Regresión - Correlación
|
|
|
- María José Ortiz de Zárate Montes
- hace 7 años
- Vistas:
Transcripción
1 REGRESIÓN
2 Regresó - Correlacó Aálss que requere la cosderacó de o más varables cuattatvas e forma smultáea. Aálss de Regresó: estuda la relacó fucoal de ua o más varables respecto de otra Aálss de Correlacó: estuda la magtud o grado de asocacó etre las varables
3 Regresó Leal Smple Coceptos: Regresó smple: tervee ua sola varable depedete Regresó múltple: tervee dos o más varables depedetes Regresó o leal: la fucó que relacoa los parámetros o es ua combacó leal e los parámetros
4 Regresó Leal Smple Objetvo: Hallar ua fucó o u modelo matemátco para predecr y estmar el valor de ua varable a partr de valores de otra, ambas cuattatvas. La varable Y: que es la depedete respuesta, predcha, edógea. Es la varable que se desea predecr o estmar y la varable X: que es la depedete predctora, eplcatva, eógea. Es la varable que provee las bases para estmar.
5 Regresó Leal Smple y fy.. Ey/ µ y/ = + b Modelo teórco
6 Regresó Leal Smple y y 4 y =Ey/ = + b +e e 4 {. y 3 y.} e. 3 e { y. } e 3 4 Modelo estadístco
7 Regresó Leal Smple y b e : es la ordeada al orge Idca el valor medo poblacoal de la varable respuesta Y cuado X es cero. S se tee certeza de que la varable predctora X o puede asumr el valor 0, etoces la terpretacó o tee setdo. b: es la pedete de la líea de regresó Idca el cambo o modfcacó del valor medo poblacoal de la varable respuesta Y cuado X se cremeta e ua udad. e: es u error aleatoro y / E Y / X b Iterpretacó de los Coefcetes de Regresó: e = y + β
8 Estmacó de la líea de regresó usado Mímos Cuadrados Se debe Mmzar e y b = se obtee u par de ecuacoes ormales para el modelo, cuya solucó produce b y a y y b Dervado 0 e 0 b e
9 Estmadores ; S a V a E N a e ; S b V b E N b e b ˆ ; ˆ ˆ 0 S y V y E N y e b y y b y y S e b y y S e
10 REGRESION LINEAL SIMPLE Estmar los valores de y varable depedete a partr de los valores de varable depedete y ŷ yˆ a b Modelo estmado
11 Iterpretacó de los coefcetes de regresó estmados La pedete b dca el cambo promedo estmado e la varable respuesta cuado la varable predctora aumeta e ua udad adcoal. La ordeada al orge a dca el valor promedo estmado de la varable respuesta cuado la varable predctora vale 0. S embargo carece de terpretacó práctca s es rrazoable cosderar que el rago de valores de cluye a cero.
12 Líeas posbles de regresó e la regresó leal smple Relacó leal postva Relacó leal egatva No hay relacó E y Líea de regresó * E y La pedete b es egatva E y La pedete b es 0 * La pedete b es postva Líea de regresó * Líea de regresó * Ordeada al orge α
13 REGRESION LINEAL SIMPLE Estmar los valores de y varable depedete a partr de los valores de varable depedete yˆ a b y y ŷ y yˆ y yˆ y
14 Aálss de Varaca e el aálss de regresó El efoque desde el aálss de varaca se basa e la partcó de sumas de cuadrados y grados de lbertad asocados co la varable respuesta Y. La varacó de los Y se mde covecoalmete e térmos de las desvacoes Y Y La medda de la varacó total SC tot, es la suma de las desvacoes al cuadrado Y Y
15 Desarrollo formal de la partcó Cosderemos la desvacó Y Y Podemos descompoerla e Y Y Ŷ Y Y Ŷ T R E T: desvacó total R: es la desvacó del valor ajustado por la regresó co respecto a la meda geeral E: es la desvacó de la observacó co respecto a la líea de regresó
16 Desarrollo formal de la partcó S cosderemos todas las observacoes y elevamos al cuadrado para que los desvíos o se aule Y Y Ŷ Y Y Ŷ SC tot SC reg SC er SC tot : Suma de cuadrados total SC reg : Suma de cuadrados de la regresó SC er : Suma de cuadrados del error Dvdedo por los grados de lbertad, -, y -, respectvamete cada suma de cuadrados, se obtee los cuadrados medos del aálss de varaca. Cada u de estos cuadrados medos tee ua dstrbucó J Cuadrado.
17 Estmacó de la varaca de los térmos del error Dado que los Y provee de dferetes dstrbucoes de probabldades co medas dferetes que depede del vel de X, la desvacó de ua observacó Y debe ser calculada co respecto a su propa meda estmada Y. Por tato, las desvacoes so los resduales Y - Ŷ = e Y la suma de cuadrados es: SC e Y Ŷ Y a bx e
18 Estmacó de la varaca de los térmos del error La suma de cuadrados del error, tee - grados de lbertad asocados co ella, ya que se tuvero que estmar dos parámetros. Por lo tato, las desvacoes al cuadrado dvddo por los grados de lbertad, se deoma cuadrados medos CM e SC e Dode CM es el Cuadrado medo del error o cuadrado medo resdual. Es u estmador sesgado de e
19 Tabla del aálss de varaza Fuetes de Varacó Debdo a la regresó Debdo al Error Grados de Lbertad Suma de Cuadrados Cuadrados Medos F SCR CMR=SCR/ CMR/CMEE - SCEE CMEE=SCEE/- Total - SCTot La hpótess ula Ho: b = 0 se rechaza s el p-valor de la prueba de F es meor que el vel de sgfcacó.
20 Error estádar de la estmacó Se o Sy/ Mde la dspersó o alejameto promedo de los putos co respecto a la recta estmada. s e y ŷ s e y y b y y
21 U geero ecargado del área de caldad de ua empresa maufacturera, desea aalzar la vda útl de ua herrameta de corte el tempo que matee ua caldad aceptable de fucoameto para presetar u pla de reemplazo. Ya que s duda, las herrametas de corte puede determar el éto o fracaso de u proceso de mecazado. Las herrametas de corte más coocdas so: brocas, fresas, lmas, serras, herrametas de torear, etc. Fresa Brocas helcodales
22 Teedo e cueta que la vda útl se ve afectada por varos aspectos como: el ambete operacoal, las codcoes de produccó o de matemeto y el desgaste presetado por su uso, decde comezar a vestgar la relacó fucoal etre la velocdad de corte metros por muto y el tempo de vda horas de uso de la herrameta. Para ello tomó herrametas uevas, del msmo tpo, y a cada ua al azar las sometó a dferetes velocdades de corte regstrado e cada caso la vda útl e horas. Los datos recogdos se muestra e la tabla:
23 Velocdad Metros por muto Vda Horas 0 8,7 0 9,5 5 8,5 5 7,7 5 8,4 30 7,3 30 6, 30 7,3 35 6,8 35 5,7 35 6, 40 4,3 40 4, = 390 ² =50 y = 90,6 y² = 663,9 y = 59
24 Vda útl a Dbujar el dagrama de dspersó Velocdad
25 Vda útl y = -0, ,897 R = 0, Velocdad
26 Prueba de hpótess para el coefcete de regresó b H 0 : b = 0 vs H : b 0 Varable pvotal t b - b t S b - Coclusó: Co u vel de sgfcacó del 5 % tego evdecas sufcetes para supoer que este ua relacó fucoal poblacoal del tempo de vda útl de la herrameta e fucó de la velocdad de corte, o que sea, por cada metro/muto que se cremeta la velocdad de corte se modfca o camba el valor medo poblacoal del tempo de vda útl de la herrameta.
27 Itervalo de cofaza para el coefcete de Regresó b t ; / Sb b b t; / S b -0,84< b < -0,80585 Co ua cofaza de 95 %, podría decr que el tervalo -0,8 ; -0,805 horas/metros/muto ecerraría al verdadero valor de la pedete de la recta de regresó. Esto es, co ua cofaza de 95 %, podría decr que el tervalo -0,8 ; -0,805 horas/metros/muto ecerraría al verdadero cambo del promedo poblacoal del tempo de vda de la herrameta, para u aumeto utaro e la velocdad de corte.
28 Vda útl 0 9 desvacó o eplcada desvacó eplcada Velocdad desvacótotal
29 ANOVA e Regresó H o : b = 0 H : b 0 ANÁLISIS DE VARIANZA Grados de lbertad Suma de cuadrados Promedo de los cuadrados F Valor crítco de F Regresó 9, , ,0004 6,697E-07 Resduos 3, , Total 3,487693
En esta sección estudiaremos el caso en que se usa un solo "Predictor" para predecir la variable de interés ( Y )
Regresó Leal mple. REGREIÓN IMPLE El aálss de regresó es ua herrameta estadístca la cual utlza la relacó, etre dos o más varables de modo que ua varable pueda ser predcha desde la (s) otra (s). Por ejemplo
1. Introducción 1.1. Análisis de la Relación
. Itroduccó.. Aálss de la Relacó Ejemplos: Relacoes fucoales de terés Redmeto Doss de fertlzate Redmeto hortícola Desdad de platacó Volume de madera a cortar Desdad de platacó Catdad de suplemeto dado
Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión
Modelos de Regresó E muchos problemas este ua relacó herete etre dos o más varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la
REGRESIÓN LINEAL SIMPLE
RGRIÓN LINAL IMPL l aálss de regresó es ua técca estadístca para vestgar la relacó fucoal etre dos o más varables, ajustado algú modelo matemátco. La regresó leal smple utlza ua sola varable de regresó
ANÁLISIS DE REGRESIÓN. Departamento de Matemáticas Universidad de Puerto Rico Recinto Universitario de Mayagüez
ANÁLISIS DE REGRESIÓN Feradez Departameto de Matemátcas Uversdad de Puerto Rco Recto Uverstaro de Mayagüez REGRESIÓN LINEAL SIMPLE Regresó: cojuto de téccas que so usadas para establecer ua relacó etre
-Métodos Estadísticos en Ciencias de la Vida
-Métodos Estadístcos e Cecas de la Vda Regresó Leal mple Regresó leal smple El aálss de regresó srve para predecr ua medda e fucó de otra medda (o varas). Y = Varable depedete predcha explcada X = Varable
Análisis de Regresión y Correlación. Material Preparado por Olga Susana Filippini y Hugo Delfino 1
Aálss de Regresó y Correlacó Materal Preparado por Olga Susaa Flpp y Hugo Delfo ORIGEN HISTÓRICO DEL TÉRMINO REGRESlÓN El térmo regresó fue troducdo por Fracs Galto. E u famoso artículo Galto platea que,
Estadística. Tema 6: Análisis de Regresión.. Estadística. UNITEC Tema 6: Análisis de Regresión Prof. L. Lugo
Estadístca Tema 6: Aálss de Regresó. Estadístca. UNITEC Tema 6: Aálss de Regresó Modelos de Regresó E muchos problemas este ua relacó herete etre dos o mas varables, resulta ecesaro eplorar la aturaleza
ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES
ANÁLISIS DE LA VARIANZA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANOVA Marta Alper Profesora Adjuta de Estadístca [email protected] http://www.fcym.ulp.edu.ar/catedras/estadstca INTRODUCCION
Análisis de la Varianza
Descrpcó breve del tema Aálss de la Varaza Tema. troduccó al dseño de expermetos. El modelo. Estmacó de los parámetros. Propedades de los estmadores 5. Descomposcó de la varabldad 6. Estmacó de la dfereca
ESTADÍSTICA poblaciones
ESTADÍSTICA Es la parte de las Matemátcas que estuda el comportameto de las poblacoes utlzado datos umércos obtedos medate epermetos o ecuestas. ESTADÍSTICA La Estadístca tee dos ramas: La Estadístca descrptva:
Tema 1: Introducción: Generalización y Extensión del Modelo de Regresión
Tema : Itroduccó: Geeralzacó y Etesó del Modelo de Regresó Tema : Itroduccó: Geeralzacó y Etesó del Modelo de Regresó Itroduccó Especfcacó del Modelo de Regresó Leal 3 Supuestos del Modelo Clásco de Regresó
TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx
TEMA 3 Meddas de varabldad y asmetría 1. MEDIDAS DE VARIABILIDAD La varabldad o dspersó hace refereca al grado de varacó que hay e u cojuto de putuacoes. Por ejemplo: etre dos dstrbucoes que preseta la
DISTRIBUCIÓN DE LA MEDIA Y EL TEOREMA DEL LÍMITE CENTRAL
Smposo de Metrología 4 al 7 de Octubre DISTRIBUCIÓ DE LA MEDIA Y EL TEOREMA DEL LÍMITE CETRAL Wolfgag A. Schmd Cetro acoal de Metrología Tel.: (44) 4, e-mal: [email protected] Resume: De acuerdo al Teorema
Gráfica de los resultados experimentales: Variable Independiente: Variable Dependiente: Variable asociada:
:: OBJETIVOS [3.] o Apreder a presetar los datos epermetales como grafcas -. o Apreder a usar las hojas de papel logarítmco Semlogarítmco o Determar la relacó matemátca de ua grafca leal de datos epermetales
INGENIERÍA INDUSTRIAL DISEÑO EXPERIMENTAL LEOPOLDO VIVEROS ROSAS
INGENIERÍA INDUTRIAL A meudo, e la práctca, se requere resolver prolemas que clue cojutos de varales, cuado se sae que este algua relacó herete etre ellas, esa relacó se puede ecotrar a partr de la formacó
3 Metodología de determinación del valor del agua cruda
3 Metodología de determacó del valor del agua cruda Este aexo de la metodología del valor de agua cruda (VAC), cotee el método de detfcacó de la relacó etre reco y caudal, el cálculo de los estadígrafos
Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo
Estadístca Tema : Meddas de Tedeca Cetral. Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 1 Parámetros y Estadístcos Parámetro: Es ua catdad umérca calculada sobre ua poblacó La altura meda de los dvduos
Tema 2: Distribuciones bidimensionales
Tema : Dstrbucoes bdmesoales Varable Bdmesoal (X,Y) Sobre ua poblacó se observa smultáeamete dos varables X e Y. La dstrbucó de frecuecas bdmesoal de (X,Y) es el cojuto de valores {(x, y j ); j } 1,, p;
El valor en el que se estabilizan las proporciones se le conceptualiza como la probabilidad
Regulardad estadístca. E vrtud de la gra varabldad de muchos procesos, se recurre al estudo del comportameto e grades cojutos de elemetos. Se busca captar los aspectos sstemátcos o los aleatoros. Se pretede
Regresión Simple. Resumen. Ejemplo de StatFolio: simple reg.sgp
STATGRAPHICS Rev. 4/5/7 Regresó Smple Resume El procedmeto de Regresó Smple está dseñado para costrur u modelo estadístco que descrba el mpacto de u solo factor cuattatvo X sobre ua varable depedete Y.
RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1
RENTILIDD Y RIESGO DE CRTERS Y CTIVOS TEM 3- I FUNTMENTOS DE DIRECCIÓN FINNCIER Fudametos de Dreccó Facera Tema 3- arte I RIESGO y RENTILIDD ( decsoes de versó productvas) EXISTENCI DE RIESGO ( los FNC
V II Muestreo por Conglomerados
V II Muestreo por Coglomerados Dr. Jesús Mellado 31 Por alguas razoes aturales, los elemetos muestrales se ecuetra formado grupos, como por ejemlo, las persoas que vve e coloas de ua cudad, lo elemetos
Aplicación de Boostrapping en Regresión I
Aplcacó de Boostrappg e Regresó I U modelo de regresó leal basado e observacoes (x,y ) es de la forma y =x β+e (=,,..) dode y so los valores observados de la varable de respuesta y, y los x so vectores
EJERCICIOS RESUELTOS TEMA 3.
INTRODUCCIÓN AL ANÁLII DE DATO EJERCICIO REUELTO TEMA 3. 3.1. La ampltud total de la dstrbucó de frecuecas de la tabla 1. es: A) 11; B) 1; C). Tabla 1. Estatura e cetímetros de ños de 1 meses de edad.
PARÁMETROS ESTADÍSTICOS ... N
el blog de mate de ada: ESTADÍSTICA pág. 6 PARÁMETROS ESTADÍSTICOS MEDIDAS DE CENTRALIZACIÓN Las tablas estadístcas y las represetacoes grácas da ua dea del comportameto de ua dstrbucó, pero ese cojuto
CAPÍTULO III TÉCNICAS DE SIMULACIÓN ESTADÍSTICA. Los datos sintéticos son elementos de suma importancia en los sistemas de diseño en
CAPÍTULO III TÉCNICAS DE SIMULACIÓN ESTADÍSTICA 3. Itroduccó Los datos stétcos so elemetos de suma mportaca e los sstemas de dseño e presas de almaceameto, ya que se evalúa el propósto del sstema co sumo
Capítulo V Análisis de regresión y correlación
Capítulo V Aálss de regresó y correlacó Itroduccó E la vestgacó estadístca es muy frecuete ecotrar varables que está relacoadas o asocadas etre sí de algua maera, como se estudó e el capítulo ateror. Exste
MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU
MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU APLICACIÓN EN PROBLEMAS DE INGENIERÍA Clauda Maard Facultad de Igeería. Uversdad Nacoal de Lomas de Zamora Uversdad CAECE Bueos Ares. Argeta. [email protected]
1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL
Estadístca y probabldad 1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL 1.1 DISTRIBUCIONES ESTADÍSTICAS Se usa dagramas de barras, dode la altura de éstas represeta la recueca de cada
VARIABLES ESTADÍSTICAS UNIDIMENSIONALES.
CONTENIDOS. VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. Itroduccó a la Estadístca descrptva. Termología básca: poblacó, muestra, dvduo, carácter. Varable estadístca: dscretas y cotuas. Orgazacó de datos.
MUESTREO EN POBLACIONES FINITAS (1) Dos aspectos básicos de la inferencia estadística, no vistos aún:
A. Morllas - p. - MUESTREO E POBLACIOES FIITAS () Dos aspectos báscos de la fereca estadístca, o vstos aú: Proceso de seleccó de la muestra Métodos de muestreo Tamaño adecuado e poblacoes ftas Fabldad
TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS
Tema 1 Ifereca estadístca. Estmacó de la meda Matemátcas CCSSII º Bachllerato 1 TEMA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS UTILIZACIÓN DE
Incertidumbre en las mediciones directas e indirectas
Icertdumbre e las medcoes drectas e drectas Comezaremos por dstgur dos dferetes tpos de medcoes: Medcoes drectas: La medda de la cota se obtee e ua úca medcó co u strumeto de lectura drecta. Medcoes drectas:
Estadística Descriptiva
Estadístca Descrptva Parcalmete facado a través del PIE-04 (UMA). Promedos y meddas de poscó. Meddas de dspersó. Meddas de asmetría. Valores atípcos..4 Meddas de desgualdad..5 Valores atípcos: Dagrama
GENERACION DE VARIABLES ALEATORIAS
GENERACION DE VARIABLES ALEATORIAS Hay ua varedad de métodos para geerar varables aleatoras. Cada método se aplca solo a u subcojuto de dstrbucoes y para ua dstrbucó e partcular u método puede ser más
Una Propuesta de Presentación del Tema de Correlación Simple
Ua Propuesta de Presetacó del Tema de Correlacó Smple Itroduccó Ua Coceptualzacó de la Correlacó Estadístca La Correlacó o Implca Relacó Causa-Efecto Vsualzacó Gráfca de la Correlacó U Idcador de Asocacó:
Estadística Espacial. José Antonio Rivera Colmenero
Estadístca Espacal José Atoo Rvera Colmeero 1 Descrptores del patró putual Tedeca cetral 1. Meda cetral (Meda espacal). Meda cetral poderada 3. Medaa cetral (medaa espacal) o se utlza amplamete por su
Estadística Descriptiva
Estadístca Descrptva Poblacoes y muestras Varables. Tablas de frecuecas Meddas de: tedeca cetral-dspersó ESTADÍSTICA DESCRIPTIVA: Tee por objetvo recoplar, orgazar y aalzar formacó referda a datos de u
CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula:
CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS I Meddas de localzacó Auque ua dstrbucó de frecuecas es certamete muy útl para teer ua dea global del comportameto de los datos, es geeralmete ecesaro
I. ANÁLISIS DESCRIPTIVO DE UN CONJUNTO DE DATOS
Estadístca Tema. Seres Estadístcas. Dstrbucoes de frecuecas. Pág. I. ANÁLISIS DESCIPTIVO DE UN CONJUNTO DE DATOS Seres Estadístcas. Dstrbucoes de frecuecas.. Defcó de Estadístca... Coceptos geerales...2
(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es
(Feb03-ª Sem) Problema (4 putos). Se dspoe de u semcoductor tpo P paraleppédco, cuya dstrbucó de mpurezas es ( x a) l = A 0 dode A y 0 so mpurezas/volume, l es u parámetro de logtud y a la poscó de ua
TEMA DISTRIBUCIONES BIDIMENSIONALES DE FRECUENCIAS.
1. Dstrbucoes Bdmesoales de Frecuecas. 1.1. Idepedeca y Relacó Fucoal de dos Varables. 1.. Tablas de Correlacó y de Cotgeca. 1.3. Dstrbucoes Margales. 1.4. Dstrbucoes Codcoadas. 1.5. Idepedeca Estadístca..
Qué es la estadística? presentación, análisis e interpretación de datos numéricos con e fin de realizar una toma de decisión más efectiva.
Estadístca Alguos Coceptos Itroduccó Qué es la estadístca? La estadístca, e geeral, es la ceca que trata de la recoplacó, orgazacó presetacó, aálss e terpretacó de datos umércos co e f de realzar ua toma
CAPÍTULO 2 MODELO DE REGRESIÓN LOGÍSTICA
Estmacó de la ocurreca de cdecas e declaracoes de pólzas de mportacó Salcedo Poma, Cela Mercedes CAPÍULO MODELO DE REGRESIÓN LOGÍSICA INRODUCCIÓN La Regresó Logístca es ua técca estadístca multvarate que
EL DIAGRAMA DE DISPERSIÓN Y EL ANÁLISIS DE CORRELACIÓN
CAPÍTULO VIII EL DIAGRAMA DE DISPERSIÓN Y EL ANÁLISIS DE CORRELACIÓN 8. INTRODUCCIÓN A través del Dagrama Causa - Efecto establecemos las posbles causas que provoca u problema de caldad, estas aseveracoes
Apuntes preparados por el profesor Sr. Rosamel Sáez Espinoza con fines de docencia
Aputes preparados por el profesor Sr. Rosamel Sáez Espoza co fes de doceca La meda Sea u cojuto de observacoes x 1,..., x, o agrupados. Se defe la meda o promedo, medate: x 1 La meda utlza todas las observacoes,
Tema 16: Modelos de distribución de probabilidad: Variables Continuas
Aálss de Datos I Esquema del Tema 6 Tema 6: Modelos de dstrbucó de robabldad: Varables Cotuas. EL MODELO RECTANGULAR. EL MODELO NORMAL, N(μ, σ) 3. MODELO CHI-CUADRADO DE PEARSON, χ k 4. MODELO t DE STUDENT,
EVALUACION DEL AHUELLAMIENTO CON EQUIPO DE ALTO RENDIMIENTO
EVALUACION DEL AHUELLAMIENTO CON EQUIPO DE ALTO RENDIMIENTO CRISTIAN CABRERA TORRICO, Igeero Cvl APSA Ltda. ([email protected]) ROBINSON LUCERO, Igeero Cvl Laboratoro Nacoal de Valdad, [email protected]
FEM-OF: EDP Elíptica de 2 Orden
9/02/2008 Capítulo 5: FM-OF: D líptca de 2 Orde Idce: 5..- Operador Dferecal líptco 5.2.- roblema Básco 5.3.- Fucoes Óptmas 5.4.- FM-OF Steklov-ocaré 5.5.- FM-OF Trefftz-Herrera 5.6.- FM-OF etrov-galerk
Línea de Investigación: Fisicoquímica de Alimentos. Programa Educativo: Licenciatura en Química. Nombre de la Asignatura: Química Analítica V
Área Académca de: Químca Líea de Ivestgacó: Fscoquímca de Almetos Programa Educatvo: Lcecatura e Químca Nombre de la Asgatura: Químca Aalítca V Tema: Represetacoes gráfcas de las relacoes propedadcocetracó
VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN
VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode
ESTADÍSTICA DESCRIPTIVA
ESTADÍSTICA DESCRIPTIVA A. MEDIDAS DE TENDENCIA CENTRAL B. MEDIDAS DE VARIABILIDAD C. MEDIDAS DE FORMA RESUMEN: A. MEDIDAS DE TENDENCIA CENTRAL So estadígrafos de poscó que so terpretados como valores
Medidas de Tendencia Central
Meddas de Tedeca Cetral Ua edda de tedeca cetral es u valor que se calcula a partr de u cojuto de datos y que se utlza para descrbr los datos e algua fora. Geeralete quereos que el valor sea represetatvo
Estadística Descriptiva
Estadístca Descrptva Poblacó: Es u cojuto de elemetos co ua determada característca. Muestra: Es u subcojuto de la poblacó. Muestreo: Es el proceso para elegr ua muestra que sea represetatva de la poblacó.
FUNCIONES ALEATORIAS
Uversdad de Medoza Ig. Jesús Rubé Azor Motoya FUNCIONES ALEATORIAS Ua varable aleatora se defe como ua fucó que represeta gráfcamete el resultado de u expermeto a los úmeros reales, esto es, X(), dode
MEDIDAS DE TENDENCIA CENTRAL
Probabldad y Estadístca Meddas de tedeca Cetral MEDIDAS DE TENDENCIA CENTRAL E la udad ateror se ha agrupado la ormacó y además se ha dado ua descrpcó de la terpretacó de la ormacó, s embargo e ocasoes
Si los cerdos de otro granjero tienen los siguientes pesos: 165, 182, 185, 168, 170, 173, 180, 177. Entonces el diagrama de puntos está dado por:
Aputes de Métodos Estadístcos I Prof. Gudberto J. Leó R. I- 65 Uversdad de los Ades Escuela de Estadístca. Mérda -Veezuela Meddas de Dspersó Además de obteer la formacó que reúe las meddas de tedeca cetral
Aproximación a la distribución normal: el Teorema del Límite Central
Aproxmacó a la dstrbucó ormal: el Teorema del Límte Cetral El teorema del límte cetral establece que s se tee varables aleatoras, X, X,..., X, depedetes y co détca dstrbucó de meda µ y varaza σ, a medda
Tema 4. Problemas de inferencia estadística en el modelo de regresión lineal múltiple
Método de egreó Grado e Etadítca y Emprea Tema 4 /3 Tema 4. Problema de fereca etadítca e el modelo de regreó leal múltple. Itervalo de cofaza y cotrate para lo coefcete de regreó... Itervalo de cofaza
Control estadístico de procesos. Control de procesos. Definición de proceso bajo control estadístico. Causas de la variabilidad en un proceso
Cotrol de procesos Hstórcamete ha evolucoado e dos vertetes: Cotrol automátco de procesos (APC) empresas de produccó cotua (empresas químcas) Cotrol estadístco de procesos (SPC) e sstemas de produccó e
ESTADÍSTICA I UNIDAD I ESTADÍSTICA DESCRIPTIVA
ESTADÍSTICA I UNIDAD I ESTADÍSTICA DESCRIPTIVA 3.5 Ojvas Este tpo de represetacó gráfca se costruye a partr de las frecuecas acumuladas (absolutas o relatvas) para varables cotuas o dscretas, co muchos
Capítulo. Objetivos. Plan de muestreo. Al finalizar este capítulo el estudiante estará en condiciones de:
Capítulo 8 Pla de muestreo Objetvos Al falzar este capítulo el estudate estará e codcoes de: Teer claro los coceptos de elemeto, poblacó, marco muestral y udad de muestreo. Dferecar ua muestra de u ceso.
Estadística descriptiva
Estadístca descrptva PARAMETROS Y ESTADISTICOS Marta Alper Profesora Adjuta de Estadístca [email protected] http://www.fcym.ulp.edu.ar/catedras/estadstca Meddas de tedeca cetral: Moda, Medaa, Meda
ANÁLISIS DE REGRESIÓN
ANÁLISIS DE REGRESIÓN Feradez Departameto de Matemátcas Uversdad de Puerto Rco Recto Uverstaro de Mayagüez REGRESIÓN LINEAL SIMPLE Regresó: cojuto de téccas que so usadas para establecer ua relacó etre
Objetivos. Introducción n a las medidas de posición n (tendencia central o tipismo): Moda y Mediana Media aritmética
Objetvos Itroduccó a las meddas de poscó (tedeca cetral o tpsmo): Moda y Medaa Meda artmétca tca Cuartles,, decles y percetles Meddas de poscó Defcó: : refereca a u lugar específco de ua dstrbucó, epresado
( ) = 0 entonces ˆ i i. xy x Y Y xy Y x ˆ. β = = β =.(1) Propiedades Estadísticas de los estimadores MICO. Linealidad.
Propedades Estadístcas de los estmadores MICO Lealdad ) y Y Y Y Y = = = β Y Dado que la = 0 etoces β =.) S defmos el poderador k =, co las propedades sguetes: a) No estocástco b) k = 0 c) k = k d) = kx
ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral
ÁLISIS D DTOS CULITTIVOS José Vcés Otero va Meda Moral ero 005 . COSTRUCCIÓ D U TL D COTIGCI Para aalzar la relacó de depedeca o depedeca etre dos varables cualtatvas omales o actores, es ecesaro estudar
TEMA 9. Contrastes no paramétricos y bondad de ajuste
TEMA 9. Cotrastes o paramétrcos y bodad de ajuste 9. Al falzar el tema el alumo debe coocer... fereca etre u cotraste parámetrco y uo o paramétrco Característcas de la estmacó utlzado los cotrastes o test
LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS
LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS Mercedes Alvargozález Rodríguez - [email protected] Uversdad de Ovedo Reservados todos los derechos. Este documeto ha sdo extraído del
Inferencia en Regresión Lineal Simple
Inferenca en Regresón Lneal Smple Modelo de regresón lneal smple: Se tenen n observacones de una varable explcatva x y de una varable respuesta y, ( x, y)(, x, y),...,( x n, y n ) el modelo estadístco
ANÁLISIS DE LA VARIANZA Es coocdo que ua varable aleatora Y se puede cosderar como suma de ua costate μ de ua varable aleatora ε, que represeta el error aleatoro: μ ε Este modelo se adapta be a datos de
NOCIONES BÁSICAS DE ESTADÍSTICA UTILIZADAS EN EDUCACIÓN
UNIVERSIDAD DE CHILE VICERRECTORÍA DE ASUNTOS ACADÉMICOS DEPARTAMENTO DE EVALUACIÓN, MEDICIÓN Y REGISTRO EDUCACIONAL NOCIONES BÁSICAS DE ESTADÍSTICA UTILIZADAS EN EDUCACIÓN SANTIAGO, septembre de 2008
Contraste de Hipótesis
Cotraste de Hpótess 1. Se quere comprobar s ua muestra de tamaño 0 co meda 10 procede de ua poblacó N(14,3) co el vel de sgfcacó 0,05..- E ua propagada se auca que uas determadas plas proporcoa más horas
6. ESTIMACIÓN PUNTUAL
Defcoes 6 ESTIMACIÓN PUNTUAL E la práctca, los parámetros de ua dstrbucó de probabldad se estma a partr de la muestra La fereca estadístca cosste e estmar los parámetros de ua dstrbucó; y e evaluar ua
Tema 2: Errores de Especificación y Problemas con la Muestra
Tema : Errores de Especfcacó y Problemas co la Muestra TEMA : ERRORES DE ESPECIFICACIÓN ) Itroduccó ) Omsó de Varables Relevates 3) Iclusó de Varables Superfluas 4) Mala Especfcacó de la Forma Fucoal 5)
5.3 Estadísticas de una distribución frecuencial
5.3 Estadístcas de ua dstrbucó frecuecal 5.3. Meddas de tedeca cetral Meddas de tedeca cetral Las meddas de tedeca cetral so descrptores umércos que proporcoa ua dea de los valores de la varable, alrededor
Regresión lineal simple
Regresó leal smple.- Itroduccó....- Dagrama de dspersó... 3 3.- Especfcacó del modelo de regresó leal smple... 4 3..- upuestos del modelo... 7 4.- Estmacó de parámetros... 0 4..- Estmacó medate mímos cuadrados...
RELACIÓN ENTRE DOS VARIABLES NUMÉRICAS. REGRESIÓN LINEAL SIMPLE. CORRELACIÓN.
FCEyN - Estadístca para Químca Marta García Be 8 RELACIÓN ENTRE DOS VARIABLES NUMÉRICAS. REGRESIÓN LINEAL SIMPLE. CORRELACIÓN. Los métodos de regresó se usa para estudar la relacó etre dos varables umércas.
PROBANDO GENERADORES DE NUMEROS ALEATORIOS
PROBADO GRADORS D UMROS ALATORIOS s mportate asegurarse de que el geerador usado produzca ua secueca sufcetemete aleatora. Para esto se somete el geerador a pruebas estadístcas. S o pasa ua prueba, podemos
CONTRASTES NO PARAMÉTRICOS (I) Antonio Morillas
CONTRASTES NO PARAMÉTRICOS (I) Atoo Morllas. Itroduccó. Cotrastes de ajuste. Cotraste χ. Cotraste de Kolmogorov-Smrov 3. Cotrastes específcos de ormaldad 3. Cotraste de ormaldad de Lllefors 3. Cotraste
4 METODOLOGIA ADAPTADA AL PROBLEMA
4 MEODOLOGA ADAPADA AL PROBLEMA 4.1 troduccó Báscamete el problema que se quere resolver es ecotrar la actuacó óptma sobre las tesoes de los geeradores, la relacó de tomas de los trasformadores y el valor
