SÓLIDO RÍGIDO (I) (cinemática)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SÓLIDO RÍGIDO (I) (cinemática)"

Transcripción

1 SÓLDO RÍGDO () (cnemátca) ÍNDCE 1. ntroduccón. Momento del sóldo rígdo 3. Rodadura 4. Momento angular 5. Momento de nerca BBLOGRFÍ: Caps. 9 y 10 del Tpler Mosca, ol. 1, 5ª ed. Caps. 10 y 11 del Serway Jewett, ol. 1, 7ª ed. Caps. 1 y 13 del Gettys-Frederck-Keller.

2 1. NTRODUCCÓN Un sóldo rígdo es un sstema de partículas en el que las dstancas relatas entre ellas permanecen constantes. S las dstancas entre partículas arían, dcho sóldo se denomna deformable. El momento de un sóldo rígdo es en general complejo, pero se puede smplfcar hacendo una sere de descomposcones. Traslacón del centro de masas: F Ma ext Momento del sóldo rígdo Rotacón alrededor de un eje M ext que pasa por el centro de masas: Ejemplo Momento de la Terra, que se traslada alrededor del Sol (momento de traslacón) y que a la ez gra alrededor de un eje que pasa por su centro de masas (momento de rotacón).

3 . MOVMENTO DEL SÓLDO RÍGDO Sóldo rígdo con momento de traslacón: Todos los puntos del sóldo rígdo tenen la msma elocdad y aceleracón, luego el momento global se descrbe especfcando el momento de uno de sus puntos t1 t 3 t B B B B B B Los ejes del sstema de coordenadas fjo al sóldo rígdo no camban de dreccón respecto a un obserador en un sstema de referenca nercal.

4 . MOVMENTO DEL SÓLDO RÍGDO Sóldo rígdo con momento de rotacón: Todos los puntos del sóldo rígdo descrben crcunferencas, excepto el centro de rotacón. Los ejes del sstema de coordenadas fjo al sóldo rígdo camban de dreccón respecto a un obserador en un sstema de referenca nercal t 1 t 3 t B B B r r S ω=cte Mo. crcular unforme S α=cte Mo. crcular unformemente acelerado a t =αr a n = /r=ω r

5 . MOVMENTO DEL SÓLDO RÍGDO Sóldo rígdo con momento de traslacón y rotacón: La elocdad y aceleracón de cualquer punto del sóldo rígdo se puede calcular a partr de la elocdad angular y de la elocdad y aceleracón de cualquer otro punto traslacón rotacón r B B a B B a r r B B r B aceleracón tangencal aceleracón normal

6 Supondremos que el sóldo rueda sn deslzar, por ejemplo, el momento de las ruedas de un coche al crcular. En estos casos el eje de rotacón se traslada y el punto de contacto del sóldo con el suelo tene elocdad lneal nula (rozamento estátco). Este momento puede estudarse como la combnacón de una traslacón del centro de masas (ectores azules) más una rotacón alrededor del centro de masas (ectores rojos). R a a R X X r B C D Utlzando : Rj R r Rj R r R r r E E D D C C B B 0 x y Rotacón sn deslzamento E 3. RODDUR

7 3. MOMENTO NGULR Z L r m : momento angular de la partícula respecto a O. L z m r cos( 90 ) m R R r cos(90 ) R L z L z m R z z m R L Lz O R r m En general, el momento angular de un sóldo rígdo respecto a un punto del eje de rotacón no es paralelo al ector elocdad angular. Todo cuerpo posee al menos tres ejes (ejes prncpales de nerca) para los que los ectores momento angular (respecto de cualquer punto del eje) y elocdad angular son paralelos. Es esos casos se cumple la gualdad ectoral: L S la rotacón se produce alrededor de un eje prncpal de nerca Los ejes prncpales concden con los ejes de smetría del sóldo.

8 4. MOMENTO DE NERC El momento de nerca mde la resstenca que opone un cuerpo a arar su estado de momento de rotacón. Su análogo en traslacón es la masa, que mde la resstenca de un cuerpo a arar su estado de momento de traslacón. El momento de nerca respecto de un eje ene dado por: Masa puntual Dstrbucones dscretas de masa m r dm r Dstrbucones contnuas de masa mr Depende del eje de rotacón. Depende de la dstrbucón de masa del sstema alrededor del eje. Cuanto más alejada esté del eje de gro mayor es el momento de nerca. Dmensones de momento de nerca: Undades en el S.. : Kg m. m r ML

9 4. MOMENTO DE NERC Problema Calcular el momento de nerca de un sstema de cuatro masas puntuales respecto a los ejes ndcados en las fguras (las masas tenen alor m y el cuadrado que forman tene lado L): (a) (b) (c)

10 4. MOMENTO DE NERC Teorema de Stener (o de los ejes paralelos): El momento de nerca de un cuerpo con respecto a un eje, es gual al momento de nerca de tal cuerpo con respecto a un eje paralelo al prmero y que pasa por el centro de masas, más el producto de la masa del cuerpo por el cuadrado de la dstanca entre los dos ejes. Z' d Z Z Z ' Md Md

11 4. MOMENTO DE NERC Problema Calcular el momento de nerca de una arlla respecto a un eje que pase por su extremo y sea perpendcular a ella (er fgura). Cuánto ale el momento de nerca respecto a un eje paralelo a éste que pase por su centro de masas? L

12 4. MOMENTO DE NERC Teorema de los cuerpos planos (o de los ejes perpendculares): En cuerpos de espesor desprecable (cuerpos planos), la suma de los momentos de nerca respecto de dos ejes perpendculares y en el plano del cuerpo, es gual al momento de nerca respecto de un eje perpendcular al plano por el punto de corte de ellos Y X Y Z El cuerpo está en el plano OXY O X Z

13 4. MOMENTO DE NERC Problema Calcular el momento de nerca de una placa rectangular homogénea de lados a y b, respecto de los ejes mostrados en la fgura. b b b a a a (a) (b) (c)

14 4. MOMENTO DE NERC Teorema de Ponsot: Relacona el momento de nerca de un sóldo rígdo respecto a cualquer eje que pase por su centro de masas con los momentos de nerca respecto a los ejes prncpales de nerca. E Y E X cos Y cos Z cos Z X

15 4. MOMENTO DE NERC Momentos de nerca de cuerpos unformes de formas dersas (tomado del Tpler-Mosca 5ª ed., pág. 54)

16 4. MOMENTO DE NERC Problema Calcular el momento de nerca del objeto representado abajo respecto al eje Z que pasa por su centro de masas. Los dscos tenen 5 kg de masa y un rado de 10 cm. La barra clíndrca que los une tene kg de masa, 3 cm de rado y 15 cm de longtud. Cuánto ale el momento de nerca respecto a un eje paralelo al anteror (Z ) separado 0 cm de dstanca? Z Z

17 ÍNDCE SÓLDO RÍGDO (dnámca) 1. Ecuacón de rotacón del sóldo rígdo. Equlbro estátco 3. Conseracón del momento angular 4. Energía cnétca de rotacón 5. Trabajo y potenca de rotacón 6. Conseracón de la energía 7. Momento de rodadura BBLOGRFÍ: Caps. 8, 9 y 10 del Tpler Mosca, ol. 1, 5ª ed. Caps. 10, 11 y 1 del Serway Jewett, ol. 1, 7ª ed. Caps. 11, 1 y 13 del Gettys-Frederck-Keller.

18 1. ECUCÓN DE ROTCÓN DEL SÓLDO RÍGDO Ecuacón fundamental del momento de rotacón: dl dt M ext S el cuerpo gra alrededor de un eje prncpal de nerca: L M ª Ley de Newton para la rotacón ext dl dt d dt d dt Ecuacón de momento de un sóldo rígdo que rota alrededor de un eje prncpal. El orgen de momentos debe elegrse respecto a cualquer punto fjo del eje en un sstema nercal o respecto al

19 1. ECUCÓN DE ROTCÓN DEL SÓLDO RÍGDO Pasos a segur en la resolucón de problemas de rotacón 1. Dbujar el dagrama de cuerpo lbre sobre cada elemento, stuando las fuerzas en su punto de aplcacón.. plcar las ecuacones del momento (ª Ley de Newton, tanto para momento de traslacón como de rotacón), elgendo un sstema de referenca adecuado: F Ma M 1. Obtener el alor de las ncógntas del problema, resolendo las ecuacones planteadas en el apartado.

20 1. ECUCÓN DE ROTCÓN DEL SÓLDO RÍGDO Problema El bloque de masa m 1 deslza sn rozamento por la superfce horzontal, mentras que el bloque m está suspenddo de la cuerda que pasa por una polea de rado R y momento de nerca. Suponendo que la cuerda no deslza por la polea, determnar la aceleracón de los bloques y las tensones T 1 y T. (Ejemplo 9.11 del Tpler-Mosca, 5ª ed.) m 1 R m

21 . EQULBRO ESTÁTCO Un sóldo está en equlbro s tanto su aceleracón lneal como su aceleracón angular son nulas. plcando las ecuacones de momento tenemos: F Ma 0 M 0 3 ecuacones + 3 ecuacones S todas las fuerzas están en un msmo plano (por ejemplo en el plano XY): x y z F 0 F 0 M 0 3 ecuacones

22 . EQULBRO ESTÁTCO Ejemplo Cuánto tene que aler, al menos, el coefcente de rozamento (estátco) con el suelo para que la escalera no se caga? (Suponer que no hay rozamento en la pared). L

23 . EQULBRO ESTÁTCO Ejemplo Cuánto tene que aler, al menos, el coefcente de rozamento (estátco) con el suelo para que la escalera no se caga? (Suponer que no hay rozamento en la pared). N p L N P F roz

24 . EQULBRO ESTÁTCO Ejemplo Calcular el alor de la tensón de la cuerda. L

25 . EQULBRO ESTÁTCO Ejemplo Calcular el alor de la tensón de la cuerda. L V T y x H P P

26 3. CONSERVCÓN DEL MOMENTO NGULR Ejemplo De la ecuacón fundamental del momento de rotacón, dl dt M ext M 0, s. ext Persona encma de una plataforma gratora. f L cte S el momento externo es nulo, L se consera: f L L f f f f f L L f

27 4. ENERGÍ CNÉTC DE ROTCÓN Sóldo rígdo con momento de traslacón Energía cnétca de traslacón: E t 1 c M Sóldo rígdo con momento de rotacón Energía cnétca de rotacón: E c r 1 Sóldo rígdo con momento de traslacón y rotacón Energía cnétca de traslacón y rotacón: E c E c t E c r 1 M 1

28 5. TRBJO Y POTENC DE ROTCÓN dw F dr Trabajo nfntesmal dw Fdr cos dr Rd FR cos d M M Md R F FRsen FRcos Trabajo total W W f Md P dw dt Potenca d M dt M F d R dr

29 5. TRBJO Y POTENC DE ROTCÓN Ejercco El motor de un coche presenta un par motor de 400 Nm a 000 r.p.m. Qué potenca ofrece el motor a esas reolucones? La potenca máxma que ofrece ese coche es de 170 c.. a 3800 r.p.m. Cuál es el par motor cuando el coche opera a su máxma potenca? Dato: 1 c.. = 735 W

30 6. CONSERVCÓN DE L ENERGÍ W ext E c 1 1 E E M c t c r Problema La cuerda que está enrollada en el clndro de la fgura está sostenda por la mano de una persona que tra haca arrba de ella con aceleracón constante, de forma que el centro de masas del clndro permanece nmól. a) Qué elocdad alcanza el dsco después de realzar 5 reolucones, suponendo que nca el momento de rotacón con elocdad angular nula? b) Cuál es la tensón de la cuerda? c) Cuánto ale la aceleracón angular? T Datos: Rado del clndro R = 5 cm. Masa del clndro M = 00 g.

31 7. MOVMENTO DE RODDUR Este momento puede estudarse como la combnacón de una traslacón del centro de masas más una rotacón alrededor del centro de masas. y Fext Ma M R ext a R D C E Ejemplo B x Objeto que rueda (sn deslzar) por un plano nclnado. Exste rozamento (estátco). N y Eje x: P F Ma x roz F roz P x Eje y: Eje z: N P y 0 FrozR a R

32 7. MOVMENTO DE RODDUR F roz R R Mgsen Ma Mgsen a R Ma a Mgsen gsen M 1 R MR Casos: a) Esfera macza: MR 5 a gsen 1 /5 5 7 gsen 0.71gsen a) Clndro: 1 MR a gsen 11/ 3 gsen 0.67gsen b) ro: MR a gsen 11 1 gsen 0.5gsen c) Objeto puntual (no rueda, deslza sn rozamento): a gsen En los casos a), b) y c), los resultados sólo son áldos en el rango de ángulos en que hay sólo rodadura (no hay deslzamento).

33 7. MOVMENTO DE RODDUR S el objeto se encuentra a una dstanca h del suelo, su energía total será: E E c t E c r E p 1 M 1 mgh En el momento de rodadura la fuerza de rozamento es estátca, por lo tanto no realza trabajo y la energía total se consera. Ejercco Sea una esfera, un clndro y un aro en la alto de un plano nclnado. Cuál llegará antes abajo? h

TEMA2. Dinámica I Capitulo 3. Dinámica del sólido rígido

TEMA2. Dinámica I Capitulo 3. Dinámica del sólido rígido TEM. Dnámca I Captulo 3. Dnámca del sóldo rígdo TEM : Dnámca I Capítulo 3: Dnámca del sóldo rígdo Eje nstantáneo de rotacón Sóldo con eje fjo Momento de nerca. Teorema de Stener. Conservacón del momento

Más detalles

Cinemática del movimiento rotacional

Cinemática del movimiento rotacional Cnemátca del movmento rotaconal Poscón angular, θ Para un movmento crcular, la dstanca (longtud del arco) s, el rado r, y el ángulo están relaconados por: 180 s r > 0 para rotacón en el sentdo anthoraro

Más detalles

( ) 2 3 a ( ) % τ ia. Solución:

( ) 2 3 a ( ) % τ ia. Solución: Problema 1: El clndro unforme de rado a de la fgura pesaba en un prncpo 80 N. Después de taladrársele un agujero clíndrco de eje paralelo al anteror su peso es de 75 N. Suponendo que el clndro no deslza

Más detalles

Tema 3-Sistemas de partículas

Tema 3-Sistemas de partículas Tema 3-Sstemas de partículas Momento lneal y colsones Momento lneal de un partícula Segunda ley de Newton dp F dt p mv Impulso I tb ta Fdt Teorema del mpulso I p B p A Centro de masas 1 r M m r con M m

Más detalles

Cálculo de momentos de inercia

Cálculo de momentos de inercia Cálculo de momentos de nerca Cuando el cuerpo es homogéneo y unforme el cálculo de momento de nerca es una ntegral - Dvdmos el cuerpo en elementos de masa nfntesmal dm, todos a la msma dstanca r del eje

Más detalles

Capítulo 11. Movimiento de Rodamiento y Momentum Angular

Capítulo 11. Movimiento de Rodamiento y Momentum Angular Capítulo 11 Movmento de Rodamento y Momentum Angular 1 Contendos: Movmento de rodamento de un cuerpo rígdo. Momentum Angular de una partícula. Momentum Angular de un sstema de partículas. Momentum Angular

Más detalles

Capítulo 11. Movimiento de Rodamiento y Momentum Angular

Capítulo 11. Movimiento de Rodamiento y Momentum Angular Capítulo 11 Movmento de Rodamento y Momentum Angular 1 Contendos: Movmento de rodamento de un cuerpo rígdo. Momentum Angular de una partícula. Momentum Angular de un sstema de partículas. Momentum Angular

Más detalles

TEMA 2 Revisión de mecánica del sólido rígido

TEMA 2 Revisión de mecánica del sólido rígido TEMA 2 Revsón de mecánca del sóldo rígdo 2.. ntroduccón SÓLDO RÍGDO SÓLDO: consderar orentacón y rotacón RÍGDO: CONDCÓN DE RGÍDEZ: - movmento: no se alteran dstancas entre puntos - se gnoran las deformacones

Más detalles

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad.

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad. Nombre: Mecansmo: PROYECTO DE TEORIA DE MECANISMOS. Análss cnemátco y dnámco de un mecansmo plano artculado con un grado de lbertad. 10. Análss dnámco del mecansmo medante el método de las tensones en

Más detalles

Determinar el momento de inercia para un cuerpo rígido (de forma arbitraria).

Determinar el momento de inercia para un cuerpo rígido (de forma arbitraria). Unversdad de Sonora Dvsón de Cencas Exactas y Naturales Departamento de Físca Laboratoro de Mecánca II Práctca #3: Cálculo del momento de nerca de un cuerpo rígdo I. Objetvos. Determnar el momento de nerca

Más detalles

Centro de Masa. Sólido Rígido

Centro de Masa. Sólido Rígido Centro de Masa Sóldo Rígdo El centro de masa de un sstema de partículas es un punto en el cual parecería estar concentrada toda la masa del sstema. En un sstema formado por partículas dscretas el centro

Más detalles

Tema 3. Sólido rígido.

Tema 3. Sólido rígido. Tema 3. Sóldo rígdo. Davd Blanco Curso 009-010 ÍNDICE Índce 1. Sóldo rígdo. Cnemátca 3 1.1. Condcón cnemátca de rgdez............................ 3 1.. Movmento de traslacón...............................

Más detalles

Centro de Masa. Sólido Rígido

Centro de Masa. Sólido Rígido Centro de Masa Sóldo Rígdo El centro de masa de un sstema de partículas es un punto en el cual parecería estar concentrada toda la masa del sstema. En un sstema formado por partículas dscretas el centro

Más detalles

FISICA I HOJA 9 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 9. CHOQUES FORMULARIO

FISICA I HOJA 9 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 9. CHOQUES FORMULARIO 9. CHOQUES FORMULARIO 9.1) Un proyectl de masa 0,05 kg, que se mueve con una velocdad de 400 penetra una dstanca de 0,1 m en un bloque de madera frmemente sujeto al suelo. Se supone que la fuerza deceleradora

Más detalles

ESTÁTICA DEL SÓLIDO RÍGIDO

ESTÁTICA DEL SÓLIDO RÍGIDO DSR-1 ESTÁTICA DEL SÓLIDO RÍGIDO DSR-2 ESTÁTICA DEL SÓLIDO RÍGIDO La estátca estuda las condcones bajo las cuales los sstemas mecáncos están en equlbro. Nos referremos úncamente a equlbro de tpo mecánco,

Más detalles

Cinemática y dinámica del Cuerpo Rígido (no se incluye el movimiento de precesión y el del giróscopo)

Cinemática y dinámica del Cuerpo Rígido (no se incluye el movimiento de precesión y el del giróscopo) Cnemátca y dnámca del Cuerpo ígdo (no se ncluye el movmento de precesón y el del gróscopo) El cuerpo rígdo El cuerpo rígdo es un caso especal de un sstema de partículas. Es un cuerpo deal en el cual las

Más detalles

(c).- En equilibrio estático, el momento resultante respecto a cualquier punto es nulo. (d).- Un objeto en equilibrio no puede moverse.

(c).- En equilibrio estático, el momento resultante respecto a cualquier punto es nulo. (d).- Un objeto en equilibrio no puede moverse. Relacón de problemas DEPARTAMENTO DE FÍSICA ESCUELA POLITÉCNICA SUPERIOR UNIVERSIDAD DE JAÉN Equlbro estátco y elastcdad 1.- Verdadero o falso: (a).- F = 0 es sufcente para que exsta el equlbro estátco.

Más detalles

Cantidad de movimiento

Cantidad de movimiento Cnétca 37 / 63 Cnétca Cantdad de momento Momento cnétco: Teorema de Koeng Energía cnétca: Teorema de Koeng Sóldo con punto fjo: Momento cnétco Sóldo con punto fjo: Energía cnétca Sóldo: Momento relato

Más detalles

Mecánica del Sólido Rígido

Mecánica del Sólido Rígido Mecánca del Sóldo Rígdo 1.- Introduccón Cnemátca, Dnámca y Estátca 2.- Cnemátca. Tpos de movmento del sóldo: Traslacón, Rotacón Movmento Plano General Movmento General 3.- Cnétca. Fuerzas y aceleracones.

Más detalles

Examen de Física-1, 1 del Grado en Ingeniería Química Examen final. Septiembre de 2014 Cuestiones (Un punto por cuestión).

Examen de Física-1, 1 del Grado en Ingeniería Química Examen final. Septiembre de 2014 Cuestiones (Un punto por cuestión). Examen de Físca-, del Grado en Ingenería Químca Examen fnal. Septembre de 204 Cuestones (Un punto por cuestón. Cuestón (Prmer parcal: Un satélte de telecomuncacones se mueve con celerdad constante en una

Más detalles

Dpto. Física y Mecánica

Dpto. Física y Mecánica Dpto. Físca y Mecánca Mecánca analítca Introduccón Notacón Desplazamento y fuerza vrtual Fuerza de lgadura Trabao vrtual Energía cnétca. Ecuacones de Lagrange Prncpode los trabaos vrtuales Prncpo de D

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Físca General 1 Proyecto PMME - Curso 2007 Insttuto de Físca Facultad de Ingenería UdelaR ANÁLISIS E INFLUENCIA DE DISTINTOS PARÁMETROS EN EL ESTUDIO DE LA ESTÁTICA DE CUERPOS RÍGIDOS. Sebastán Bugna,

Más detalles

Mecánica Clásica ( Partículas y Bipartículas )

Mecánica Clásica ( Partículas y Bipartículas ) Mecánca lásca ( Partículas y Bpartículas ) Alejandro A. Torassa Lcenca reatve ommons Atrbucón 3.0 (0) Buenos Ares, Argentna atorassa@gmal.com Resumen Este trabajo consdera la exstenca de bpartículas y

Más detalles

EJERCICIOS RESUELTOS DE TRABAJO Y ENERGÍA

EJERCICIOS RESUELTOS DE TRABAJO Y ENERGÍA JRCICIOS RSULTOS D TRABAJO Y NRGÍA. Un bloque de 40 kg que se encuentra ncalmente en reposo, se empuja con una uerza de 30 N, desplazándolo en línea recta una dstanca de 5m a lo largo de una superce horzontal

Más detalles

Semana 12: Tema 9 Movimiento Rotacional

Semana 12: Tema 9 Movimiento Rotacional Semana : Tema 9 Movmeno Roaconal 9. Velocdad y Aceleracón angular 9. Roacón con aceleracón angular consane 9.3 Energía cnéca roaconal 9.4 Cálculo de momeno de nerca y el eorema de los ejes paralelos Capíulo

Más detalles

R (3 coordenadas) y tres ángulos que definen la rotación del sistema de coordenadas ligada con el cuerpo

R (3 coordenadas) y tres ángulos que definen la rotación del sistema de coordenadas ligada con el cuerpo . Velocdad y Aceleracón en Marcos de Referenca en Movmento.. Cnemátca de un cuerpo rígdo... Ángulos de Euler.. Teorema de Euler..4 Marcos de Referenca en Movmentos Traslaconal y Rotaconal..5 Dervada de

Más detalles

Disipación de energía mecánica

Disipación de energía mecánica Laboratoro de Mecáa y ludos Práctca 9 Dspacón de energía mecáa Objetvos El estudante medrá la energía que se perde por la accón de la uerza de rozamento. Determnar los cambos de la energía cnétca de un

Más detalles

Mecánica del Sólido Rígido

Mecánica del Sólido Rígido Mecánca del Sóldo ígdo 1.- Introduccón Cnemátca, Dnámca y Estátca 2.- Cnemátca. Tpos de movmento del sóldo: Traslacón, otacón Movmento Plano General Movmento General 3.- Cnétca. Fuerzas y aceleracones.

Más detalles

SEGUNDO EXAMEN PARCIAL FÍSICA I MODELO 1

SEGUNDO EXAMEN PARCIAL FÍSICA I MODELO 1 SEGUDO EXAME PARCIAL FÍSICA I MODELO.- Un ndvduo de 80 kg se encuentra en el etreo de una tala de 0 kg de asa 0 de longtud que flota en reposo sore la superfce de agua de un estanque. S el hore se desplaa

Más detalles

Objetivos de aprendizaje. Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

Objetivos de aprendizaje. Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: epartamento de Físca, UTFSM Físca General II / Prof: A. Brunel. FIS120: FÍSICA GENERAL II GUÍA#6: Campo magnétco, efectos. Objetvos de aprendzaje. Esta guía es una herramenta que usted debe usar para lograr

Más detalles

Fuerzas distribuidas. 2. Momento de inercia

Fuerzas distribuidas. 2. Momento de inercia Dpto. Físca y Mecánca Fuerzas dstrbudas d Centro de gravedad centro de masas. Centro de gravedad, centro de masas. Momento de nerca ntroduccón. Fuerzas dstrbudas Cálculo de centrodes y centros de gravedad

Más detalles

La representación Denavit-Hartenberg

La representación Denavit-Hartenberg La representacón Denavt-Hartenberg José Cortés Parejo. Marzo 8 Se trata de un procedmeto sstemátco para descrbr la estructura cnemátca de una cadena artculada consttuda por artculacones con. un solo grado

Más detalles

PRACTICA 3: ESTUDIO DEL EQUILIBRADO ESTÁTICO Y DINÁMICO. ROTACIÓN DE UN CUERPO RÍGIDO ALREDEDOR DE UN EJE FIJO.

PRACTICA 3: ESTUDIO DEL EQUILIBRADO ESTÁTICO Y DINÁMICO. ROTACIÓN DE UN CUERPO RÍGIDO ALREDEDOR DE UN EJE FIJO. PRACTCA 3: ESTUDO DEL EQULBRADO ESTÁTCO Y DNÁMCO. ROTACÓN DE UN CUERPO RÍGDO ALREDEDOR DE UN EJE FJO. 1. -NTRODUCCÓN TEÓRCA El objeto de la eperenca será el equlbrar estátca dnámcamente un sstema de masas

Más detalles

Física I Apuntes de Clase 2, Turno D Prof. Pedro Mendoza Zélis

Física I Apuntes de Clase 2, Turno D Prof. Pedro Mendoza Zélis Físca I Apuntes de Clase 2, 2018 Turno D Prof. Pedro Mendoza Zéls Isaac Newton 1643-1727 y y 1 y 2 j O Desplazamento Magntudes cnemátcas: v m r Velocdad meda r r 1 r 2 r velocdad s x1 2 r1 x1 + r2 x2 +

Más detalles

PRACTICA 4: ESTUDIO DEL EQUILIBRADO ESTÁTICO Y DINÁMICO. ROTACIÓN DE UN CUERPO RÍGIDO ALREDEDOR DE UN EJE FIJO.

PRACTICA 4: ESTUDIO DEL EQUILIBRADO ESTÁTICO Y DINÁMICO. ROTACIÓN DE UN CUERPO RÍGIDO ALREDEDOR DE UN EJE FIJO. RACTICA 4: ESTUDIO DEL EQUILIBRADO ESTÁTICO Y DINÁMICO. ROTACIÓN DE UN CUERO RÍGIDO ALREDEDOR DE UN EJE FIJO. 1. -INTRODUCCIÓN TEÓRICA El objeto de la eperenca será el equlbrar estátca y dnámcamente un

Más detalles

CINEMATICA. BERNARDO ARENAS GAVIRIA Universidad de Antioquia Instituto de Física

CINEMATICA. BERNARDO ARENAS GAVIRIA Universidad de Antioquia Instituto de Física CINEMTIC BERNRD RENS GVIRI Unersdad de ntoqua Insttuto de Físca 2010 Índce general 1. Cnemátca 1 1.1. Introduccón.......................................... 1 1.2. Sstemas de referenca....................................

Más detalles

Una Ecuación Lineal de Movimiento

Una Ecuación Lineal de Movimiento Una Ecuacón Lneal de Movmento Antono A Blatter Lcenca Creatve Commons Atrbucón 30 (2015) Buenos Ares Argentna Este trabajo presenta una ecuacón lneal de movmento que es nvarante bajo transformacones entre

Más detalles

Objetivos de aprendizaje. Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

Objetivos de aprendizaje. Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: FIS120: FÍSICA GENERAL II GUÍA#7: Campo magnétco, orgen. Objetvos de aprendzaje. Esta guía es una herramenta que usted debe usar para lograr los sguentes objetvos: Analzar los fenómenos que organ los campos

Más detalles

Magnetostática

Magnetostática Magnetostátca Ejercco 1: un haz de sótopos (masa m=8,96 x 10 27 kg; carga q=+3,2 10 19 ) ngresa por el punto A de la fgura a una regón del espaco donde exste un campo magnétco de valor B = 0,1T. La energía

Más detalles

Fuerzas ficticias Referencial uniformemente acelerado

Fuerzas ficticias Referencial uniformemente acelerado Capítulo 10 Fuerzas fctcas Las fuerzas fctcas son fuerzas que deben nclurse en la descrpcón de un sstema físco cuando la observacón se realza desde un sstema de referenca no nercal, a pesar de ello, se

Más detalles

Etáti Estática. 2.Centros de gravedad y 3.Momentos de inercia

Etáti Estática. 2.Centros de gravedad y 3.Momentos de inercia Etát Estátca.Equlbro 2.Centros de gravedad y 3.Momentos de nerca Parte de la físca que estuda el equlbro de los cuerpos Partedelafíscaqueestudalasrelaconesexstentes entre las fuerzas que actúan en un cuerpo

Más detalles

En el espacio-tiempo, las moléculas pueden acumular energía cinéticas de tres maneras

En el espacio-tiempo, las moléculas pueden acumular energía cinéticas de tres maneras Rotacón En el espaco-tempo, las moléculas pueden acumular energía cnétcas de tres maneras Por ejemplo, cuando agregamos calor a un gas monoatómco a volumen constante, toda la energía agregada aumenta la

Más detalles

Capítulo V Dinámica del cuerpo rígido

Capítulo V Dinámica del cuerpo rígido Capítulo V Dnámca del cuerpo rígdo 5. Dnámca de un sstema de masas puntuales Hasta el momento hemos estudado la nteraccón de dos cuerpos puntuales. Corresponde ahora analzar lo que ocurre cuando tenemos

Más detalles

Una Ecuación Lineal de Movimiento

Una Ecuación Lineal de Movimiento Una Ecuacón Lneal de Movmento Antono A. Blatter Lcenca Creatve Commons Atrbucón 3.0 (2015) Buenos Ares Argentna Este trabajo presenta una ecuacón lneal de movmento que es nvarante bajo transformacones

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22 DOCENTE: LIC.GUSTO DOLFO JUEZ GUI DE TJO PCTICO Nº 22 CES: POFESODO Y LICENCITU EN IOLOGI PGIN Nº 132 GUIS DE CTIIDDES Y TJO PCTICO Nº 22 OJETIOS: Lograr que el lumno: Interprete la nformacón de un vector.

Más detalles

TRABAJO Y ENERGÍA INTRODUCCIÓN. requiere como varia la fuerza durante el movimiento. entre los conceptos de fuerza y energía mecánica.

TRABAJO Y ENERGÍA INTRODUCCIÓN. requiere como varia la fuerza durante el movimiento. entre los conceptos de fuerza y energía mecánica. TRABAJO Y ENERGÍA INTRODUCCIÓN La aplcacón de las leyes de Newton a problemas en que ntervenen fuerzas varables requere de nuevas herramentas de análss. Estas herramentas conssten en los conceptos de trabajo

Más detalles

CAMPOS DE VELOCIDADES DE LOS DISCOS

CAMPOS DE VELOCIDADES DE LOS DISCOS CAMPOS DE VELOCIDADES DE LOS DISCOS Los dscos galáctcos se modelan como anllos crculares concéntrcos. S Ω es la velocdad angular del anllo y r el vector que va hasta el centro, sendo n el vector untaro

Más detalles

Cantidad de movimiento de una partícula: pi = mi vi Cantidad de movimiento del sistema: i i i. dt dt dt dt. Conjunto de partículas: 1 m 1

Cantidad de movimiento de una partícula: pi = mi vi Cantidad de movimiento del sistema: i i i. dt dt dt dt. Conjunto de partículas: 1 m 1 DFARN -- FFI DINÁMICA DE LOS SISTEMAS A CANTIDAD DE MOVIMIENTO Para una partícula: Cantdad de ovento de una partícula: p v Cantdad de ovento del sstea: p p v d( v F + F Para el sstea (suando para todas

Más detalles

TEMA 3: Dinámica II Capitulo 1. Trabajo y energía

TEMA 3: Dinámica II Capitulo 1. Trabajo y energía TMA 3: Dnáca II Captulo. Trabajo y energía Bran Cox sts the world's bggest acuu chaber (BBC Two) https://www.youtube.co/watch?43-cfukgs TMA 3: Dnáca II. Captulo : trabajo y energía Concepto de trabajo.

Más detalles

CAPÍTULO 7. Cuerpo rígido

CAPÍTULO 7. Cuerpo rígido CAPÍTUO 7. Cuerpo rígdo NTODUCCON En el captulo anteror estudamos el movmento de un sstema de partículas. Un caso especal mportante de estos sstemas es aquel en que la dstanca entre dos partículas cualesquera

Más detalles

Para abrirla tirando de un punto intermedio entre el eje y la manecilla habrá que realizar el mismo momentode fuerzas: Mg 50 F ʹ = 2F =

Para abrirla tirando de un punto intermedio entre el eje y la manecilla habrá que realizar el mismo momentode fuerzas: Mg 50 F ʹ = 2F = ESTTIC La fuerza necesara para abrr una puerta trando de su maneclla es la centésma parte de su peso. S la puerta pesa 10 kg y la dstanca de la maneclla al eje de gro es 1 m, calcular la fuerza F ʹ necesara

Más detalles

TEORÍA DE ESTRUCTURAS

TEORÍA DE ESTRUCTURAS TEORÍA DE ESTRUCTURAS TEA 4: CÁCUO DE ESTRUCTURAS POR E ÉTODO DE A DEFORACIÓN ANGUAR DEPARTAENTO DE INGENIERÍA ECÁNICA - EKANIKA INGENIERITZA SAIA ESCUEA TÉCNICA SUPERIOR DE INGENIERÍA DE BIBAO UNIVERSIDAD

Más detalles

UdelaR Facultad de Ciencias Curso de Física I p/lic. Física y Matemática Curso 2011 CINEMÁTICA

UdelaR Facultad de Ciencias Curso de Física I p/lic. Física y Matemática Curso 2011 CINEMÁTICA UdelaR Facultad de Cencas Curso de Físca I p/lc. Físca y Matemátca Curso 011 1.- CINEMÁTICA UNIDIMENSIONAL CINEMÁTICA Partícula- Modelo de punto materal, de dmensones desprecables. Ley horara x (t) Funcón

Más detalles

existe una fuerza eléctrica entre ellas. Nos podemos hacer una pregunta si q Ese algo que rodea a la carga se conoce como CAMPO ELECTRIO CE

existe una fuerza eléctrica entre ellas. Nos podemos hacer una pregunta si q Ese algo que rodea a la carga se conoce como CAMPO ELECTRIO CE UNIVRSIDAD NACIONAL D INGNIRIA Curso: FISICA II CB 3U 1I Imagna. stas sentado cerca de Ruperta, una joven muy lnda que usa un perfume muy agradable. Pero Ruperta tene su amorcto, él llega y tenes que rte.

Más detalles

FÍSICA I. Mecánica y Termodinámica PLAN DE ACTIVIDADES AÑO 2001 TRABAJO PRÁCTICO Nº 2

FÍSICA I. Mecánica y Termodinámica PLAN DE ACTIVIDADES AÑO 2001 TRABAJO PRÁCTICO Nº 2 Unversdad Naconal del Nordeste acultad de Cencas Exactas y Naturales y Agrmensura ÍSICA I Mecánca y Termodnámca CARRERAS: Ingenería Eléctrca Ingenería Electrónca PLAN DE ACTIVIDADES AÑO 2001 TRABAJO PRÁCTICO

Más detalles

Mecánica Clásica Alternativa II

Mecánica Clásica Alternativa II Mecánca Clásca Alternatva II Alejandro A. Torassa Lcenca Creatve Commons Atrbucón 3.0 (2014) Buenos Ares, Argentna atorassa@gmal.com - versón 1 - Este trabajo presenta una mecánca clásca alternatva que

Más detalles

Una Reformulación de la Mecánica Clásica

Una Reformulación de la Mecánica Clásica Una Reformulacón de la Mecánca Clásca Antono A Blatter Lcenca Creatve Commons Atrbucón 30 (2015) Buenos Ares Argentna Este trabajo presenta una reformulacón de la mecánca clásca que es nvarante bajo transformacones

Más detalles

Una Reformulación de la Mecánica Clásica

Una Reformulación de la Mecánica Clásica Una Reformulacón de la Mecánca Clásca Antono A Blatter Lcenca Creatve Commons Atrbucón 30 (2015) Buenos Ares Argentna Este trabajo presenta una reformulacón de la mecánca clásca que es nvarante bajo transformacones

Más detalles

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior.

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior. . EL TENSOR DE TENSIONES Como se explcó prevamente, el estado tensonal en un punto nteror de un cuerpo queda defndo por 9 componentes, correspondentes a componentes por cada una de las tensones nternas

Más detalles

Resumen TEMA 5: Dinámica de percusiones

Resumen TEMA 5: Dinámica de percusiones TEM 5: Dnámca e percusones Mecánca Resumen TEM 5: Dnámca e percusones. Concepto e percusón Impulsón elemental prouca por una fuerza: F Impulsón prouca por una fuerza en un nteralo (t, t ): F Percusón es

Más detalles

Tallerine: Energías Renovables. Fundamento teórico

Tallerine: Energías Renovables. Fundamento teórico Tallerne: Energías Renovables Fundamento teórco Tallerne Energías Renovables 2 Índce 1. Introduccón 3 2. Conceptos Báscos 3 2.1. Intensdad de corrente................................. 3 2.2. Voltaje..........................................

Más detalles

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD 10. VIBRACIONES EN SISEMAS CON N GRADOS DE LIBERAD 10.1. Matrces de rgdez, nerca y amortguamento Se puede demostrar que las ecuacones lneales del movmento de un sstema dscreto de N grados de lbertad sometdo

Más detalles

Apuntes de Mecánica Newtoniana: Sistemas de Partículas, Cinemática y Dinámica del

Apuntes de Mecánica Newtoniana: Sistemas de Partículas, Cinemática y Dinámica del Apuntes de Mecánca Newtonana: Sstemas de Partículas, Cnemátca y Dnámca del Rígdo. Arel Fernández Danel Marta Insttuto de Físca - Facultad de Ingenería - Unversdad de la Repúblca Índce general Contendos

Más detalles

Aplicaciones de las leyes de conservación de la energía

Aplicaciones de las leyes de conservación de la energía Aplcacones de las leyes de conservacón de la energía Estratega para resolver problemas El sguente procedmento debe aplcarse cuando se resuelven problemas relaconados con la conservacón de la energía: Dena

Más detalles

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

Cantidad de Momento, Conservación, Choques, Centro de Masa

Cantidad de Momento, Conservación, Choques, Centro de Masa Cantdad de Moento, Conseracón, Choques, Centro de Masa Moentu líneal Las fuerzas aplcadas en una dreccón que no pasa por el centro de graedad de un objeto producen un gro en éste objeto. Para edr la agntud

Más detalles

Modelado de un Robot Industrial KR-5

Modelado de un Robot Industrial KR-5 RESUMEN Modelado de un Robot Industral KR-5 (1) Eduardo Hernández 1, Samuel Campos 1, Jorge Gudno 1, Janeth A. Alcalá 1 (1) Facultad de Ingenería Electromecánca, Unversdad de Colma, km 2 Carretera Manzanllo-Barra

Más detalles

Cinemática del Brazo articulado PUMA

Cinemática del Brazo articulado PUMA Cnemátca del Brazo artculado PUMA José Cortés Parejo. Enero 8. Estructura del brazo robótco El robot PUMA de la sere es un brazo artculado con artculacones rotatoras que le proporconan grados de lbertad

Más detalles

MOVIMIENTO CIRCULAR Y MOVIMIENTO DE ROTACIÓN DE UN CUERPO RÍGIDO TOMÁS S. GRIGERA

MOVIMIENTO CIRCULAR Y MOVIMIENTO DE ROTACIÓN DE UN CUERPO RÍGIDO TOMÁS S. GRIGERA MOVIMIENTO CIRCULAR Y MOVIMIENTO DE ROTACIÓN DE UN CUERPO RÍGIDO TOMÁS S. GRIGERA Insttuto de Físca de Líqudos y Sstemas Bológcos (IFLYSIB), CONICET y Unversdad Naconal de La Plata, Calle 59 no. 789, La

Más detalles

CONTENIDO SÓLIDO RÍGIDO I. CINEMÁTICA. Definición de sólido rígido. Cálculo de la posición del centro de masas. Movimiento de rotación y de traslación

CONTENIDO SÓLIDO RÍGIDO I. CINEMÁTICA. Definición de sólido rígido. Cálculo de la posición del centro de masas. Movimiento de rotación y de traslación CONTENIDO Definición de sólido rígido Cálculo de la posición del centro de masas Movimiento de rotación y de traslación Movimiento del sólido rígido en el plano Momento de inercia Teorema de Steiner Tema

Más detalles

La cinemática estudia como ya sabemos el movimiento como una relación espacio-temporal, sin analizar cuales son las causas que lo producen.

La cinemática estudia como ya sabemos el movimiento como una relación espacio-temporal, sin analizar cuales son las causas que lo producen. Capítulo 5 DINÁMICA 5.1. Introduccón La cnemátca estuda como ya sabemos el movmento como una relacón espaco-temporal, sn analzar cuales son las causas que lo producen. La dnámca tene por objeto el estudo

Más detalles

Ecuaciones de Movimiento

Ecuaciones de Movimiento Facultad de Cenca Fíca y Matemátca Unverdad de Chle Ecuacone de Movmento Concepto báco 26 de octubre de 2011 Depatamento de Ingenería Mecánca ME4701- Vbracone Mecánca 1. Segunda Ley de Newton En un tema

Más detalles

Campo eléctrico. Líneas de campo. Teorema de Gauss. El campo de las cargas en reposo. Campo electrostático

Campo eléctrico. Líneas de campo. Teorema de Gauss. El campo de las cargas en reposo. Campo electrostático qco sθ qz Ez= 4 zπε0 2+ R2 = 4πε0 [z2 +R2 ]3/ 2 El campo de las cargas en reposo. Campo electrostátco ntroduccón. Propedades dferencales del campo electrostátco. Propedades ntegrales del campo electromagnétco.

Más detalles

FI1002 Sistemas Newtonianos Judit Lisoni Sección 6

FI1002 Sistemas Newtonianos Judit Lisoni Sección 6 F00 Sstemas Newtonanos Ju Lson Seccón 6 Undad 4C Sóldos ígdos: Toque y momento angula Undad 4D Sóldos ígdos: Rodadua o oda sn esbala Contendos Undad 4C.Foma otaconal de la segunda ley de Newton: momento

Más detalles

Resolución Numérica de Problemas de Transmisión de Calor. Método de las diferencias finitas.

Resolución Numérica de Problemas de Transmisión de Calor. Método de las diferencias finitas. Resolucón Numérca de Problemas de ransmsón de Calor. Método de las dferencas fntas.. Dvsón del espaco consderado en una sere de elementos cuas propedades venen representadas por un punto central (nodo)..

Más detalles

CI42A: ANALISIS ESTRUCTURAL. Programa CI42A

CI42A: ANALISIS ESTRUCTURAL. Programa CI42A CI4A: ANALISIS ESTRUCTURAL Prof.: Rcardo Herrera M. Programa CI4A NÚMERO NOMBRE DE LA UNIDAD OBJETIVOS DURACIÓN 4 semanas Prncpo de los trabajos vrtuales y teoremas de Energía CONTENIDOS.. Defncón de trabajo

Más detalles

Tema 3. Teoremas de la Teoría de Circuitos

Tema 3. Teoremas de la Teoría de Circuitos Tema 3. Teoremas de la Teoría de Crcutos 3.1 Introduccón 3. Superposcón 3.3 Transformacón de fuentes 3.4 Teorema de Theenn 3.5 Teorema de Norton 3.6 Máxma transferenca de potenca Th Th L nálss de Crcutos

Más detalles

Equilibrio y elasticidad

Equilibrio y elasticidad Equlbro y elastcdad Condcones de equlbro Una partícula esta en equlbro s la resultante de todas las fuerzas (externas) que actúan sobre ella es cero Para cuerpos con extensón fnta: el centro de masa del

Más detalles

Sistemas Lineales de Masas-Resortes 2D

Sistemas Lineales de Masas-Resortes 2D Sstemas neales de Masas-Resortes D José Cortés Pareo. Novembre 7 Un Sstema neal de Masas-Resortes está consttudo por una sucesón de puntos (de ahí lo de lneal undos cada uno con el sguente por un resorte

Más detalles

Disipación de energía mecánica

Disipación de energía mecánica Laboratoro de Mecáa. Expermento 13 Versón para el alumno Dspacón de energía mecáa Objetvo general El estudante medrá la energía que se perde por la accón de la uerza de rozamento. Objetvos partculares

Más detalles

9. Movimiento Circular Uniformemente Acelerado

9. Movimiento Circular Uniformemente Acelerado 9. Movmento Crcular Unormemente Acelerado Ete movmento e preenta cuando un móvl con trayectora crcular aumenta o dmnuye en cada undad de tempo u velocdad angular en orma contante, por lo que u aceleracón

Más detalles

Sólido Rígido. Momento de Inercia 17/11/2013

Sólido Rígido. Momento de Inercia 17/11/2013 Sólido ígido Un sólido rígido es un sistema formado por muchas partículas que tiene como característica que la posición relativa de todas ellas permanece constante durante el movimiento. A B El movimiento

Más detalles

I Coordenadas generalizadas Constricciones y coordenadas generalizadas Desplazamientos virtuales... 3

I Coordenadas generalizadas Constricciones y coordenadas generalizadas Desplazamientos virtuales... 3 .1 Parte I Mecánca de Lagrange Índce I 1 1. Coordenadas generalzadas 1 1.1. Constrccones y coordenadas generalzadas............. 1 1.2. Desplazamentos vrtuales...................... 3 2. Ecs. de Lagrange

Más detalles

Problemas sobre números complejos -1-

Problemas sobre números complejos -1- Problemas sobre números complejos --.- Representa gráfcamente los sguentes números complejos y d cuáles son reales, cuáles magnaros y, de estos, cuáles magnaros puros: 5-5 + 4-5 7 0 -- -7 4.- Obtén las

Más detalles

Mecánica. Cinemática Dinámica Trabajo y Energía. Sistemas de Partículas. Sólido Rígido. J.A. Moleón

Mecánica. Cinemática Dinámica Trabajo y Energía. Sistemas de Partículas. Sólido Rígido. J.A. Moleón FÍSICA I ecánca Departaento de Físca Unersdad de Jaén Cneátca Dnáca Trabajo y Energía Ssteas de Partículas Sóldo Rígdo J.A. oleón - Introduccón Un Sstea de Partículas se defne coo un conjunto de puntos

Más detalles

17 MOMENTOS DE INERCIA Y TEOREMA DE STEINER

17 MOMENTOS DE INERCIA Y TEOREMA DE STEINER 17 MOMENOS DE INERCIA Y EOREMA DE SEINER OBJEIVOS Determnacón e la constante recuperaora e un muelle espral. Comprobacón el teorema e Stener. Determnacón expermental el momento e nerca e ferentes cuerpos

Más detalles

INGENIERÍA DE TELECOMUNICACIÓN BLOQUE 1

INGENIERÍA DE TELECOMUNICACIÓN BLOQUE 1 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE En el Aula Vrtual se encuentra dsponble: Materal nteractvo con teoría y ejerccos resueltos. Para acceder a ello deberá pulsar sobre los sguentes enlaces una vez dentro

Más detalles

Electromagnetismo. El campo de las cargas en reposo: el campo electrostático. Campo eléctrico

Electromagnetismo. El campo de las cargas en reposo: el campo electrostático. Campo eléctrico Electromagnetsmo El campo de las cargas en reposo: el campo electrostátco Andrés Cantarero. Curso 2005-2006. ntroduccón. Propedades dferencales del campo electrostátco. Propedades ntegrales del campo electrostátco.

Más detalles

Problemas resueltos. Problema 6.1. E e1 R4 B R3. D Figura P6.1. Para la red de la figura P6.1:

Problemas resueltos. Problema 6.1. E e1 R4 B R3. D Figura P6.1. Para la red de la figura P6.1: 1 Problemas resueltos. Problema 6.1 Para la red de la fgura P6.1: j R e Fgura P6.1. a) etermnar la red pasa Norton entre y, sta por la resstenca. b) etermnar la fuente equalente Théenn entre y, sta por

Más detalles

a) Cuando tomamos como parámetros la longitud y la latitud. b) Cuando usamos la parametrización en forma explícita.

a) Cuando tomamos como parámetros la longitud y la latitud. b) Cuando usamos la parametrización en forma explícita. PROBLEMA DE INTEGRALE DE UPERFICIE. (20 I.T.I.MECÁNICA). -2008-09- 1.-Encontrar los puntos sngulares de la semesfera superor: x 2+y 2+z 2=R 2.z 0 a) Cuando tomamos como parámetros la longtud y la lattud.

Más detalles

Departamento de Señales, Sistemas y Radicomunicaciones Comunicaciones Digitales, junio 2011

Departamento de Señales, Sistemas y Radicomunicaciones Comunicaciones Digitales, junio 2011 Departamento de Señales, Sstemas y Radcomuncacones Comuncacones Dgtales, juno 011 Responder los problemas en hojas ndependentes. No se permte el uso de calculadora. Problema 1 6 p.) En este ejercco se

Más detalles

FUERZAS CENTRALES. Física 2º Bachillerato

FUERZAS CENTRALES. Física 2º Bachillerato FUERZAS CENTRALES 1. Fuerza central. Momento de una fuerza respecto de un punto. Momento de un fuerza central 3. Momento angular de una partícula 4. Relación entre momento angular y el momento de torsión

Más detalles

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas IES Menéndez Tolosa (La Línea) Físca y Químca - 1º Bach - Gráfcas 1 Indca qué tpo de relacón exste entre las magntudes representadas en la sguente gráfca: La gráfca es una línea recta que no pasa por el

Más detalles

Coordenadas Curvilíneas

Coordenadas Curvilíneas Departamento: Físca Aplcada III Mecánca Raconal (Ingenería Industral) Curso 007-08 Coordenadas Curvlíneas 1. Introduccón a. Obetvo: Generalar los tpos de coordenadas conocdos. Cartesanas. Clíndrcas, Esfércas,

Más detalles

EQUILIBRIO DE UN CUERPO RIGIDO

EQUILIBRIO DE UN CUERPO RIGIDO Manual e Laboratoro e ísca I C - UNMSM EQUILIBRIO E UN CUERPO RIGIO EXPERIENCIA Nº 6 Cuerpo rígdo: La dstanca entre dos puntos cualesquera del cuerpo permanece nvarante en el tempo. I. OBJETIVOS - Estudar

Más detalles

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE CIENCIAS BASICAS.

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE CIENCIAS BASICAS. UNIVERSIDAD FRANCISCO DE AULA SANTANDER FACULTAD DE CIENCIAS BÁSICAS DEARTAMENTO DE CIENCIAS BASICAS. DERIVADAS ARCIALES DE ORDEN SUERIOR. S es una uncón de dos varables al dervar la uncón parcalmente

Más detalles

Unidad 6-. Números complejos 1

Unidad 6-. Números complejos 1 Undad -. Números complejos ACTIVIDADES FINALES EJERCICIOS Y PROBLEMAS Efectúa las sguentes operacones: aa (-(-(- aa (-(-(- cc ( -(-( bb ( ( - - (- 7 dd ( - - (- / ( - ( ( (. ( Sumamos algebracamente por

Más detalles

Consecuencias del Primer Principio 22 de noviembre de 2010

Consecuencias del Primer Principio 22 de noviembre de 2010 Índce 5 CELINA GONZÁLEZ ÁNGEL JIMÉNEZ IGNACIO LÓEZ RAFAEL NIETO Consecuencas del rmer rncpo 22 de novembre de 2010 1. Ecuacón calórca del gas deal 1 Cuestones y problemas: C 2.4,10,11,12,16,19 1.1,3 subrayados

Más detalles

Ejercicios y problemas (páginas 131/133)

Ejercicios y problemas (páginas 131/133) 7 Calcula el opuesto y el conjugado de los sguentes números complejos, expresándolos en forma polar: a) z b) z (cos 00 sen 00 ) c) z Expresamos en prmer lugar los números complejos en forma Calcula las

Más detalles