Teoría Tema 7 Parábola
|
|
|
- Juan Francisco Aguirre Padilla
- hace 7 años
- Vistas:
Transcripción
1 página 1/10 Teoría Tema 7 Parábola Índice de contenido La parábola como superficie cónica... La parábola como lugar geométrico...3 Ecuación de la parábola con vértice el origen de coordenadas, eje sobre el de abscisas y foco en el semieje positivo OX...4 Ecuación de la parábola con vértice el origen de coordenadas, eje sobre el de abscisas y foco en el semieje negativo OX...6 Ecuación de la parábola con vértice el origen de coordenadas, eje sobre el de ordenadas y foco en el semieje positivo OY...7 Ecuación de la parábola con vértice el origen de coordenadas, eje sobre el de ordenadas y foco en el semieje negativo OY...8 Ecuación de la parábola con vértice en un punto arbitrario distinto del origen de coordenadas, y con ejes paralelos a los cartesianos...9 Rectas tangentes a una parábola por un punto...10
2 página /10 La parábola como superficie cónica Si un cono de revolución con vértice V es intersectado por un plano secante que es paralelo a una generatriz g, el resultado es una parábola. Al igual que la hipérbola, la parábola es una curva abierta. En la siguiente imagen observamos, de manera unificada, los cuatro tipos de cónicas estudiadas en este curso. Imagen tomada de: «Cono y secciones» de Drini - Trabajo propio Disponible bajo la licencia GFDL vía Wikimedia Commons Distintos tipos de cónicas estudiadas La parábola resulta del corte de un plano paralelo a una generatriz del cono
3 página 3/10 La parábola como lugar geométrico La parábola es el lugar geométrico de los puntos del plano de una recta llamada generatriz y de un punto llamado foco. G( x, y) que equidistan Parábola de vértice V (0,0) y foco sobre el eje OX El eje es una recta perpendicular a la directriz y que pasa por el foco F. El centro (x 0 ) es el punto de corte del eje con la parábola. También se denomina vértice. Si el centro coincide con el origen de coordenadas (x 0 )=(0,0). La distancia entre el foco y la directriz es el parámetro p >0. Por definición de la parábola, el vértice equidista del foco y de la directriz, por lo que la distancia del vértice al foco es p >0 y la distancia del vértice a la directriz también es p >0. El radio vector es el segmento que une G( x, y) con el foco F.
4 página 4/10 Ecuación de la parábola con vértice el origen de coordenadas, eje sobre el de abscisas y foco en el semieje positivo OX Sea G( x, y) un punto genérico de la parábola, con vértice en V (0,0) y foco F ( p,0). Parábola de vértice V (0,0), foco F (1,0) y directriz r : x = 1 Ecuación de la parábola : y =4x distancia p= La distancia del vértice a la directriz es p, ya que el vértice es equidistante al foco y a la directriz por pertenecer a la parábola. Por lo tanto la ecuación general de la recta directriz será x= p r : x+ p =0 La distancia del punto G( x, y) al foco F ( p,0) resulta: d (G, F )= (x p ) + y Y la distancia del punto G( x, y) a una recta r : x+ p =0 será (como ya hemos estudiado en clases anteriores, distancia de un punto a una recta):
5 página 5/10 1 x+ p d (G,r)= 1 +0 = x+ p Igualamos ambas distancias d (G, F )=d (G,r) : (x + p ) y =x+ p (x p ) + y =(x + p ) p x+ y = p x Ecuación de la parábola centrada en el origen de coordenadas el de abscisas y foco F ( p,0) en el semieje positivo OX. V (0,0), eje sobre y = p x
6 página 6/10 Ecuación de la parábola con vértice el origen de coordenadas, eje sobre el de abscisas y foco en el semieje negativo OX Sea G( x, y) un punto genérico de la parábola, con vértice en F ( p,0). V (0,0) y foco Parábola de vértice V (0,0), foco F ( 1,0) y directriz r : x=1 Ecuación de la parábola : y = 4x distancia p= Ecuación de la parábola centrada en el origen de coordenadas el de abscisas y foco F ( p,0) en el semieje negativo OX. y = p x V (0,0), eje sobre
7 página 7/10 Ecuación de la parábola con vértice el origen de coordenadas, eje sobre el de ordenadas y foco en el semieje positivo OY Sea G( x, y) un punto genérico de la parábola, con vértice en V (0,0) y foco F (0, p ). Parábola de vértice V (0,0), foco F (0,1) y directriz r : y= 1 Ecuación de la parábola : x =4y distancia p= Ecuación de la parábola centrada en el origen de coordenadas el de ordenadas y foco F (0, p ) en el semieje positivo OY. V (0,0), eje sobre x = p y
8 página 8/10 Ecuación de la parábola con vértice el origen de coordenadas, eje sobre el de ordenadas y foco en el semieje negativo OY Sea G( x, y) un punto genérico de la parábola, con vértice en F (0, p ). V (0,0) y foco Parábola de vértice V (0,0), foco F (0, 1) y directriz r : y =1 Ecuación de la parábola : x = 4y distancia p= Ecuación de la parábola centrada en el origen de coordenadas el de ordenadas y foco F (0, p ) en el semieje negativo OY. x = p y V ( 0,0), eje sobre
9 página 9/10 Ecuación de la parábola con vértice en un punto arbitrario distinto del origen de coordenadas, y con ejes paralelos a los cartesianos Ecuación de la parábola de vértice derecha del vértice: (x 0 ), eje paralelo al de abscisas y foco a la ( y y 0 ) = p( x x 0 ) Ecuación de la parábola de vértice izquierda del vértice: (x 0 ), eje paralelo al de abscisas y foco a la ( y y 0 ) = p(x x 0 ) Ecuación de la parábola de vértice encima del vértice: (x 0 ), eje paralelo al de ordenadas y foco por (x x 0 ) = p ( y y 0 ) Ecuación de la parábola de vértice debajo del vértice: (x 0 ), eje paralelo al de ordenadas y foco por (x x 0 ) = p( y y 0 ) Si la directriz de la parábola es una recta oblicua, y por tanto los ejes no son paralelos a los cartesianos, la ecuación de la parábola hay que deducirla mediante la definición.
10 página 10/10 Rectas tangentes a una parábola por un punto Si el punto G( x, y) pertenece a la parábola, la recta tangente a la parábola por ese punto es la bisectriz del ángulo que forman el radio vector que une G( x, y) con el foco F y la recta perpendicular a la directriz desde el punto G( x, y). Recta tangente a la parábola por un punto que pertenece a la parábola Si el punto G( x, y) no pertenece a la prábola, se resuelve el sistema de ecuaciones formado por la ecuación de la parábola y el haz de rectas (de distintas pendientes) que pasan por el punto G( x, y). Y forzamos que la solución de ese sistema sea única, haciendo cero el discriminante de la raíz cuadrada que aparece en su solución. Pero ojo!! Puede ocurrir que la recta solo corte a la parábola en un punto... y no sea tangente. Cuándo ocurre eso? Cuando la recta es paralela al eje de la parábola (o perpendicular a la directriz,es lo mismo). En ese caso la recta es secante, no tangente. Los puntos T y T ' indican puntos de tangencia. El punto S es secante
Lugar Geométrico. Se llama lugar geométrico a un conjunto de puntos que cumplen una determinada propiedad. Mediatriz
1 Lugar Geométrico Se llama lugar geométrico a un conjunto de puntos que cumplen una determinada propiedad. Mediatriz Mediatriz de un segmento es el lugar geométrico de los puntos del plano que equidistan
Teoría Tema 7 Elipse
página 1/13 Teoría Tema 7 Elipse Índice de contenido La elipse como superficie cónica...2 La elipse como lugar geométrico...3 Ecuación de la elipse con centro el origen de coordenadas, ejes sobre los cartesianos
LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje.
LA CIRCUNFERENCIA La circunferencia es la sección producida por un plano perpendicular al eje. β = 90º La circunferencia es un caso particular de elipse. Se llama circunferencia al lugar geométrico de
COLEGIO NUESTRA SEÑORA DEL BUEN CONSEJO. Melilla LUGARES GEOMÉTRICOS Y CÓNICAS
LUGARES GEOMÉTRICOS Y CÓNICAS 01. Halla la ecuación de la circunferencia de centro ( 5, 12) y radio 13. Comprueba que pasa por el punto (0, 0). 02. Halla las ecuaciones de los siguientes lugares geométricos:
Lugares geométricos y cónicas
Lugares geométricos y cónicas E S Q U E M A D E L A U N I D A D. Lugar geométrico página 6.. Definición página 6. Circunferencia página 6.. Ecuación página 6.. Casos particulares página 67. Elipse página
Unidad 8 Lugares geométricos. Cónicas
Unidad 8 Lugares geométricos. Cónicas PÁGINA 75 SOLUCIONES. La elipse es una cónica obtenida al cortar una superficie cónica por un plano oblicuo al eje y que corte a todas las generatrices. La hipérbola
Tema 3. GEOMETRIA ANALITICA.
Álgebra lineal. Curso 087-009. Tema. Hoja 1 Tema. GEOMETRIA ANALITICA. 1. Hallar la ecuación de la recta: a) que pase por ( 4, ) y tenga pendiente 1. b) que pase por (0, 5) y tenga pendiente. c) que pase
Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6
página 1/13 Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 Hoja 1 1. Dado el segmento de extremos A( 7,3) y B(5,11), halla la ecuación de su mediatriz. 2. Halla la distancia del punto
Bloque 2. Geometría. 4. Iniciación a las Cónicas
Bloque 2. Geometría 4. Iniciación a las Cónicas 1. La circunferencia Se llama circunferencia al lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. Elevando al cuadrado
Es el lugar geométrico de los puntos del plano cuya suma de distancias a dos puntos fijos llamados focos es constante.
REPARTIDO IV - CÓNICAS Elipse Es el lugar geométrico de los puntos del plano cuya suma de distancias a dos puntos fijos llamados focos es constante. Elementos de la elipse Focos Son los puntos fijos F
A pesar de la importancia de las cónicas como secciones de una superficie cónica, para estudiar los elementos y propiedades de cada una de ellas en
SECCIONES CÓNICAS Las secciones cónicas se pueden definir como lugares geométricos en el plano, sin embargo la definición clásica de las cónicas, que se debe a Apolonio de Perga, se hizo mediante un procedimiento
ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: GEOMETRÍA ANALITICA GUÍA DE ESTUDIO PARA LA ÚLTIMA OPORTUNIDAD DE ACREDITAR LA MATERÍA
Geometría analítica 1.- Ecuación de la recta 2.- Cónicas 3.-Ecuación de la parábola UNIDAD II: CONICAS (CIRCUNFERENCIA Y PARABOLAS) Una superficie cónica de revolución está engendrada por la rotación de
LA PARÁBOLA ECUACIÓN CANÓNICA DE LA PARÁBOLA DEFINICIÓN ELEMENTOS DE LA PARÁBOLA. x 2px p y x 2px p. Geometría Analítica
ECUACIÓN CANÓNICA DE LA PARÁBOLA DEFINICIÓN LA PARÁBOLA Parábola es el lugar geométrico de todos los puntos P del plano que equidistan de una recta fija llamada directriz (L) y de un punto fijo exterior
B23 Curvas cónicas Curvas cónicas
Geometría plana B23 Curvas cónicas Curvas cónicas Superficie cónica de revolución es la engendrada por una recta que gira alrededor de otra a la que corta. Curvas cónicas son las que resultan de la intersección
4. Escribe la ecuación de la circunferencia de centro C(-2,3) y radio 4. Sol: (x+2) 2 +(y-3) 2 =16.
Problemas de circunferencias 4. Escribe la ecuación de la circunferencia de centro C(-2,3) y radio 4. Sol: (x+2) 2 +(y-3) 2 =16. 10. 5. Calcula la potencia del punto P(-1,2) a la circunferencia: x 2 +y
TEMA 7: CÓNICAS CIRCUNFERENCIA. A partir de esta ecuación podemos hallar el centro y el radio sin más que deshacer los cambios:
TEMA 7: CÓNICAS CIRCUNFERENCIA Se define la circunferencia como el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. A dicha distancia se le llama radio de la circunferencia.
Bloque 2. Geometría. 3. La recta. 1. Definición de recta
Bloque 2. Geometría 3. La recta 1. Definición de recta Para representar puntos en un plano (superficie de dos dimensiones) utilizamos dos rectas graduadas y perpendiculares, cuyo corte es el punto 0 de
Ejercicios de Álgebra y Geometría Analítica
Ejercicios de Álgebra y Geometría Analítica Profr. Fausto Cervantes Ortiz Recta Dibujar las rectas indicadas 1. y = x + 1 2. y = 2x + 5 2 3. y = x + 2 4. y = x + 2 5. y = 2x 3 2 6. y = 3 2 x + 1 2 7. y
1 + 3(0, 2) = ( 1, 2) + (0, 6) = ( 1, 4) ) ( = arc cos e 5
utoevaluación Página Dados los vectores uc c, m v (0, ), calcula: a) u b) u + v c) u : ( v) uc c, m v (0, ) a) u c m + ( ) b) u + v c c, m + (0, ) (, ) + (0, 6) (, ) c) u : ( v) () (u v ) c 0 +( m ) (
Cónicas. Marcos Marvá Departamento de Física y Matemáticas, Universidad de Alcalá. November 27,
Cónicas Marcos Marvá Departamento de Física y Matemáticas, Universidad de Alcalá November 27, 2013 [email protected] Cómo definir una cónica Como intersección de un plano y un cono recto de doble hoja
2º BACH CURVAS TÉCNICAS CURVAS CÓNICAS
2º BACH CURVAS TÉCNICAS CURVAS CÓNICAS CURVAS TÉCNICAS 1. ÓVALOS. El óvalo es una curva cerrada, plana y convexa formada generalmente por cuatro arcos de circunferencia iguales dos a dos; tiene dos ejes
INECUACIONES Y VALOR ABSOLUTO
INECUACIONES Y VALOR ABSOLUTO U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 1 de 3 1. Resuelva las siguientes ecuaciones: a. 4 3x = 5 b. x + 1x + = 3 c. x + 1x + 4 = 10 d. x 1 + = 4 e. x + 3 = 4 f.
Geometría Analítica Enero 2015
Laboratorio #1 Distancia entre dos puntos I.- Hallar el perímetro del triángulo, cuyos vértices son los puntos dados. A( 2,, B( 8,, C( 5, 10) R( 6, 5) S( 2, - T(3,- U( -1, - V( 2, - W( 9, 4) II.- Demuestre
Lugares geométricos. Cónicas
ACTIVIDADES Si el plano es perpendicular a la generatriz del cilindro, la sección es una circunferencia. Si no es perpendicular, la sección es una elipse. Porque el plano solo corta a uno de los conos
Teoría Tema 7 Circunferencia
página 1/9 Teoría Tema 7 Circunferencia Índice de contenido La circunferencia como superficie cónica...2 La circunferencia como lugar geométrico...3 Potencia de un punto respecto de una circunferencia...4
Autoevaluación. Bloque III. Geometría. BACHILLERATO Matemáticas I * 8 D = (3, 3) Página Dados los vectores u c1, 1m y v (0, 2), calcula:
Autoevaluación Página Dados los vectores u c, m y v (0, ), calcula: a) u b) u+ v c) u : ( v) u c, m v (0, ) a) u c m + ( ) b) u+ v c, m + (0, ) (, ) + (0, 6) (, ) c) u :( v) () (u v ) c 0 + ( ) ( ) m 8
Superficie cónica. Cuando una recta g que corta a otra recta e, gira alrededor de ella, genera una superficie cónica
CÓNICAS Superficie cónica Cuando una recta g que corta a otra recta e, gira alrededor de ella, genera una superficie cónica V Las cónicas como secciones de un cono. Circunferencia Al cortar la superficie
Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 3 b) y 16 x Lugares geométricos y cónicas
Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN 4 La ecuación del lugar geométrico de los puntos del plano que equidistan de la recta x y 4, y del punto P (, ) es: a) x y x y 68 0 b) 4x 9y
Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos:
1 CONOCIMIENTOS PREVIOS. 1 Cónicas. 1. Conocimientos previos. ntes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Ecuaciones. Sistemas de ecuaciones. Sería conveniente realizar
Problemas Tema 7 Solución a problemas de ampliación de los Temas 5 y 6 - Hoja 13 - Todos resueltos
página 1/9 Problemas Tema 7 Solución a problemas de ampliación de los Temas 5 y 6 - Hoja 13 - Todos resueltos Hoja 13. Problema 1 1. Sea una circunferencia de centro (0,) y radio unidades. Sea una segunda
2. Distancia entre dos puntos. Punto medio de un segmento
Geometría 1 Geometría anaĺıtica Una ecuación de primer grado con dos incógnitas x e y tiene infinitas soluciones Por ejemplo x + y = 3 tiene como soluciones (0, 3), (1, ), ( 1, 4), etc Hasta ahora se han
1) Clasifica las siguientes cónicas y expresa sus focos y su excentricidad: a)
Ejercicios de cónicas 1º bachillerato C 1) Clasifica las siguientes cónicas y expresa sus focos y su excentricidad: a) b) c) d) e) f) g) h) i) Soluciones: a) Circunferencia de centro ( y radio 3. Excentricidad
22. CURVAS CÓNICAS-ELIPSE
22. CURVAS CÓNICAS-ELIPSE 22.1. Características generales. Las curvas cónicas son las secciones planas de un cono de revolución. El cono de revolución es la superficie que genera una recta r al girar alrededor
Cónicas y cuádricas. Circunferencia Elipse Parábola Hipérbola
Grado en Óptica y Optometría Curso 2009-2010 Cónicas y cuádricas. Curvas cónicas Entre las curvas, quizás más importante y con más renombre, figuran las conocidas como curvas cónicas, cuyo nombre proviene
ESTUDIO GRÁFICO DE LA ELIPSE.
Curvas Cónicas para Dibujo y Matemáticas. Aplicación web Dibujo Técnico para ESO y Bachillerato Matemáticas para Bachillerato Educación Plástica y Visual Autor: José Antonio Cuadrado Vicente. ESTUDIO GRÁFICO
Se quiere instalar un gran depósito de propano para abastecer a una factoría industrial y a dos urbanizaciones.
Resuelve Página Dónde se situará el depósito? Se quiere instalar un gran depósito de propano para abastecer a una factoría industrial y a dos urbanizaciones. Han de cumplirse las siguientes condiciones:
Es la elipse el conjunto de puntos fijos cuya suma de distancias a dos puntos fijos llamados focos es constante.
ESQUEMA LAS CÓNICAS LA PARÁBOLA ECUACIONES DE LA PARÁBOLA ECUACIÓN DE LA TANGENTE A UNA PARÁBOLA ELIPSE ECUACIONES DE LA ELIPSE PROPIEDADES DE LA ELIPSE LA HIPÉRBOLA ECUACIONES DE LA HIPÉRBOLA 10 ASÍNTOTAS
( ) 2 +( 1) 2. BLOQUE III Geometría analítica plana. Resoluciones de la autoevaluación del libro de texto
Pág. de Dados los vectores u, y v0,, calcula: a u b u + v c u v u, v0, 5 a u = = = + b u + v =, + 0, =, + 0, 6 =, c u v = u v = 0 + = Determina el valor de k para que los vectores a, y b6, k sean ortogonales.
Geometría Analítica Agosto 2015
Laboratorio #1 Distancia entre dos puntos I.- Hallar el perímetro del triángulo, cuyos vértices son los puntos dados. 1) A(3, 3), B( 3, 1), C(0, 3) 2) O( 2, 3), P(2, 3), Q(0, 2) 3) R(4, 4), S(7, 4), T(6,
Dibujo Técnico Curvas cónicas-parábola
22. CURVAS CÓNICAS-PARÁBOLAS 22.1. Características generales. Las curvas cónicas son las secciones planas de un cono de revolución. El cono de revolución es la superficie que genera una recta r al girar
CURVAS TÉCNICAS CURVAS CÓNICAS
2º BACH CURVAS TÉCNICAS CURVAS CÓNICAS ANA BALLESTER JIMÉNEZ CURVAS TÉCNICAS 1. ÓVALOS. El óvalo es una curva cerrada, plana y convexa formada generalmente por cuatro arcos de circunferencia iguales dos
Elipse UNIDAD. : (x + 4) 2 + (y + 3) 2 1 = 0 Igualamos:
UNIDAD c) C : (x + ) + (y + ) = 0 Igualamos: C : (x ) + (y + ) = 0 (x +) +(y +) = (x ) +(y +) 8 8 x +8x + + y +y + = x x + + y + y + 8 8 0x + y = 0 8 x + y = 0. Eje radical. C C (, ) (, ) x + y = 0 Elipse
UNI DAD 4 ESPACIO BIDIMENSIONAL: CÓNICAS
UNI DAD 4 ESPACIO BIDIMENSIONAL: CÓNICAS Objetivos Geometría analítica Introducción L cónica sección cónica Ax 2 + Bxy + Cy 2 + Dx + Ey + F = 0 A B C D E F 4.1. Circunferencia Circunferencia es el conjunto
Definición: Se llama pendiente de una recta a la tangente de un ángulo de inclinación formado por el eje X y la
Geometría Analítica Preliminares Identidades Trigonométricas Definición: Se llama pendiente de una recta a la tangente de un ángulo de inclinación formado por el eje X y la recta, tal que, esto es Recta
TEMA 9 LUGARES GEOMÉTRICOS. CÓNICAS 1. Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad.
TEMA 9 LUGARES GEOMÉTRICOS. CÓNICAS 1 TEMA 9 LUGARES GEOMÉTRICOS. CÓNICAS. 9.1 LUGARES GEOMÉTRICOS Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad. Llamando X(x,) a las
La parábola es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta fija llamada directriz.
La Parábola La parábola es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta fija llamada directriz. Características geométricas. a) Vértice. Es el
LUGARES GEOMÉTRICOS. CÓNICAS
9 LUGARES GEOMÉTRICOS. CÓNICAS Página PARA EMPEZAR, RELEXIONA Y RESUELVE Cónicas abiertas: parábolas e hipérbolas Completa la siguiente tabla, en la que α es el ángulo que forman las generatrices con el
Función lineal y cuadrática. Curvas de primer y segundo grado.
Tema 5 Función lineal y cuadrática. Curvas de primer y segundo grado. 5.0.1 Ecuaciones en dos variables. Una linea del plano es el conjunto de puntos (x, y), cuyas coordenadas satisfacen la ecuación F
8 x 2 + y 2 2y + 1 = 16 + x 2 + y 2 + 2y x + ( y+ 1) 8 (4y + 16) 2 = 64[x 2 + (y + 1) 2 ] y y = 64x y y 8
De una elipse conocemos sus focos (0, ) y ' (0, ) y su constante k =. Determina su ecuación. Si P (, y) es un punto de la elipse, entonces: dist (P, ) + dist (P, ' ) = a, es decir: + ( y ) + + ( y+ ) =
GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA
ESCUELA PREPARATORIA OFICIAL No. 268 GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA Profra: Citlalli Artemisa García García 1) Qué es la pendiente? 2) Cómo es la pendiente de rectas
1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a la recta x + 7y + 1 = 0
Universidad Técnica Federico Santa María Departamento de Matemática Campus Santiago Geometría Analítica 1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a
Ejercicios 16/17 Lección 5. Geometría. 1. como combinación lineal de u = (2,5), expresa uno de ellos como combinación lineal de los otros dos.
Ejercicios 16/17 Lección 5. Geometría. 1 1. Expresa el vector u = ( 3, 1) como combinación lineal de los vectores v = ( 3, ) w = ( 4, 1). y. Expresa w = (4, 6) como combinación lineal de u = (,5) y v =
Se llaman curvas cónicas a las curvas que se obtienen de la intersección de una superficie cónica por un plano.
CURVAS CÓNICAS Se llaman curvas cónicas a las curvas que se obtienen de la intersección de una superficie cónica por un plano. Secciones de un cono Supongamos un cono de revolución de dos ramas; según
Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad.
LUGARES GEOMÉTRICOS. CÓNICAS. 9.1 LUGARES GEOMÉTRICOS Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad. Llamando X(,) a las coordenadas del punto genérico aplicando analíticamente
1º BACH TANGENCIAS CURVAS TÉCNICAS CURVAS CÓNICAS ANA BALLESTER JIMÉNEZ
1º BACH TANGENCIAS CURVAS TÉCNICAS CURVAS CÓNICAS ANA BALLESTER JIMÉNEZ TANGENCIAS Propiedades: Si dos circunferencias son tangentes, el punto de tangencia se encuentra en la recta que une los centros
Definición 1.28 (Determinación de una recta) Una recta en el plano viene determinada por un punto y un vector libre, no nulo, r (P; u )
1.3. La recta en el plano afín La recta está formada por puntos del plano en una dirección dada. La ecuación de la recta es la condición necesaria y suficiente que deben cumplir las coordenadas de un punto
UNIDAD 13 LA CIRCUNFERENCIA Y LA PARÁBOLA
UNIDAD 13 LA CIRCUNFERENCIA Y LA PARÁBOLA PROBLEMAS PROPUESTOS Objetivo general. Al terminar esta Unidad aplicarás las definiciones y los elementos que caracterizan a la circunferencia y a la parábola
1. L U G A R E S G E O M É T R I C O S E N E L P L A N O
L U G A R E S G E O M É T R I C O S. C Ó N I C A S 1. L U G A R E S G E O M É T R I C O S E N E L P L A N O Se define un lugar geométrico como el conjunto de puntos del plano que cumplen una determinada
TEMA 5. CURVAS CÓNICAS.
5.1. GENERALIDADES. TEMA 5. CURVAS CÓNICAS. Se denominan secciones cónicas a aquellas superficies que son producidas por la intersección de un plano con una superficie cónica de revolución (una superficie
Las curvas cónicas son las secciones producidas por un plano secante sobre una superficie cónica de revolución. (Fig. 31)
Dibujo Trazado de Curvas cónicas Las curvas cónicas son las secciones producidas por un plano secante sobre una superficie cónica de revolución. (Fig. 31) Fig. 31 Una superficie cónica de revolución es
n Por ejemplo, en un pentágono tenemos que saber que sus ángulos suman 540º y cada ángulo del pentágono son 108º.
MATEMÁTICAS 3º ESO TEMA 10 PROBLEMAS MÉTRICOS EM EL PLANO- 1. ÁNGULOS EN LOS POLÍGONOS La suma de los ángulos de un polígono de n lados es: 180º (n-2) 180º(n - 2) La medida de cada ángulo de un polígono
SOLUCIONES DE LAS ACTIVIDADES Págs. 191 a 213
SOLUCIONES DE LAS ACTIVIDADES Págs. 191 a 1 Página 191 1. ( ) ( ) ( 9) ( ). a) ; 6 18 6 18 0 ; 1 16 184 0; 4 46 0 6 7 ; 8 6 7 ± ; ( 6) 7 4 5 0 5 / 4 ( 6) ( 7) 4 19 0 9 / 4 b) r: 4 4 0 4 4 5 ; 17 10 4 4
Tangencias usando potencia y eje radical IES BELLAVISTA
Tangencias usando potencia y eje radical IES BELLAVISTA Potencia Se define la potencia de un punto con respecto a una circunferencia como el producto de los segmentos comprendidos entre dicho punto y la
TEMA 6. ECUACIONES DE LA RECTA
TEMA 6. ECUACIONES DE LA RECTA Dados un punto y un vector, vamos a hallar las ecuaciones de la recta r que pasa por el punto A y es paralela al vector. Sea consideramos los vectores un punto cualquiera
Ejercicios 17/18 Lección 5. Geometría. 1. como combinación lineal de u = (2,5), expresa uno de ellos como combinación lineal de los otros dos.
Ejercicios 17/18 Lección 5. Geometría. 1 1. Expresa el vector u = ( 3, 1) como combinación lineal de los vectores v = ( 3, ) w = ( 4, 1). y. Expresa w = (4, 6) como combinación lineal de u = (,5) y v =
GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1, 0, [1,5 puntos]
Matemáticas II Pruebas de Acceso a la Universidad GEOMETRÍA Junio 94 1 Sin resolver el sistema, determina si la recta x y + 1 = 0 es exterior, secante ó tangente a la circunferencia (x 1) (y ) 1 Razónalo
Guía de estudio Nº 3: Ejercicios propuestos sobre Lugares geométricos. Secciones cónicas
U.C.V. Facultad de Ingeniería CÁLCULO I (5) Guía de estudio Nº : Ejercicios propuestos sobre Lugares geométricos. Secciones cónicas.- Determine la ecuación del lugar geométrico de los puntos (, ) del plano
Geometría Analítica. Ecuación de una recta que pasa por un punto y tiene una pendiente dada:
Geometría Analítica Definición de línea recta: Llamamos línea recta al lugar geométrico de los puntos tales que tomados dos puntos diferentes cualesquiera y del lugar, el valor de la pendiente m calculado
Dibujo Técnico Curvas cónicas
23. CURVAS CÓNICAS 23.1. Características generales. Las curvas cónicas son las secciones planas de un cono de revolución. El cono de revolución es la superficie que genera una recta r al girar alrededor
Pre-EXAMEN MATEMÁTICAS III
página 1 de 5 Pre-EXAMEN MATEMÁTICAS III INSTRUCCIONES: a) Inicie con una portada con sus datos b) Contestar en hojas blancas c) Resuelva anotando claramente los procedimientos para llegar a la solución
TEMA 6 CÓNICAS CÓNICAS TEMA 6. 1.º BACHILLERATO - CIENCIAS. 1. La circunferencia. Ecuación de una circunferencia. (x - a) + (y - b) = r.
TEMA 6 CÓNICAS Se denomina sección cónica (o simplemente cónica) a todas las curvas resultantes de las diferentes intersecciones entre un cono y un plano; si dicho plano no pasa por el vértice, se obtienen
CONICAS Y LUGARES GEOMÉTRICOS ( problemas resueltos)
CONICAS Y LUGARES GEOMÉTRICOS ( problemas resueltos) Ejercicio nº 1.- Escribe la ecuación de la circunferencia con centro en el punto (, 3) que es tangente a la recta 3 4 + 5 = 0. El radio, R, de la circunferencia
1º BACH TANGENCIAS CURVAS TÉCNICAS CURVAS CÓNICAS ANA BALLESTER JIMÉNEZ
1º BACH TANGENCIAS CURVAS TÉCNICAS CURVAS CÓNICAS ANA BALLESTER JIMÉNEZ TANGENCIAS Propiedades: Si dos circunferencias son tangentes, el punto de tangencia se encuentra en la recta que une los centros
UNIVERSIDAD DIEGO PORTALES FACULTAD DE INGENIERÍA INSTITUTO DE CIENCIAS BASICAS
UNIVERSIDAD DIEGO PORTALES FACULTAD DE INGENIERÍA INSTITUTO DE CIENCIAS BASICAS Álgebra Guía de Ejercicios º Elementos Elementos de Geometría Analítica Plana ELEME TOS DE GEOMETRÍA A ALÍTICA Distancia
9 Lugares geométricos. Cónicas
9 Lugares geométricos. Cónicas Página Dónde se situará el depósito? La solución es P = (0, ) Página Hazlo tú. Mediatriz: y + = 0 Página 7 Hazlo tú. B : 7 7y = 0 B : 7 7y = 0 Hazlo tú. Es una recta, y =
Academia de Matemáticas T.M Geometría Analítica Página 1
INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS 10. CARLOS VALLEJO MÁRQUEZ PROBLEMARIO DE GEOMETRIA ANALITICA Distancia entre puntos 1.- Determina la distancia entre los puntos
GUÍA DE ESTUDIO DE GEOMETRÍA ANALÍTICA segundo periodo de trabajo del ciclo escolar
GUÍA DE ESTUDIO DE GEOMETRÍA ANALÍTICA segundo periodo de trabajo del ciclo escolar 2015-2016 Observe cuidadosamente la siguiente ilustración e identifique la ecuación de cada lugar geométrico. R1 cruza
CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 5. Geometría en el plano
CIRCUNFERENCIA CÓNICAS La circunferencia de centro C y radio r 0, es el conjunto de puntos del plano cuya distancia al punto C es igual a r. Para obtener su ecuación se tiene en cuenta que un punto X =
INSTITUTO POLITÉCNICO NACIONAL CECYT LÁZARO CÁRDENAS DEL RÍO ÁREA BÁSICA ACADÉMIA DE MATEMÁTICAS TURNO MATUTINO
PRIMER EXAMEN PARCIAL INSTITUTO POLITÉCNICO NACIONAL CECYT LÁZARO CÁRDENAS DEL RÍO ÁREA BÁSICA ACADÉMIA DE MATEMÁTICAS TURNO MATUTINO GUÍA DE GEOMETRÍA ANALÍTICA 2016-2017A SISTEMA DE COORDENADAS, LUGARES
Geometría Analítica Agosto 2016
Laboratorio #1 Distancia entre dos puntos I.- Demostrar que los puntos dados no son colineales. 1) A (0, 5), B(3, 1), C( 11, 27) 2) A (1, 4), B( 2, 10), C(5, 5) II.- Demostrar que los puntos dados forman
Tema 6 La recta Índice
Tema 6 La recta Índice 1. Ecuación vectorial de la recta... 2 2. Ecuaciones paramétricas de la recta... 2 3. Ecuación continua de la recta... 2 4. Ecuación general de la recta... 3 5. Ecuación en forma
Introducción La Circunferencia Parábola Elipse Hiperbola. Conicas. Hermes Pantoja Carhuavilca
Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica I Contenido 1 Introducción 2 La Circunferencia 3 Parábola 4 Elipse 5 Hiperbola Objetivos Se persigue que el estudiante:
10.1 Rectas en el plano
10 CAPÍTULO DIEZ Ejercicios propuestos 10.1 Rectas en el plano 1. Determine la distancia y el punto medio entre los siguientes pares de puntos: a. (1, 2) ; ( 2, 3) b. (0, 3) ; (1, 5) c. ( 2, 1) ; ( 3,
NOTA: Todos los problemas se suponen planteados en el plano afín euclídeo dotado de un sistema cartesiano rectangular.
ÁLGEBRA Práctica 15 Cónicas (Curso 2008 2009) NOTA: Todos los problemas se suponen planteados en el plano afín euclídeo dotado de un sistema cartesiano rectangular. 1. Para las siguientes cónicas (1) 5x
UNIDAD 13 LA CIRCUNFERENCIA Y LA PARÁBOLA
UNIDAD 13 LA CIRCUNFERENCIA Y LA PARÁBOLA Objetivo general. Al terminar esta Unidad aplicarás las definiciones y los elementos que caracterizan a la circunferencia y a la parábola en las soluciones de
GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo.
GEOMETRÍA 1. (Junio, 1994) Sin resolver el sistema, determina si la recta x +3y +1= 0 es exterior, secante o tangente a la circunferencia (x 1) +(y ) =1. Razónalo.. (Junio, 1994) Dadas las ecuaciones de
LA RECTA Y SUS ECUACIONES
UNIDAD LA RECTA Y SUS ECUACIONES EJERCICIOS RESUELTOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas correspondientes a las rectas en el plano y sus ecuaciones. Objetivo. Recordarás
TEMA 9 LUGARES GEOMÉTRICOS. CÓNICAS
Tema 9 Lugares geométricos. Cónicas. Matemáticas I 1º Bach. 1 TEMA 9 LUGARES GEOMÉTRICOS. CÓNICAS CIRCUNFERENCIA EJERCICIO 1 : Halla la ecuación de la circunferencia cuo centro es el punto P (1, ), que
ÁLGEBRA Práctica Clasificar según los valores de λ IR las cónicas de los siguientes haces: 2. Para las siguientes cónicas
ÁLGEBRA Práctica 14 Cónicas (Curso 2006 2007) NOTA: Todos los problemas se suponen planteados en el plano afín euclídeo dotado de un sistema cartesiano rectangular. 1. Clasificar según los valores de λ
