Gráfica de los resultados experimentales: Variable Independiente: Variable Dependiente: Variable asociada:
|
|
|
- Manuel José Francisco Robles Crespo
- hace 8 años
- Vistas:
Transcripción
1 :: OBJETIVOS [3.] o Apreder a presetar los datos epermetales como grafcas -. o Apreder a usar las hojas de papel logarítmco Semlogarítmco o Determar la relacó matemátca de ua grafca leal de datos epermetales o Tomar coceca de la varabldad e la medda epermetal. o Idetfcar los dferetes tpos de errores presetados al efectuar ua medcó o Cuatfcar los errores vculados e la medcó o Usar las covecoes dadas por el S.I. o Valorar la efcaca del método epermetal. MARCO TEÓRICO [3.] Gráfca de los resultados epermetales: E u proceso epermetal, se debe teer e cueta que este dferetes tpos de varables. Estas so: Varable Idepedete: Es la que modfca ó defe la varable depedete. Desde el puto de vsta epermetal, esta varable correspode a las magtudes meddas /o cotroladas. Es por esta últma razó que alguas de estas varables llega a ser llamadas factor de resgo, factor predctvo, etc. Varable Depedete: Es la varable objetvo, es decr, motvo de uestro terés, dode su valor depede de las varables depedetes otros factores que puede flur e ella. A esta varable també se le llama Varable Respuesta. Varable asocada: Se deoma así a aquellos factores ó magtudes depedetes que por s msmos o modfca la varable objetvo, pero que al teerse e cueta co otros factores, flue otoramete e la varable respuesta. HFRG CAEM
2 Meddas-Laboratoro de Físca I E el trabajo de laboratoro, los resultados ó meddas so la epresó comportametal de u feómeo epermetal, que mateedo uos parámetros de cotrol (varables asocadas muestra la relacó fucoal etre las varables depedetes (magtudes estudadas para detfcar el comportameto que asume la ó las varables objetvo del feómeo e estudo. La relacó de las magtudes estudadas, puede ser tabuladas grafcadas, permtedo costrur ua grafca - que proporcoa la mage vsual del comportameto del feómeo estudado, costtuédose por ede e u medo efcaz para terpretar resultados cualtatvos. S se cosdera que, so las magtudes meddas e u feómeo epermetal, lo que se buscará es hallar la relacó fucoal a partr de estos datos de allí deducr los demás valores ó parámetros que complemeta tal relacó físca. Muchos de tales feómeos so descrtos por epresoes matemátcas smples, como uo de los sguetes tpos:. Fucó Leal: = a + b. Fucó Polómca: 3. Fucó Epoecal: = b a = ba 4. Fucó Polar: r = af ( θ ; ejemplo : = ase( b; = b ta( a; etc. Elaboracó de la gráfca cartesaa: Para elaborar la grafca e papel mlmetrado es ecesaro dbujar los ejes de acuerdo co los datos colocar los putos (, e el plao cartesao dcado por dchos ejes, pero es mportate respetar las sguetes dcacoes: Toda gráfca debe teer u ttulo que forme la aturaleza de la relacó Los putos (, debe ser tabulados de forma ascedete. La eleccó de la Escala: La gráfca debe ocupar toda la superfce dspoble, ordaramete de forma cuadrada. Para ello dscrme las dvsoes e úmeros eteros e formato cetífco. Para mamzar la superfce dspoble, muchas veces el orge de las coordeadas NO requere estar e el puto (0, 0. Los putos epermetales debe estar equdstatemete dstrbudos. La magtud epermetal que presete claramete u maor error ó certdumbre, debe ser presetada sobre el eje. Los errores de cada magtud epermetal debe ser represetada e la gráfca como ua cruz ó u rectágulo alrededor de cada puto epermetal. HFRG CAEM
3 Meddas-Laboratoro de Físca I 3 EQUIPOS Y MATERIALES [3.3] Regla graduada e mlímetros. Papel Mlmetrado Lápz, borrador PROCEDIMIENTO [3.4] 3.4. Represetacó gráfca de los resultados epermetales: o Tabule los datos presetados e la Tabla, o E la mtad de la hoja mlmetrada, trace las coordeadas determe la escala de cada Tabla ua de acuerdo a la magtud de los datos. Potecal V (V V ( V Correte I (A I ( A 44,5 0,50 0,9 0,06 3,0 0,30 0,6 0,03 4,0 0,0 0,5 0,08,5 0,0 0,4 0,06 5,0 0,0 0,3 0,06 4,5 0,0 0,3 0,06,0 0,0 0, 0,08 0,5 0,0 0, 0,08 ANÁLISIS DE DATOS [3.5]. Ubque los putos (, e los ejes coordeados segú los datos tabulados e el prmer paso.. Cual de las seres preseta maor error ó certdumbre? Escoja los datos de. 3. Coloque el ttulo, los ombres de cada ua de los ejes, també las udades los valores de cada ua de las dvsoes. 4. Ua los putos co ua líea etre ellos para dscrmar la tedeca del feómeo estudado. 5. Cuál es el tpo de fucó que mejor se ajusta a tal tedeca? 6. S es ua líea recta determe la pedete. Es posble hacerlo? O ha muchas posbles respuestas? HFRG CAEM
4 Meddas-Laboratoro de Físca I 4 MARCO TEÓRICO [3.6] Iterpolacó etrapolacó: El problema geeral del proceso epermetal, es que se tee u cojuto de datos dscretos, que deja u espaco de datos descoocdos alrededor de cada dato pareado meddo. Por lo tato para recoocer el valor par que le correspoderá a u valor de, será ecesaro terpolar s está etre dos datos coocdos ó etrapolar s esta después de uo de los etremos de. Utlzar el método de terpolacó gráfca es el método más secllo para hallar el valor =f(, más s embargo o es lo sufcetemete smple claro para resolver el problema de la etrapolacó, además de presetar muchas posbles curvas como solucó. Surge como procedmeto matemátco el método de mímos cuadrados aplcado a la líea recta. Método de Mímos Cuadrados para u cojuto de valores: Asúmase que se tee observacoes, dode vara de a datos. Dscrmado la suma de cuadrados de sus desvacoes respecto a la meda m es: ( m que es la ecuacó que se desea mmzar (mmzar las desvacoes = S = Para mmzar S co respecto m a, solo se tee que dervar co respecto a m e gualar a cero δ S = 0 = ( ( m = ( m δ Despejado se halla que: m = m = = De este resultado se cofrma el hecho que el valor más cercao al valor verdadero, a partr de los datos epermetales, es la meda artmétca a especfcada. Método de Mímos Cuadrados para ua sere leal de valores: Nuestro problema es ecotrar la mejor fucó leal para u cojuto de datos que pueda estar dsperso de maera cosderable (ube de datos. S al valorar la tedeca de la ube de datos se halla que la recta descrbe de mejor maera tal tedeca, solo cabe hallar aquella que tega meos varabldad co respecto a la ecuacó de la recta que es c = a + b dode c es el valor -ésmo del de la recta esperada es el valor -ésmo meddo a la pedete de la recta esperada HFRG CAEM
5 Meddas-Laboratoro de Físca I 5 b la costate que corta el eje. Por tato la fucó a mmzar la varaca es: S = [ ( ] a + b Dervado para cada ua de los valores buscados se tee: δ S = { ( a b }( δ a + δ S = { ( a + b }( δb Igualado a cero despejado las costates de la recta a u lado de la ecuacó se tee b + a = b + a = Resolvedo estas dos ecuacoes de forma smultáea se obtee el valor de las costates de la ( ( a = ( recta: b = ( ( ( ( Por tato los uevos valores de será dados como c = a + b Y el error estádar de la estmacó de del cojuto de datos es: ( ( a b c Err. Std = = El coefcete de correlacó (r: Este coefcete permte, de acuerdo a los crteros dados para tal parámetro, determar s la recta dada se ajusta adecuadamete a la tedeca comportametal de la ube de datos epermetal HFRG CAEM
6 Meddas-Laboratoro de Físca I Este parámetro está defdo como: r = dode es la desvacó estádar de 6 = = ( m / la desv. Estádar del corregdo es ( c = = Por lo tato; o Cuado el coefcete da valores etre -0.80, se sabe que la fucó escogda represeta adecuadamete la tedeca o Cuado el coefcete da valores etre , se puede probar co otras fucoes que represete mejor la tedeca o Cuado el coefcete de valores dferetes a los a dcados deftvamete la fucó escogda o represeta la tedeca. / PROCEDIMIENTO [3.7] 3.7. Represetacó grafca de los resultados epermetales aplcado Regresó leal: o Tabule los datos presetados e la Tabla, o E la mtad de la hoja mlmetrada, trace las coordeadas determe la escala de cada Tabla ua de acuerdo a la magtud de los datos. c ( c o Ubque los putos e los ejes coordeados ua los putos. o Determe los valores correspodetes e la 3ª 4ª columa. o Realce la sumatora de la últma fla. o Co las sumatoras obtedas calcule las costates a b. o Calcule los valores de las columas 5ª 6ª. o Trace la líea de tedeca hallada, sobre la grafca aquí mostrada. HFRG CAEM
7 Meddas-Laboratoro de Físca I o Calcule el coefcete de correlacó. o Determe el error estmado, segú la temátca dada, para la gráfca hallada. 7 PREGUNTAS [3.8]. Para el prmer cojuto de valores (Tabla, determe los coefcetes a b de la recta ó tedeca. (recomedacó: use el esquema de la tabla para hallar los coefcetes. Grafíquela e ua hoja mlmetrada. Respetado las recomedacoes dadas. 3. Calcule los uevos c co los orgales. 4. Grafque esta tedeca (Co otro color ó tpo de líea e la curva dbujada e el puto. 5. Calcular el coefcete de correlacó del prmer cojuto de valores 6. Determar el error estmado para la gráfca de tedeca de la Tabla. HFRG CAEM
REGRESIÓN LINEAL SIMPLE
RGRIÓN LINAL IMPL l aálss de regresó es ua técca estadístca para vestgar la relacó fucoal etre dos o más varables, ajustado algú modelo matemátco. La regresó leal smple utlza ua sola varable de regresó
Tema 2: Distribuciones bidimensionales
Tema : Dstrbucoes bdmesoales Varable Bdmesoal (X,Y) Sobre ua poblacó se observa smultáeamete dos varables X e Y. La dstrbucó de frecuecas bdmesoal de (X,Y) es el cojuto de valores {(x, y j ); j } 1,, p;
MEDIDAS DE TENDENCIA CENTRAL
Probabldad y Estadístca Meddas de tedeca Cetral MEDIDAS DE TENDENCIA CENTRAL E la udad ateror se ha agrupado la ormacó y además se ha dado ua descrpcó de la terpretacó de la ormacó, s embargo e ocasoes
MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades
MATEMÁTICA MÓDULO 4 Eje temátco: Estadístca y Probabldades Empezaremos este breve estudo de estadístca correspodete al cuarto año de Eseñaza Meda revsado los dferetes tpos de gráfcos.. GRÁFICOS ESTADÍSTICOS
MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU
MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU APLICACIÓN EN PROBLEMAS DE INGENIERÍA Clauda Maard Facultad de Igeería. Uversdad Nacoal de Lomas de Zamora Uversdad CAECE Bueos Ares. Argeta. [email protected]
Una Propuesta de Presentación del Tema de Correlación Simple
Ua Propuesta de Presetacó del Tema de Correlacó Smple Itroduccó Ua Coceptualzacó de la Correlacó Estadístca La Correlacó o Implca Relacó Causa-Efecto Vsualzacó Gráfca de la Correlacó U Idcador de Asocacó:
MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD
UNIVERSIDAD DE LOS ANDES. FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS MÉRIDA ESTADO MÉRIDA Admstracó de la Produccó y las Operacoes II Prof. Mguel Olveros MÉTODOS
Línea de Investigación: Fisicoquímica de Alimentos. Programa Educativo: Licenciatura en Química. Nombre de la Asignatura: Química Analítica V
Área Académca de: Químca Líea de Ivestgacó: Fscoquímca de Almetos Programa Educatvo: Lcecatura e Químca Nombre de la Asgatura: Químca Aalítca V Tema: Represetacoes gráfcas de las relacoes propedadcocetracó
V II Muestreo por Conglomerados
V II Muestreo por Coglomerados Dr. Jesús Mellado 31 Por alguas razoes aturales, los elemetos muestrales se ecuetra formado grupos, como por ejemlo, las persoas que vve e coloas de ua cudad, lo elemetos
PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción
Parte Estadístca Descrptva Prof. María B. Ptarell PARTE - ESTADISTICA 7- Estadístca Descrptva 7. Itroduccó El campo de la estadístca tee que ver co la recoplacó, orgazacó, aálss y uso de datos para tomar
VARIABLES ESTADÍSTICAS UNIDIMENSIONALES.
CONTENIDOS. VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. Itroduccó a la Estadístca descrptva. Termología básca: poblacó, muestra, dvduo, carácter. Varable estadístca: dscretas y cotuas. Orgazacó de datos.
VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN
VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode
Estadística Espacial. José Antonio Rivera Colmenero
Estadístca Espacal José Atoo Rvera Colmeero 1 Descrptores del patró putual Tedeca cetral 1. Meda cetral (Meda espacal). Meda cetral poderada 3. Medaa cetral (medaa espacal) o se utlza amplamete por su
LOS NÚMEROS COMPLEJOS
LOS NÚMEROS COMPLEJOS por Jorge José Osés Reco Departameto de Matemátcas - Uversdad de los Ades Bogotá Colomba - 00 Cuado se estudó la solucó de la ecuacó de segudo grado ax bx c 0 se aaló el sgo del dscrmate
LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS
LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS Mercedes Alvargozález Rodríguez - [email protected] Uversdad de Ovedo Reservados todos los derechos. Este documeto ha sdo extraído del
CONTENIDO MEDIDAS DE POSICIÓN MEDIDAS DE DISPERSIÓN OTRAS MEDIDAS DESCRIPTIVAS INTRODUCCIÓN
INTRODUCCIÓN CONTENIDO DEFINICIÓN DE ESTADÍSTICA ESTADÍSTICA DESCRIPTIVA CONCEPTOS BÁSICOS POBLACIÓN VARIABLE: Cualtatvas o Categórcas y Cuattatvas (Dscretas y Cotuas) MUESTRA TAMAÑO MUESTRAL DATO DISTRIBUCIONES
CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula:
CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS I Meddas de localzacó Auque ua dstrbucó de frecuecas es certamete muy útl para teer ua dea global del comportameto de los datos, es geeralmete ecesaro
6. ESTIMACIÓN PUNTUAL
Defcoes 6 ESTIMACIÓN PUNTUAL E la práctca, los parámetros de ua dstrbucó de probabldad se estma a partr de la muestra La fereca estadístca cosste e estmar los parámetros de ua dstrbucó; y e evaluar ua
Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo:
PRÁCTICA SUMAS DE RIEMAN Práctcas Matlab Práctca Objetvos Calcular tegrales defdas de forma aproxmada, utlzado sumas de Rema. Profudzar e la compresó del cocepto de tegracó. Comados de Matlab t Calcula
Guía práctica para la realización de medidas y el cálculo de errores
Laboratoro de Físca Prmer curso de Químca Guía práctca para la realzacó de meddas y el cálculo de errores Medda y Error Aquellas propedades de la matera que so susceptbles de ser meddas se llama magtudes;
2 - TEORIA DE ERRORES : Calibraciones
- TEORIA DE ERRORES : Calbracoes CONTENIDOS Errores sstemátcos.. Modelo de Studet. Curvas de Calbracó. Métodos de los Mímos Cuadrados. Recta de Regresó. Calbracó de Istrumetos OBJETIVOS Explcar el cocepto
ESTADÍSTICA DESCRIPTIVA
ESTADÍSTICA DESCRIPTIVA A. MEDIDAS DE TENDENCIA CENTRAL B. MEDIDAS DE VARIABILIDAD C. MEDIDAS DE FORMA RESUMEN: A. MEDIDAS DE TENDENCIA CENTRAL So estadígrafos de poscó que so terpretados como valores
-Métodos Estadísticos en Ciencias de la Vida
-Métodos Estadístcos e Cecas de la Vda Regresó Leal mple Regresó leal smple El aálss de regresó srve para predecr ua medda e fucó de otra medda (o varas). Y = Varable depedete predcha explcada X = Varable
3 AJUSTE DE FUNCIONES
AJUSTE DE UNCIONES.. udametos de estadístca: cojuto de medcoes epermetales meda y desvacó estádar INTRODUCCION TEÓRICA E la mayoría de los procedmetos epermetales se gasta mucho esfuerzo para reur los
Serie de Gradiente (Geométrico y Aritmético) y su Relación con el Presente.
Sere de radete (eométrco y rtmétco) y su Relacó co el resete. Certos proyectos de versó geera fluos de efectvo que crece o dsmuye ua certa catdad costate cada período. or eemplo, los gastos de matemeto
NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD
NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD 1. CONCEPTO DE ESTADÍSTICA : Es la ceca que estuda la terpretacó de datos umércos. a) Proceso estadístco : Es aquél que a partr de uos datos umércos, obteemos
(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es
(Feb03-ª Sem) Problema (4 putos). Se dspoe de u semcoductor tpo P paraleppédco, cuya dstrbucó de mpurezas es ( x a) l = A 0 dode A y 0 so mpurezas/volume, l es u parámetro de logtud y a la poscó de ua
Aproximación a la distribución normal: el Teorema del Límite Central
Aproxmacó a la dstrbucó ormal: el Teorema del Límte Cetral El teorema del límte cetral establece que s se tee varables aleatoras, X, X,..., X, depedetes y co détca dstrbucó de meda µ y varaza σ, a medda
MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada.
MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co u ejemplo:
ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES
ANÁLISIS DE LA VARIANZA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANOVA Marta Alper Profesora Adjuta de Estadístca [email protected] http://www.fcym.ulp.edu.ar/catedras/estadstca INTRODUCCION
Guía para la Presentación de Resultados en Laboratorios Docentes
Guía para la Presetacó de Resultados e Laboratoros Docetes Prof. Norge Cruz Herádez Departameto de Físca Aplcada I Escuela Poltécca Superor Uversdad de Sevlla Curso 0-03 6 de octubre de 0 I Itroduccó Las
4. SEGUNDO MÓDULO. 4.1 Resumen de Datos
4. SEGUNDO MÓDULO 4. Resume de Datos E estadístca descrptva, a partr de u cojuto de datos, se busca ecotrar resumes secllos, que permta vsualzar las característcas esecales de éstos. E ua expereca, u dato
RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1
RENTILIDD Y RIESGO DE CRTERS Y CTIVOS TEM 3- I FUNTMENTOS DE DIRECCIÓN FINNCIER Fudametos de Dreccó Facera Tema 3- arte I RIESGO y RENTILIDD ( decsoes de versó productvas) EXISTENCI DE RIESGO ( los FNC
GUÍA PRÁCTICA PARA LA VALIDACIÓN, EL CONTROL DE CALIDAD Y LA ESTIMACIÓN DE LA INCERTIDUMBRE DE UN MÉTODO DE ANÁLISIS ENOLÓGICO ALTERNATIVO
RESOLUCIÓN OENO 0/005 GUÍA PRÁCTICA PARA LA VALIDACIÓN, EL CONTROL DE CALIDAD Y LA ESTIMACIÓN DE LA INCERTIDUMBRE DE UN MÉTODO DE ANÁLISIS ENOLÓGICO ALTERNATIVO LA ASAMBLEA GENERAL, Vsto el artículo, párrafo
5.3 Estadísticas de una distribución frecuencial
5.3 Estadístcas de ua dstrbucó frecuecal 5.3. Meddas de tedeca cetral Meddas de tedeca cetral Las meddas de tedeca cetral so descrptores umércos que proporcoa ua dea de los valores de la varable, alrededor
REGRESIÓN NO LINEAL. Índice. 1. Cuándo existe regresión? Y = f X (figura 1d y 1e); es decir, los puntos del diagrama de dispersión
REGREIÓN NO LINEAL Ídce. CUÁNDO EXITE REGREIÓN?.... TIPO DE REGREIÓN... 3. REPREENTATIVIDAD DE LA CURVA DE REGREIÓN... 3 3.. Poder explcatvo del modelo... 3 3.. Poder explcatvo frete a poder predctvo...
CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA
CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA - 1 - ÍNDICE CAPÍTULO 1: INTRODUCCIÓN A LA ESTADÍSTICA Tema 1: Itroduccó a la estadístca - 1.1. Itroducc ó a la estadístca descrptva - 1.2. Nocoes báscas o 1.2.1.
Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria
Matemátcas EJERCICIOS RESUELTOS: Números Complejos Elea Álvare Sá Dpto. Matemátca Aplcada y C. Computacó Uversdad de Catabra Igeería de Telecomucacó Fudametos Matemátcos I Ejerccos: Números Complejos Iterpretacó
1 Ce.R.P. del Norte Rivera Julio de 2010 Departamento de Matemática Notas para el curso de Fundamentos de la Matemática
Ce.R.P. del Norte Rvera Julo de Departameto de Matemátca Notas para el curso de Fudametos de la Matemátca CONGRUENCIAS NUMÉRICAS Y ECUACIONES DE CONGRUENCIA. RECORDANDO CONCEPTOS: La cogrueca es ua relacó
TEMA 2: LOS NÚMEROS COMPLEJOS
Matemátcas º Bachllerato. Profesora: María José Sáche Quevedo TEMA : LOS NÚMEROS COMPLEJOS. LOS NÚMEROS COMPLEJOS Relacó etre los úmeros complejos y los putos del plao. Afjo de u úmero complejo. Cojugado
EL COEFICIENTE DE CORRELACIÓN Y CORRELACIONES ESPÚREAS Erick Lahura Enero, 2003
8 EL COEFICIENTE DE CORRELACIÓN CORRELACIONES ESPÚREAS Erck Lahura Eero, 3 DOCUMENTO DE TRABAJO 8 http://www.pucp.edu.pe/ecooma/pdf/ddd8.pdf EL COEFICIENTE DE CORRELACIÓN CORRELACIONES ESPÚREAS Erck Lahura
Análisis estadístico de datos muestrales
Aálss estadístco de datos muestrales M. e A. Víctor D. Plla Morá Facultad de Igeería, UNAM Resume Represetacó de los datos de ua muestra: tablas de frecuecas, frecuecas relatvas y frecuecas relatvas acumuladas.
ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales
ESTADÍSTICA DESCRIPTIVA Métodos Estadístcos Aplcados a las Audtorías Socolaborales Fracsco Álvarez Gozález [email protected] Bajo el térmo Estadístca Descrptva se egloba las téccas que os permtrá
MS Word Editor de Ecuaciones
MS Word Edtor de Ecuacoes H L. Mata El Edtor de ecuacoes de Mcrosoft Word permte crear ecuacoes complejas seleccoado símbolos de ua barra de herrametas y escrbedo varables y úmeros. medda que se crea ua
3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna
arte robabldad codcoal rof. María. tarell - robabldad codcoal.- Defcó Supogamos el expermeto aleatoro de extraer al azar s reemplazo dos bolllas de ua ura que cotee 7 bolllas rojas y blacas. summos que
CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO EXCEL
CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO ECEL D. Fracsco Parra Rodríguez. Jefe de Servco de Estadístcas Ecoómcas y Socodemográfcas. Isttuto Cátabro de Estadístca. Dª.
INTEGRAL DE LÍNEA EN EL CAMPO COMPLEJO
INTEGRAL DE LÍNEA EN EL AMPO OMPLEJO ARRERA: Igeería Electromecáca ASIGNATURA: DOENTES: Ig. Norberto laudo MAGGI Ig. Horaco Raúl DUARTE INGENIERÍA ELETROMEÁNIA INTEGRAL DE LÍNEA EN EL AMPO OMPLEJO ONEPTOS
Tema 2: Modelos lineales de optimización con variables enteras.
Tema 2: Modelos leales de optmzacó co varables eteras. Objetvos del tema: Itroducr la programacó leal etera y los domos de aplcacó. Apreder a formular el modelo de u problema de programacó leal etera.
TEMA 4: VALORACIÓN DE RENTAS
TEMA 4: ALORACIÓN DE RENTAS 1. Cocepto y valor facero de ua reta 2. Clasfcacó de las retas. 3. aloracó de Retas dscretas. Temporales. 4. aloracó de Retas dscretas. Perpetuas. 5. Ejerccos tema 4. 1. Cocepto
ESTADÍSTICA DESCRIPTIVA
Estadístca Estadístca Descrptva. ESTADÍSTICA DESCRIPTIVA. Itroduccó.. Coceptos geerales. 3. Frecuecas y tablas. 4. Grácos estadístcos. 4. Dagrama de barras. 4. Hstograma. 4.3 Polgoal de recuecas. 4.4 Dagrama
Técnicas básicas de calidad
Téccas báscas de caldad E esta udad aprederás a: Idetfcar las téccas báscas de caldad Aplcar las herrametas báscas de caldad Utlzar la tormeta de deas Crear dsttos tpos de dagramas Usar hstogramas y gráfcos
TEMA UNIDAD I: ESTADÍSTICA DESCRIPTIVA
ANÁLISIS DESCRIPTIVO TEMA DE VARIABLES CUANTITATIVAS 4..Itroduccó 4..Propedades estadístcas de las varables cuattatvas 4.3. Descrpcó de muestras pequeñas 4.3.. Herrametas para el aálss gráfco 4.3.. Herrametas
IV. GRÁFICOS DE CONTROL POR ATRIBUTOS
IV Gráfcos de Cotrol por Atrbutos IV GRÁFICOS DE CONTROL POR ATRIBUTOS INTRODUCCIÓN Los dagramas de cotrol por atrbutos costtuye la herrameta esecal utlzada para cotrolar característcas de caldad cualtatvas,
Sistema binario. Disoluciones de dos componentes.
. Itroduccó ermodámca. ema Dsolucoes Ideales Ua dsolucó es ua mezcla homogéea, o sea u sstema costtudo por ua sola fase que cotee más de u compoete. La fase puede ser: sólda (aleacoes,..), líquda (agua
V Muestreo Estratificado
V Muestreo Estratfcado Dr. Jesús Mellado 10 Certas poblacoes que se desea muestrear, preseta grupos de elemetos co característcas dferetes, s los grupos so pleamete detfcables e su peculardad y e su tamaño,
TEMA 3.- OPERACIONES DE AMORTIZACION : PRESTAMOS A INTERES VARIABLE 3.1.-CLASIFICACIÓN DE LOS PRÉSTAMOS A INTERÉS VARIABLE :
Dpto. Ecoomía Facera y otabldad Pla de Estudos 994 urso 008-09. TEMA 3 Prof. María Jesús Herádez García. TEMA 3.- OPERAIONES DE AMORTIZAION : PRESTAMOS A INTERES VARIABLE 3..-LASIFIAIÓN DE LOS PRÉSTAMOS
Selección de una Cartera de Inversión en la Bolsa Mexicana de Valores por Medio de un Método de Programación Lineal
Programacó Matemátca y Software (2009) Vol.. No. ISSN: 2007-3283 Recbdo: 0 de Juo de 2008/Aceptado: 3 de Septembre de 2008 Publcado e líea: 26 de juo de 2009 Seleccó de ua Cartera de Iversó e la Bolsa
Juegos finitos n-personales como juegos de negociación
Juegos ftos -persoales como uegos de egocacó A.M.Mármol L.Moro V. Rubales Departameto de Ecoomía Aplcada III. Uversdad de Sevlla. Avd. Ramó Caal.. 0-Sevlla. [email protected] Resume Los uegos -persoales ftos
Bolsa Nacional de Valores, S.A. San José, Costa Rica
SELECCIÓN DE CARTERAS DE INVERSIÓN (TEORÍA DEL PORTAFOLIO) RODRIGO MATARRITA VENEGAS * Bolsa Nacoal de Valores, S.A. Sa José, Costa Rca By ow t s evdet that MPT (moder Portfolo Theory), the theory frst
( ) = 0 entonces ˆ i i. xy x Y Y xy Y x ˆ. β = = β =.(1) Propiedades Estadísticas de los estimadores MICO. Linealidad.
Propedades Estadístcas de los estmadores MICO Lealdad ) y Y Y Y Y = = = β Y Dado que la = 0 etoces β =.) S defmos el poderador k =, co las propedades sguetes: a) No estocástco b) k = 0 c) k = k d) = kx
CÁLCULO DEL ANCHO DE BANDA EFECTIVO PARA UN FLUJO MARKOVIANO CON TASAS DE TRANSFERENCIA CONTINUAS
CÁLCULO DEL ANCHO DE BANDA EFECTIVO PARA UN FLUJO MARKOVIANO CON TASAS DE TRANSFERENCIA CONTINUAS Beatrz Marró Uversdad Nacoal del Sur, [email protected] Resume: El objetvo de este trabajo es geeralzar
Métodos Estadísticos Aplicados a la Ingeniería Examen Temas 1-4 Ingeniería Industrial (E.I.I.) 23/4/09
Métodos Estadístcos Aplcados a la Igeería Exame Temas -4 Igeería Idustral (E.I.I.) 3/4/09 Apelldos y ombre: Calfcacó: Cuestó..- Se ha calculado el percetl 8 sobre las estadístcas de sestraldad e el sector
ESTADÍSTICA DESCRIPTIVA E INFERENCIAL I
COLEGIO DE BACHILLERES ESTADÍSTICA DESCRIPTIVA E INFERENCIAL I FASCÍCULO. MEDIDAS DE TENDENCIA CENTRAL Autores: Jua Matus Parra COLEGIO DE BACHILLERES Colaboradores Asesoría Pedagógca Revsó de Cotedo Dseño
INTRODUCCION A LA GEOESTADISTICA
INTRODUION A LA GEOESTADISTIA 7 3' W MAR ARIBE Boca de la Barra 3 larí 8 6 4 Grade R Sevlla 8 6 R Aracataca 45' N 4 R Fudaco Teoría y Aplcacó UNIVERSIDAD NAIONAL DE OLOMBIA Sede Bogotá Facultad de ecas
Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos
Dreccó Facera Pág Sergo Alejadro Herado Westerhede, Igeero e Orgazacó Idustral 5. INTRODUCCIÓN Los prcpales métodos para la seleccó y valoracó de versoes se agrupa e dos modaldades: métodos estátcos y
INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA
INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA Lus Fraco Martí {[email protected]} Elea Olmedo Ferádez {[email protected]} Jua Mauel Valderas Jaramllo {[email protected]}
Análisis de correlación y regresión
Capítulo Aálss de correlacó regresó 3 Seccoes Itroduccó 3. Correlacó leal. 3. Regresó leal. 3.3 Regresó o leal fucoes trísecamete leales. 3.4 Regresó multleal. Atecedetes Itervalos de cofaza Prueas de
ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral
ÁLISIS D DTOS CULITTIVOS José Vcés Otero va Meda Moral ero 005 . COSTRUCCIÓ D U TL D COTIGCI Para aalzar la relacó de depedeca o depedeca etre dos varables cualtatvas omales o actores, es ecesaro estudar
III. GRÁFICOS DE CONTROL POR VARIABLES (1)
III. Gráfcos de Cotrol por Varables () III. GRÁFICOS DE CONTROL POR VARIABLES () INTRODUCCIÓN E cualquer proceso productvo resulta coveete coocer e todo mometo hasta qué puto uestros productos cumple co
Control estadístico de procesos. Control de procesos. Definición de proceso bajo control estadístico. Causas de la variabilidad en un proceso
Cotrol de procesos Hstórcamete ha evolucoado e dos vertetes: Cotrol automátco de procesos (APC) empresas de produccó cotua (empresas químcas) Cotrol estadístco de procesos (SPC) e sstemas de produccó e
CURSO BÁSICO DE ANÁLISIS ESTADÍSTICO EN SPSS. FRANCISCO PARRA RODRÍGUEZ JUAN ANTONIO VICENTE VÍRSEDA MAURICIO BELTRÁN PASCUAL
CURSO BÁSICO DE ANÁLISIS ESTADÍSTICO EN SPSS. FRANCISCO PARRA RODRÍGUEZ JUAN ANTONIO VICENTE VÍRSEDA MAURICIO BELTRÁN PASCUAL EL PROGRAMA ESTADÍSTICO SPSS . EL PROGRAMA ESTADÍSTICO SPSS. INTRODUCCIÓN El
TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS
Tema 1 Ifereca estadístca. Estmacó de la meda Matemátcas CCSSII º Bachllerato 1 TEMA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS UTILIZACIÓN DE
NOCIONES BÁSICAS DE ESTADÍSTICA UTILIZADAS EN EDUCACIÓN
UNIVERSIDAD DE CHILE VICERRECTORÍA DE ASUNTOS ACADÉMICOS DEPARTAMENTO DE EVALUACIÓN, MEDICIÓN Y REGISTRO EDUCACIONAL NOCIONES BÁSICAS DE ESTADÍSTICA UTILIZADAS EN EDUCACIÓN SANTIAGO, septembre de 2008
REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD RAFAEL URDANETA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DERECHOS RESERVADOS
REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD RAFAEL URDANETA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DETERMINACIÓN MEDIANTE EL ANÁLISIS REGRESIONAL DE LOS MODELOS MATEMATICOS POLINÓMICOS
Ejercicios Resueltos de Estadística: Tema 2: Descripciones bivariantes y regresión
Eerccos Resueltos de Estadístca: Tema : Descrpcoes bvarates regresó . E u estudo de la egurdad e Hgee e el Trabao se cotrastó la cdeca del tabaqusmo e la gravedad de los accdetes laborales. Cosderado ua
Si los cerdos de otro granjero tienen los siguientes pesos: 165, 182, 185, 168, 170, 173, 180, 177. Entonces el diagrama de puntos está dado por:
Aputes de Métodos Estadístcos I Prof. Gudberto J. Leó R. I- 65 Uversdad de los Ades Escuela de Estadístca. Mérda -Veezuela Meddas de Dspersó Además de obteer la formacó que reúe las meddas de tedeca cetral
q q q q q q n r r r qq k r q q q q
urso: FISIA II B 30 00 I Profesor: JOAQIN SALEDO [email protected] Eergía potecal electrostátca. S traemos ua carga desde ua dstaca fta el trabajo ecesaro es ulo. 0 trate ua fumadta, grats,, te vto S luego
Algunas Recomendaciones para la Enseñanza de la Estadística Descriptiva o Análisis de Datos
Alguas Recomedacoes para la Eseñaza de la Estadístca Descrptva o Aálss de Datos Itroduccó Elemetos Báscos para Aplcar Estadístca Descrptva La Estadístca Descrptva o Formula Iferecas La Estadístca Descrptva
Diseños muestrales en Inventarios Forestales Introducción... 1 Distribución de las unidades muestrales.... 3
Dseños muestrales e Ivetaros Forestales Itroduccó... Dstrbucó de las udades muestrales.... 3 Dstrbucó Aleatora... 3 Dstrbucó stemátca... 4 Dstrbucó de las UM e trasectos... 5 Estmadores para udades muestrales
Introducción a la Transformada Wavelet DESCOMPOSICIÓN DE SEÑALES
Itroduccó a la Trasformada Wavelet DESCOMPOSICIÓN DE SEÑALES Trasformada Wavelet Curso 006 Itroduccó Para ua mejor compresó de los capítulos sguetes desarrollaremos aquí alguos coceptos matemátcos ecesaros
INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS
Uverstat de les Illes Balears Col.leccó Materals Ddàctcs INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS Joaquí Alegre Martí Magdalea Cladera Muar Palma, 00 ÍNDICE INTRODUCCIÓN: Qué es...? Qué
MATEMÁTICAS FINANCIERAS Y EVALUACIÓN DE PROYECTOS JAIRO TARAZONA MANTILLA CONSULTOR ASESOR DOCENTE FINANCIERO Y PROYECTOS
MATEMÁTICAS FINANCIERAS Y EVALUACIÓN DE PROYECTOS JAIRO TARAZONA MANTILLA CONSULTOR ASESOR DOCENTE FINANCIERO Y PROYECTOS Bucaramaga, 2010 INTRODUCCIÓN El presete documeto es ua complacó de memoras de
UNIVERSIDAD DE LOS ANDES T R U J I L L O - V E N E Z U E L A LABORATORIO DE FÍSICA I/11. PRÁCTICA No. 2 ANÁLISIS GRÁFICO.
Pága de 5 NÚCLEO UNIVERSITARIO RAFAEL RANGEL UNIVERSIDAD DE LOS ANDES T R U J I L L O - V E N E Z U E L A ÁREA DE FÍSICA LABORATORIO DE FÍSICA LABORATORIO DE FÍSICA I/ PRÁCTICA No ANÁLISIS GRÁFICO OBJETIVO
Introducción a la simulación de sistemas discretos
Itroduccó a la smulacó de sstemas dscretos Novembre de 6 Álvaro García Sáchez Mguel Ortega Mer Itroduccó a la smulacó de sstemas dscretos. Presetacó.. Itroduccó El presete documeto trata sobre las téccas
C URVA DE L ORENZ C OEFICIENTE DE D ESIGUALDAD DE G INI
TESIS DESARROLLO REIONAL C URVA DE L ORENZ C OEFICIENTE DE D ESIUALDAD DE INI D OCUMENTO A UXILIAR N DANIEL CAUAS - 5 JUN 203 LA CURVA DE LORENZ La curva de Lorez (Corado Lorez 905), es u recurso gráfco
TEMA 11 OPERACIONES DE AMORTIZACION O PRESTAMO (II)
Dapotva Matemátca Facera TEMA OPERACIONES DE AMORTIZACION O PRESTAMO (II). Prétamo dcado 2. Prétamo co teree atcpado. Prétamo Alemá 3. Valor facero del prétamo. Uufructo y uda propedad Dapotva 2 Matemátca
Este documento es de distribución gratuita y llega gracias a www.cienciamatematica.com El mayor portal de recursos educativos a tu servicio!
Este documeto es de dstrbucó gratuta y llega gracas a Ceca Matemátca www.cecamatematca.com El mayor portal de recursos educatvos a tu servco! Isttuto Tecológco de Apzaco Departameto de Cecas Báscas INSTITUTO
