL Eiste una correspondencia biectiva o biunívoca entre el conjunto de los números reales el de los puntos de una recta. A esta recta
DE LA GRÁFICA A LA EXPRESIÓN ALGEBRAICA
De la gráfica a la expresión algebraica DE LA GRÁFICA A LA EXPRESIÓN ALGEBRAICA Rectas, Parábolas, Hipérbolas, Exponenciales Logarítmicas LA RECTA Comencemos localizando el punto donde la recta corta al
Manual de Ejercicios MECU Pro. Alvilda Vega
Manual de Ejercicios MECU 0 Pro. Alvilda Vega Tabla de contenido Tema Página Unidad I Límites a base de tablas y gráficas. 6 Límites a base de gráficas.. 7 Propiedades de los límites. Límites al infinito
Matemáticas II Bachillerato Ciencias y Tecnología 2º Curso ESPACIO AFÍN Introducción Ecuaciones de la recta...
Unidad 5 ESPACIO AFÍN 5.. Introducción.... - - 5.. Ecuaciones de la recta.... - - 5.3. Ecuaciones del plano.... - 4-5.4. Posiciones relativas (Incidencia y paralelismo).... - 6 - Anexo I.- EJERCICIOS...
7.FUNCIÓN REAL DE VARIABLE REAL
7.FUNCIÓN REAL DE VARIABLE REAL 7.1 CONCEPTOS PREVIOS Dados dos conjuntos A={ 1,, 3,...} y B={y 1, y, y 3,...}, el par ordenado ( m, y n ) indica que el elemento m del conjunto A está relacionado con el
Funciones racionales
Funciones racionales Una función racional es una función que se puede epresar de la forma ) ( ) ( ) ( g f p donde f() y g() son funciones polinómicas. g f y 9 4 ) ( 3 ) ( 1 3 5 3 ) ( 4 3 4 ) ( 3 4 4 )
, siendo ln(1+x) el logaritmo neperiano de 1+x. x
Selectividad CCNN 00. [ANDA] [JUN-B] Considera la función f: definida por f() = (+)e -. (a) Halla las asíntotas de la gráfica de f. (b) Determina los etremos de f y los puntos de infleión de su gráfica.
APLICACIONES DE DERIVADAS: ANALISIS DE FUNCIONES 1. 1º PARTE: Función creciente y decreciente, puntos críticos, extremos relativos
Cálculo 1 _Comisión 1 Año 016 APLICACIONES DE DERIVADAS: ANALISIS DE FUNCIONES 1 Una de las aplicaciones de derivadas es el estudio del comportamiento de funciones Este estudio ya se había comenzado cuando
AJUSTE DE CURVAS. Cálculo Numérico Ing. Frednides Guillén Guerra Maracay - Venezuela
JUSTE DE CURVS Cálculo umérico Ing. Frednides Guillén Guerra Maraca - Venezuela juste de Curvas Consiste en determinar los parámetros de un modelo f() que se ajuste mejor a los datos (, ),..., (, ) que
Geometría Analítica. GEOMETRÍA ANALÍTICA PLANA SISTEMA DE COORDENADAS RECTANGULARES 1. DE UN PUNTO 2. DISTANCIA ENTRE DOS PUNTOS
Geometría Analítica GEOMETRÍA ANALÍTICA PLANA René Descartes, matemático francés, en 67 define una ecuación algebraica para cada figura geométrica; es decir, un conjunto de pares ordenados de números reales
COL LECCIÓ DE PROBLEMES RESOLTS
DEPARTAMENT DE MATEMÀTICA ECONOMICOEMPRESARIAL DEPARTAMENT D ECONOMIA FINANCERA UNIVERSITAT DE VALÈNCIA LLICENCIATURA EN ECONOMIA LLICENCIATURA EN ADMINISTRACIÓ I DIRECCIÓ D EMPRESES DIPLOMATURA EN CIÈNCIES
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID MATERIA: DIBUJO TÉCNICO INSTRUCCIONES GENERALES OPCIÓN A
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Curso 2002-2003 Junio Septiembre R1 R2 MATERIA: DIBUJO TÉCNICO INSTRUCCIONES GENERALES La prueba consiste
FUNCIONES LINEALES Y CUADRÁTICAS
. FUNCIONES LINEALES FUNCIONES LINEALES CUADRÁTICAS Aquéllas cua fórmula es un polinomio de grado. = + 9ºESO Se corresponden con los fenómenos de proporcionalidad; es decir, que la variación de la '' sea
UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES
UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES En la Sección anterior se abordó contenidos relacionados con las funciones y gráficas, continuamos aprendiendo más sobre funciones; en la presente unidad abordaremos
Ministerio de Educación Pública Dirección de Gestión y Evaluación de la Calidad Departamento de Evaluación Académica y Certificación.
Matemáticas Distribución de ítems para la prueba nacional Modalidad Académica (Diurnos Nocturnos) Convocatorias 016 ESTIMADO DOCENTE: En la modalidad de colegios académico, la Prueba de Bachillerato 016
unicoos Funciones lineales Objetivos 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica
10 Funciones lineales Objetivos En esta lección aprenderás a: Identificar problemas en los que intervienen magnitudes directamente proporcionales. Calcular la función que relaciona a esas magnitudes a
Nombre: + x + 2, se pide:
IES ATENEA er CONTROL MATEMÁTICAS B 4º ESO GRUPO: BC Nombre: Evaluación: Segunda Fecha: 6 de febrero de 00 NOTA Ejercicio nº - a) Calcula el dominio de definición de función f() b) Calcula la tasa de variación
INTEGRAL DEFINIDA. APLICACIONES
COLEGIO SAN ALBERTO MAGNO MATEMÁTICAS II INTEGRAL DEFINIDA. APLICACIONES. 008 MODELO OPCIÓN A. Ejercicio. [ 5 puntos] Dadas las funciones f : [0,+ ) R y g : [0, + ) R definidas por y calcula el área del
PROBLEMAS DE HOMOTECIAS Y SEMEJANZAS EN EL PLANO
PROBLEMAS DE HOMOTECIAS Y SEMEJANZAS EN EL PLANO 1. Estudiar si la siguiente ecuación matricial corresponde a una homotecia del plano y, en su caso, calcular el centro y la razón: 1 1 1 ' = 3 y' 3 y. Estudiar
Universidad de Buenos Aires Instituto Libre de Segunda Enseñanza MATEMÁTICA
Universidad de Buenos Aires Instituto Libre de Segunda Enseñanza MATEMÁTICA CUARTO AÑO - 015 QUINTO AÑO - 016 1) Hallar la órmula de unción cuadrática g, que cumple las dos condiciones simultáneamente:
UNIDAD DIDÁCTICA: Unidades 06: Metros, Gramos y Litros De Matemáticas. (T.9 y T.10)
UNIDAD DIDÁCTICA: Unidades 06: Metros, Gramos y Litros De Matemáticas. (T.9 y T.10) Utilizar el metro como la unidad principal de medida de longitud. Utilizar el litro y el gramo unidades de principal
Representación gráfica de lugares geométricos
Representación gráfica de lugares geométricos Representará gráficamente ecuaciones de las rectas y de espacios geométricos poligonales, considerando principios, leyes y procedimientos de trazo, aplicables
1. x = 2. Solución : x = 2 o x = x = 2. Solución x = 2 o x= x = 0. Solución: x = 0
Problemas que involucran igualdades con valor absoluto. x =. Solución : x = o x = -. x =. Solución x = o x= -.. x = 0. Solución: x = 0. x =. No hay solución posible. No existen valores absolutos negativos.
Clase. Función cuadrática y ecuación de segundo grado
Clase Función cuadrática y ecuación de segundo grado Aprendizajes esperados Aplicar los conceptos matemáticos asociados al estudio de la función cuadrática. Graficar una función cuadrática, determinando
Club de Matemáticas CBTis 149. clubmate149.com
PROGRAMA DE MATEMATICAS III (Geometría Analítica) Con este curso se inicia el estudio de la geometría analítica, rama de las Matemáticas cuyos inicios se remontan a la segunda mitad del siglo XVII con
Pruebas de Acceso a las Universidades de Castilla y León
Pruebas de Acceso a las Universidades de Castilla y León DIBUJO TÉCNICO Texto para los Alumnos 9 páginas Antes de empezar a trabajar has de tener en cuenta lo siguiente: OPTATIVIDAD: Debes escoger una
Ecuaciones de la forma. y se sabe que pasa por el punto ( 4 ;16 ), cuál es la ecuación de la recta? con m > 0. contenga los puntos ( 2;? por qué?
Ecuaciones de la forma y = m. Haga las gráficas de y = y = y = y = y y y y y y a. Como son las rectas b. Cuales son simétricas respecto al origen c. La recta y que tipo de simetría presenta respecto a
MATEMÁTICAS 1º BACH. C. N. Y S. 25 de enero de 2010 Geometría y Logaritmos
MATEMÁTICAS 1º BACH. C. N. Y S. 5 de enero de 010 Geometría y Logaritmos x yz 1) Tomar logaritmos, y desarrollar, en la siguiente expresión: A 4 ab log x log b 4log a log y ) Quitar logaritmos: log A )
Curvas y transformaciones proyectivas. Curvas cónicas (II). Tangencias e intersecciones
Curvas y transformaciones proyectivas. Curvas cónicas (II). Tangencias e intersecciones En el tema anterior hemos estudiado las propiedades de las curvas cónicas, aprendiendo su trazado a partir de distintos
Determinación de la constante de enfriamiento de un líquido.
Determinación de la constante de enfriamiento de un líquido. Laboratorio de Física: 1210 Unidad 3 Temas de interés. 1. Medidas directa e indirectas. 2. Regresión lineal. 3. Análisis gráfico mediante cambio
2.2 Rectas en el plano
2.2 Al igual que ocurre con el punto, en geometría intrínseca, el concepto de recta no tiene definición, sino que constituye otro de sus conceptos iniciales, indefinibles. Desde luego se trata de un conjunto
CALCULO DIFERENCIAL Escuela Colombiana de Ingeniería. Geometría Analítica = Unión de Álgebra con la Geometría.
PRELIMINARES. COORDENADAS EN UN PLANO Cuando se trabaja un sistema de coordenadas Geometría Analítica = Unión de Álgebra con la Geometría. La geometría Analítica se origina al asignar coordenadas numéricas
Funciones, límites y continuidad
8/0/016 Funciones, límites y continuidad C U R S O 0 1 5-0 1 6 Funciones, limites y continuidad Los puntos rojos son los que entran en el eamen de º evaluación 1) Concepto de función. Dominio y recorrido.
FUNCIONES EXPONENCIALES Y LOGARÍTMICAS
www.matesronda.net José A. Jiménez Nieto FUNCIONES EXPONENCIALES Y LOGARÍTMICAS 1. FUNCIONES EXPONENCIALES. Una función se llama eponencial si es de la forma y = a, donde la base a es un número real cualquiera
FUNCIONES DE UNA VARIABLE
FUNCIONES DE UNA VARIABLE 1- Definiciones 2- Algunas funciones reales 3- Ecuaciones de curvas planas en coordenadas cartesianas 4- Coordenadas polares 5- Coordenadas paramétricas 6- Funciones hiperbólicas
DERIVADA DE FUNCIONES REALES
. Recta tangente a una curva DERIVADA DE FUNCIONES REALES Consideremos la curva y = f() correspondiente a una función continua y en ella dos puntos distintos P( ; y ) y Q( ; y ). PQ es una recta secante
FUNCIONES EXPONENCIALES y LOGARITMICAS FUNCIONES EXPONENCIALES
Ingeniería en Sistemas de Información 01 FUNCIONES EXPONENCIALES LOGARITMICAS La función eponencial FUNCIONES EXPONENCIALES La función eponencial es de la forma, siendo a un número real positivo. El dominio
