METODOS NUMERICOS CATEDRA 0 6. Ingeniería Civil ING.CRISTIANCASTROP. Facultad de Ingeniería de Minas, Geología y Civil

Tamaño: px
Comenzar la demostración a partir de la página:

Download "METODOS NUMERICOS CATEDRA 0 6. Ingeniería Civil ING.CRISTIANCASTROP. Facultad de Ingeniería de Minas, Geología y Civil"

Transcripción

1 ING.CRISTIANCASTROP. CATEDRA 0 6 Facultad de Ingenería de Mnas, Geología Cvl Departamento académco de ngenería de mnas cvl METODOS NUMERICOS Ingenería Cvl

2 ING.CRISTIANCASTROP. Captulo VI Sstema de Ecuacones Algebracas No Lneales

3 Agenda Planteamento del problema Método de Punto Fjo Método de Newton Varantes del método de Newton Evaluacón dferda del jacobano Apromacón por dferencas fntas Newton undmensonal Métodos cuas-newton (Broden)

4 Introduccon Se pretende que al fnal de la eposcón el estudante pueda reconocer los sstemas de ecuacones no lneales pueda resolverlos por medo de adaptacones a los métodos Newton- Raphson e Iteracón de Punto Fjo... f f f n ( ( (,,,...,...,..., n n n ) 0 ) 0 ) 0 La solucón de este sstema consta de valores que smultáneamente hacen que todas las ecuacones sean guales a cero

5 SISTEMAS DE ECUACIONES NO LINEALES * f(, )=0 g(, )=0 *

6 SISTEMA DE ECUACIONES NO LINEALES (, 3)

7 MÉTODO DE PUNTO FIJO EN SISTEMAS DE ECUACIONES NO LINEALES. Consdera la nterseccón de dos funcones no lneales f(, ) =0 g(, )=0.. La nterseccón de las curvas f(, )=0 g(, )=0 nos da la raz (r, r). 3. El método consste en obtener las funcones que tengan las msmas races (r, r): -F(, ) = 0 -G(, ) = 0 4. Consderar un valor ncal ( 0, 0 ), como apromacón a la raíz, evaluar: =F( 0, 0 ) =G( 0, 0 ) 5. El proceso se repte n veces hasta tener valores mu cercano s a las raíces.

8 MÉTODO DEL PUNTO FIJO EN SISTEMAS DE ECUACIONES NO LINEALES n=0/(+) n=((57-)/(3))^(/) err=sqrt((n-)^+(n-)^) teracó n err = = 3

9 MÉTODO DEL PUNTO FIJO EN SISTEMAS DE ECUACIONES NO LINEALES Varante Sedel n=0/(+) n=((57-)/(3n))^(/) err=sqrt((n-)^+(n-)^) Converge mas rápdo!!! teracó n err = = 3

10 MÉTODO DEL PUNTO FIJO EN SISTEMAS DE ECUACIONES NO LINEALES Sn embargo, con el método del punto fjo, la convergenca depende de la manera en que se formulen las ecuacones de recurrenca de haber elegdo valores ncales lo bastante cercanos a la solucón En las dos formulacones sguentes el método dverge. = (57 - )/3 = (0 - )/ teracón = (0 - )/ = 57-3 teracón

11 No se puede mostrar la magen en este momento. MÉTODO DE NEWTON RAPHSON EN SISTEMAS DE ECUACIONES NO LINEALES u(, ) v(, )

12 MÉTODO DE NEWTON RAPHSON EN SISTEMAS DE ECUACIONES NO LINEALES Este procedmento corresponde, analítcamente, a etender el uso de la dervada, ahora para calcular la nterseccón entre dos funcones no lneales. Al gual que para una sola ecuacón, el cálculo se basa en la epansón de la sere de Talor de prmer orden, ahora de múltples varables, para consderar la contrbucón de más de una varable ndependente en la determnacón de la raíz. Para dos varables, la sere de Talor de prmer orden se escrbe, para cada ecuacón no lneal: u u u u ( ) ( ) v v v v () ( )

13 MÉTODO DE NEWTON RAPHSON EN SISTEMAS DE ECUACIONES NO LINEALES Pero u + = v + = 0 : u u u u u 0 v v v v v 0 Que reescrbendo en el orden convenente: u u u u u v v v v v

14 MÉTODO DE NEWTON RAPHSON EN SISTEMAS DE ECUACIONES NO LINEALES Y cua solucón es: Donde J es el determnante jacobano del sstema es: u v J u v v u u v J u v v u J

15 MÉTODO DE NEWTON RAPHSON EN SISTEMAS DE ECUACIONES NO LINEALES = = 0 teracón u v u u v v Jacobano E E E = = 3

16 MÉTODO DE NEWTON RAPHSON EN SISTEMAS DE ECUACIONES NO LINEALES Sstema de ecuacones lneales por el método de Newton Raphson teracones convergenca

17 Teoría de sstemas de Ecuacones No lneales La forma general de un sstema de ecuacones no lneales es: f (, 3,, n ) = 0 f (, 3,, n ) = 0 f 3 (, 3,, n ) = 0... f n (, 3,, n ) = 0 Defnendo una funcón F F(, 3,, n ) = [f (, 3,, n ),f (, 3,, n ), f 3 (, 3,, n ), f n (, 3,, n )] Usando una notacon vectoral para representar las varables X,X,,Xn ). El sstema puede representarse por F()=0 La solucón a este sstema es el vector X=[, 3,, n ] que hace que smultaneamente todas las ecuacones sean gual a 0.

18 Teoría de sstemas de Ecuacones No lneales Métodos de Solucón : Método de Iteracón de Punto Fjo para sstemas de ecuacones no lneales (Método de punto fjo mult varable). Método de Newton para sstemas de ecuacones no lneales.

19 Método de Iteracón de Punto fjo para sstemas de Ecuacones no Lneales Anterormente se desarrollo el método de teracón de punto fjo para resolver la ecuacón f()=0 transforma ndo esta ecuacón en una ecuacón de la forma = g(), usando el crtero de convergenca g () < en el ntervalo [,] donde g() pertenece [,] para que pertenece a [,]

20 Método de Iteracón de Punto fjo para sstemas de Ecuacones no Lneales Para el caso de un conjunto de ecuacones No lneales utlzaremos un procedmento smlar etendéndolo a todas las ecuacones, usando un crtero de convergenca: Una condcón sufcente aunque no necesara, para asegurar la convergenca es que g g g g M ; M ; Para todos los puntos (,) de la regón del plano que contene todos los valores ( k, k ) la raíz buscada.

21 Método de Iteracón de Punto fjo para sstemas de Ecuacones no Lneales Ejemplo Encuentre una solucón del sstema de ecuacones no lneales Solucón Con el despeje de X del termno (-0X ) en la prmera ecuacón de X del termno de (-0X ) en la segunda ecuacón resulta. X =(X +X + 8 )/ 0 X =(X X +X + 8 ) / 0 0 ), ( 0 ), ( f f

22 Por medo de Iteracón por desplazamentos smultáneos k+ = g ( k, k ) k+ = g ( k, k ) Con los valores ncales 0 =0, 0 = 0 se nca el proceso Prmera teracón X =( )/0=0.8 X =(0(0) ) / 0 = 0.8

23 Segunda teracón X =((0.8) +(0.8) + 8)/ 0 = 0.98 X =(0.8(0.8) ) / 0 = 0.93 Al contnuar el proceso teratvo, se encuentra la sguente sucesón de valores k X k X k

24 k X k X k

25 Cualquera que sea el sstema que se va a resolver con este método, puede aumentarse la velocdad de convergenca usando desplazamentos sucesvos en lugar de los desplazamentos smultáneos es decr se tera medante k+ = g ( k, k ) k+ = g ( k+, k ) Como en el caso lneal (Jacob Gauss-Sedel), s la teracón por desplazamentos smultáneos dverge generalmente el método por desplazamentos sucesvos dvergría mas rápdo; es decr se detecta mas rapdo la dvergenca, por lo que en general se re comenda el uso de desplazamentos sucesvos en lugar de desplazamentos smultáneos.

26 Resuelva el sstema del ejemplo anteror utlzando el método de punto fjo para sstemas no lneales con desplazamentos sucesvos. 0 ), ( 0 ), ( f f Problema Propuesto

27 Método de Newton para sstemas de ecuacones no lneales Todas las ecuacones deben de ser cero en las raíces Se defne la matrz J() como: J() = f, f, f, f, f, f n n, f n, f n, fn..., n

28 Método de Newton para sstemas de ecuacones no lneales Entonces podemos escrbr F()+X J()=X + J() Dvdendo J() reacomodando: X += X -J() - F() Esta es la Ecuacón de Newton para sstemas No Lneales Puesto que en cada teracón se tene que calcular la nversa de la matrz J() esto mplca un consderable esfuerzo de cálculo, para evtar este paso se utlza el artfco de encon trar un vector Y que satsfaga J()Y= -F()

29 Método de Newton para sstemas de ecuacones no lneales Se establece un esquema teratvo donde cada nueva apromacon se obtene como: X (k+) = + (k) Al resolver el sstema tomando como valores ncales (, )=(0,0) se tene: J()(, )=

30 Un sstema de ecuacones no lneales con dos ncógntas u (, ) 0 0 v(, ) Así la solucón de este sstema son los valores de (, ) que hacen a las funcones u v guales a cero. Para resolver estas ecuacones se utlzan etensones de los métodos abertos antes vstos.

31 Resolucón del sstema de ecuacones no lneales Utlzando la teracón de punto fjo. La apromacón de la teracón de punto fjo, vsta anterormente, se puede modfcar para resolver dos ecuacones smultáneas no lneales Las modfcacones las desventajas de este método se lustra en el sguente ejemplo.

32 u(, ) v(, ) Ejemplo Sstema de ecuacones no lneales. Valores ncales =.5 =3.5. La solucón es = =3 Solucón Con base en los valores ncales 0 (.5 ) (.49 ) (3.5) La apromacón dverge, pero s se camba la formulacón, los resultados dferen.

33 º º Iteracón Iteracón Evaluando. % 3.96 % a a E E 0.55%.0% t t E E Como se observa en esta ocasón la apromacón no dverge.

34 Resolucón del sstema de ecuacones no lneales v v v v u u u u ) ( ) ( ) ( ) ( ) ( ) ( ' f f Utlzando Newton-Raphson. Este cálculo se basa en la epansón de la sere de Talor de prmer orden con ella se obtene la ecuacón para este método. La sere de Talor de prmer orden para el caso de dos varables. ) ( ) ( ) ( ) ( ' f f f

35 v u v u v u u v v u v u u v v u Por medo de manpulacón matemátca la regla de Cramer. El denomnador de ambas ecuacones es conocdo como el determnante Jacobano del sstema.

36 ), ( 0 0 ), ( v u 3.5 6(.5)(3.5) (3.5) (.5) v v u u Solucón. El Jacobano para la prmera teracón (.5)(36.75) 6.5)(3.5) (

37 Evaluando en las funcones. u v 0 0 (.5).5(3.5) (.5)(3.5) (3.5).65(.5) (6.5) (.5)(36.75) Iteracón Varable Valor Error Apro Error True,9986,87% 0,07% 3,007 5,9% 0,09% 0,07% 0% 3 3 0,09% 0%

38 Escalar f (,,..., ) f (,,..., ) f (,,..., ) n Vectoral n n n Notacón f : IR n IR (,..., ) f (,..., ) n n n n F: IR IR F ( ) 0 (,..., n) ( f( ),... fn( ))

39 Resolucón teratva (0) estmacón ncal de la solucón Iteracones: (), (),, (k) Crtero de convergenca (k+) (k) < tol Crtero de parada k > mater

40 Esquema del algortmo Entrada: f, 0, tol, mater Proceso Incalzar ncr, ter Mentras ncr > tol & ter < mater Obtener ncr = norm( 0 ) Actualzar 0, ter Salda:, ter, ncr S ncr > tol no converge

41 Método de Punto Fjo Punto fjo Estmacón ncal F ( ) 0 G ( ) Iteracones ( 0) ( 0) ( 0) (,..., n ) Crtero de parada G k ( ) ( k) ( ) ( k) ( k) tol

42 Algortmo de Punto Fjo functon [,ter,ncr] = pfjo(g,0,tol, mater) ter = 0; ncr = tol + ; whle ncr > tol & ter < mater = feval(g,0); ncr = norm( - 0); ter = ter + ; 0 = ; end f ncr > tol, dsp( No converge ), end

43 Ejemplo Sstema no lneal 3 cos( 3) 0 8( 0. ) sen( e 03 0 / 3 0 Problema de Punto Fjo cos( 3) / sen e 3 0 ( ) / 6

44 Punto Fjo con desplazamentos smultáneos ( k) ( k) ( k) cos( 3 ) / 3 6 ( k) k ( ) ( k) 9 sen ( k) ( k) ( k) 3 0 ep / 6 Punto Fjo con desplazamentos sucesvos ( k) ( k) ( k) cos( 3 ) / 3 6 ( k) k ( ) ( k) 9 sen ( k) ( k) ( k) 3 0 ep / 6

45 Códgo de la funcón functon =f() % Funcón para el método de punto % fjo con desplazamentos smultáneos () = cos(()*(3))/3 + /6; () = sqrt(()^+sn((3))+.06)/9-0.; (3) = (-ep(-()*()))/0 - p/6;

46 Ejemplo : Desp. smultáneos Iter (k) (k) (k) E E

47 Códgo de la funcón functon =f() % Funcón para el método de punto % fjo con desplazamentos sucesvos () = cos(()*(3))/3 + /6; () = sqrt(()^+sn((3))+.06)/9-0.; (3) = (-ep(-()*()))/0 - p/6;

48 Ejemplo : Desp. sucesvos Iter (k) (k) (k) E E

49 Método de Newton Sstema de ecuacones n n F: IR IR F ( ) 0 (,..., n) ( f( ),... fn( )) Apromacón por el plano tangente ( 0) ( 0) ( 0) F ( ) F ( ) DF ( ) ( ) Paso de Newton ( ) ( 0) ( 0) ( 0) DF( ) F( )

50 Algortmo de Newton functon [,ter,ncr] = newton(f,,tol, m ater) ter = 0; ncr = tol+; whle ncr > tol & ter < mater [f,df] = feval(f,); delta = - df \ f; ncr = norm(delta); ter = ter+; = + delta; end f ncr>tol, dsp( No converge ), end El archvo f.m evalúa la funcón el jacobano

51 Método de Newton. Ejemplo Sstema Estmacón ncal 0 0 Sol:, , 3 Prmera teracón

52 Resultados Newton Ejemplo k

53 Método de Newton. Ejemplo 3 Sstema no lneal 3 cos( 3) 0 8( 0. ) sen( e 03 0 / 3 0 Jacobana DF( ) 3 sen( ) sen( ) ( 0. ) cos( 3) e e 0

54 Resultados Newton. Ejemplo 3 k E E E E

55 Varantes de Newton (Ejercco...) Actualzacón peródca del Jacobano Apromacón del Jacobano por dferencas dvddas Newton con desplazamento undmensonal

56 Métodos cas-newton Idea de la secante No usa las dervadas parcales Convergenca superlneal Formulacón matrcal f '( () ) a () f () f ( a () ) f ( 0 0 ) DF( () () ) () A A F( () )

57 Método de Broden ) (k (k) k ) (k (k) k T k k k k k k k (k) k (k) ) (k s ) F( ) F( s s ) s A ( A A ) F( A Iterar sendo

58 Actualzacón de la nversa A A A s s s A s A s A s A k k k k k k k k k k k k k k k k k ( ) ( ),,... T T T

59 Algortmo de Broden Entrada 0,tol, mater Inco M: Inversa del Jacobano en 0 = 0 M*F( 0 ) ncr, ter Iteracones: k =,,... Actualzar M % A k- - A k - k+ = k M*F( k )

60 Actualzacón de M w = v; % F( k ) v = F(); % F del terado actual = v w; % F( k ) F( k ) z = M*; % A - k * k p = s' *z; % (s k - k- ) T * A - k * k q = s' *M; % s T k * A - k R = (s+z)*q/p; % Transformacón rango M = M+R; % Inversa nueva: A - k s = M*v; % Paso de Broden: s k+

61 Algortmo de Broden % Inco v = F( 0 ) M = nv(df( 0 )) % Inversa Jacobano s = M*v; = 0 +s; % Paso de Newton ncr = norm(s); whle ncr > tol w = v; % F((k)) v = F(); = vw; % F((k)) F((k)) z = M*; % nv(a(k))*(k) p = s' *z; q = s' *M; % s(k)'*nv(a(k) R = (s+z)*q/p; M = M+R; % nversa de A(k) s = M*v; = +s; % Paso de Broden ncr = norm(s); end

62 Resultados de Broden. Ejemplo k

63 Alternatvas al prmer paso Estmar el Jacobano por dferencas dvddas Estmacón undmensonal del Jacobano A dag((f( ) F( ))./( )) 0 0 0

64 Conclusones Una sera desventaja de la teracón es que la convergenca depende de la manera en que se formula la ecuacón El método Newton Raphson para dos ecuacones se puede generalzar para resolver n ecuacones smultáneas.

65

66

67

68 Muchas Gracas

METODOS NUMERICOS CATEDRA 0 6. Ingeniería Civil ING.CRISTIANCASTROP. Facultad de Ingeniería de Minas, Geología y Civil

METODOS NUMERICOS CATEDRA 0 6. Ingeniería Civil ING.CRISTIANCASTROP. Facultad de Ingeniería de Minas, Geología y Civil CATEDRA 0 6 Facultad de Ingenería de Mnas, Geología Cvl Departamento académco de ngenería de mnas cvl METODOS NUMERICOS Ingenería Cvl ING.CRISTIANCASTROP. Captulo VI Sstema de Ecuacones Algebracas No Lneales

Más detalles

En general puede representarse por : Clase 6 3

En general puede representarse por : Clase 6 3 Encontrar raíces de uncones es uno de los problemas más comunes en ngenería Los métodos numércos para encontrar raíces de uncones son utlzados cuando las técncas analítcas no pueden ser aplcadas. Esto

Más detalles

Métodos Matemá5cos en la Ingeniería Tema 1. Ecuaciones no lineales

Métodos Matemá5cos en la Ingeniería Tema 1. Ecuaciones no lineales Métodos Matemá5cos en la Ingenería Tema. Ecuacones no lneales Jesús Fernández Fernández Carmen María Sordo García DEPARTAMENTO DE MATEMÁTICA APLICADA Y CIENCIAS DE LA COMPUTACIÓN UNIVERSIDAD DE CANTABRIA

Más detalles

VII. Solución numérica de ecuaciones diferenciales

VII. Solución numérica de ecuaciones diferenciales VII. Solucón numérca de ecuacones derencales VII. Antecedentes Sea dv dt una ecuacón derencal de prmer orden : g c m son constantes v es una varable dependente t es una varable ndependente c g v I m Las

Más detalles

Raices de Funciones : Solución de ecuaciones no lineales. Jorge Eduardo Ortiz Triviño

Raices de Funciones : Solución de ecuaciones no lineales. Jorge Eduardo Ortiz Triviño Races de Funcones : Solucón de ecuacones no lneales Jorge Eduardo Ortz Trvño jeortzt@unal.edu.co http://www.docentes.unal.edu.co/jeortzt/ y Motvacón La ormula cuadrátca: b b 4ac a Se usa para resolver:

Más detalles

ICI3140 Métodos Numéricos. Profesor : Dr. Héctor Allende-Cid

ICI3140 Métodos Numéricos. Profesor : Dr. Héctor Allende-Cid ICI3140 Métodos Numércos Proesor : Dr. Héctor Allende-Cd e-mal : hector.allende@ucv.cl Proyecto Tópcos: Numercal Optmzaton Mínmos Cuadrados Numercal Lnear Algebra: SVD QR NMF Dmensonalty Reducton PCA ICA

Más detalles

EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. x x0 y y0. Deducir la fórmula para el polinomio de Lagrange de grado a lo más uno que Interpola la tabla.

EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. x x0 y y0. Deducir la fórmula para el polinomio de Lagrange de grado a lo más uno que Interpola la tabla. EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. Consdere la sguente tabla, donde 0 : 0 y y0 y Deducr la fórmula para el polnomo de Lagrange de grado a lo más uno que Interpola la tabla.. Consdere la sguente

Más detalles

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 17 de febrero de

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 17 de febrero de Matemátcas II Segundo Curso, Grado en Ingenería Electrónca Industral y Automátca Grado en Ingenería Eléctrca 7 de febrero de 0. Conteste las sguentes cuestones: Ã! 0 (a) (0.5 ptos.) Escrba en forma bnómca

Más detalles

Práctica 4ª: RESOLUCIÓN DE SISTEMAS LINEALES. METODOS ITERATIVOS.

Práctica 4ª: RESOLUCIÓN DE SISTEMAS LINEALES. METODOS ITERATIVOS. practca4srnb Apelldos Nombre: Práctca 4ª: RESOLUCIÓN DE SISTEMAS LINEALES METODOS ITERATIVOS Normas vectorales normas matrcales Número de condcón de una matr Cuando se construe una sucesón de vectores

Más detalles

ECUACIONES DIFERENCIALES ELÍPTICAS EN DERIVADAS PARCIALES. Armando Blanco A.

ECUACIONES DIFERENCIALES ELÍPTICAS EN DERIVADAS PARCIALES. Armando Blanco A. ECUACIONES DIFERENCIALES ELÍPICAS EN DERIVADAS PARCIALES Armando Blanco A. Captulo V ECUACIONES DIFERENCIALES ELÍPICAS EN DERIVADAS PARCIALES Introduccón Dferencas fntas Métodos de relaacón sucesva Métodos

Más detalles

Simulación y Optimización de Procesos Químicos. Titulación: Ingeniería Química. 5º Curso Optimización.

Simulación y Optimización de Procesos Químicos. Titulación: Ingeniería Química. 5º Curso Optimización. Smulacón y Optmzacón de Procesos Químcos Ttulacón: Ingenería Químca. 5º Curso Optmzacón. Programacón Cuadrátca Métodos de Penalzacón Programacón Cuadrátca Sucesva Gradente Reducdo Octubre de 009. Programacón

Más detalles

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA . El Método de Dferencas Fntas El Método consste en una aproxmacón de las dervadas parcales por expresones algebracas con los valores de

Más detalles

SISTEMAS DE ECUACIONES DIFERENCIALES

SISTEMAS DE ECUACIONES DIFERENCIALES DIVISIÓN DE CIENCIAS FÍSICAS Y MATEMÁTICAS DTO. TERMODINÁMICA Y FENÓMENOS DE TRANSFERENCIA MÉTODOS AROXIMADOS EN ING. QUÍMICA TF-33 SISTEMAS DE ECUACIONES DIFERENCIALES Esta guía fue elaborada por: rof.

Más detalles

Sistemas Lineales de Masas-Resortes 2D

Sistemas Lineales de Masas-Resortes 2D Sstemas neales de Masas-Resortes D José Cortés Pareo. Novembre 7 Un Sstema neal de Masas-Resortes está consttudo por una sucesón de puntos (de ahí lo de lneal undos cada uno con el sguente por un resorte

Más detalles

5 Métodos iterativos para la resolución de ecuaciones algebraicas lineales Método de Gauss-Jacobi Método de Gauss-Seidel...

5 Métodos iterativos para la resolución de ecuaciones algebraicas lineales Método de Gauss-Jacobi Método de Gauss-Seidel... CONTENIDO 5 Métodos teratvos para la resolucón de ecuacones algebracas lneales 95 5.1 Método de Gauss-Jacob................................ 95 5.2 Método de Gauss-Sedel................................

Más detalles

ECUACIONES DIFERENCIALES Problemas de Valor Inicial

ECUACIONES DIFERENCIALES Problemas de Valor Inicial DIVISIÓN DE IENIAS FÍSIAS Y MATEMÁTIAS DTO. TERMODINÁMIA Y FENÓMENOS DE TRANSFERENIA MÉTODOS AROXIMADOS EN ING. QUÍMIA TF-33 EUAIONES DIFERENIALES roblemas de Valor Incal Esta guía fue elaborada por: rof.

Más detalles

Objetivos El alumno conocerá y aplicará diversas técnicas de derivación e integración numérica. Al final de esta práctica el alumno podrá:

Objetivos El alumno conocerá y aplicará diversas técnicas de derivación e integración numérica. Al final de esta práctica el alumno podrá: Objetvos El alumno conocerá y aplcará dversas técncas de dervacón e ntegracón numérca. Al fnal de esta práctca el alumno podrá:. Resolver ejerccos que contengan dervadas e ntegrales, por medo de métodos

Más detalles

Unidad 6-. Números complejos 1

Unidad 6-. Números complejos 1 Undad -. Números complejos ACTIVIDADES FINALES EJERCICIOS Y PROBLEMAS Efectúa las sguentes operacones: aa (-(-(- aa (-(-(- cc ( -(-( bb ( ( - - (- 7 dd ( - - (- / ( - ( ( (. ( Sumamos algebracamente por

Más detalles

EDO: Ecuación Diferencial Ordinaria Soluciones numéricas. Jorge Eduardo Ortiz Triviño

EDO: Ecuación Diferencial Ordinaria Soluciones numéricas. Jorge Eduardo Ortiz Triviño EDO: Ecuacón Dferencal Ordnara Solucones numércas Jorge Eduardo Ortz Trvño Organzacón general Errores en los cálculos numércos Raíces de ecuacones no-lneales Sstemas de ecuacones lneales Interpolacón ajuste

Más detalles

Clase 19: Estado Estacionario y Flujo de Potencia. EL Conversión de la Energía y Sistemas Eléctricos Eduardo Zamora D.

Clase 19: Estado Estacionario y Flujo de Potencia. EL Conversión de la Energía y Sistemas Eléctricos Eduardo Zamora D. Clase 9: Estado Estaconaro y Flujo de Potenca EL400 - Conversón de la Energía y Sstemas Eléctrcos Eduardo Zamora D. Temas - Líneas de Transmsón - El Sstema Eléctrco - Matrz de Admtanca - Flujo de Potenca

Más detalles

MAGNITUD: propiedad o cualidad física susceptible de ser medida y cuantificada. Ejemplos: longitud, superficie, volumen, tiempo, velocidad, etc.

MAGNITUD: propiedad o cualidad física susceptible de ser medida y cuantificada. Ejemplos: longitud, superficie, volumen, tiempo, velocidad, etc. TEMA. INSTRUMENTOS FÍSICO-MATEMÁTICOS.. SISTEMAS DE MAGNITUDES Y UNIDADES. CONVERSIÓN DE UNIDADES. MAGNITUD: propedad o cualdad físca susceptble de ser medda y cuantfcada. Ejemplos: longtud, superfce,

Más detalles

Problemas de Condiciones de Contorno para Ecuaciones Diferenciales Ordinarias

Problemas de Condiciones de Contorno para Ecuaciones Diferenciales Ordinarias Problemas de Condcones de Contorno para Ecuacones Dferencales Ordnaras Segundo curso Grado en Físca Índce Introduccón Métodos de dsparo Método de dsparo para resolver problemas de ODE con condcones de

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERIA P.A FACULTAD DE INGENIERIA MECANICA 27/07/2013 DACIBAHCC EXAMEN SUSTITUTORIO DE METODOS NUMERICOS (MB536)

UNIVERSIDAD NACIONAL DE INGENIERIA P.A FACULTAD DE INGENIERIA MECANICA 27/07/2013 DACIBAHCC EXAMEN SUSTITUTORIO DE METODOS NUMERICOS (MB536) UNIVERSIDAD NACIONAL DE INGENIERIA P.A. - ACULTAD DE INGENIERIA MECANICA 7/7/ Problema EXAMEN SUSTITUTORIO DE METODOS NUMERICOS (MB5 SOLO SE PERMITE EL USO DE UNA HOA DE ORMULARIO Y CALCULADORA ESCRIBA

Más detalles

Clase 19: Estado Estacionario y Flujo de Potencia. EL Conversión de la Energía y Sistemas Eléctricos Eduardo Zamora D.

Clase 19: Estado Estacionario y Flujo de Potencia. EL Conversión de la Energía y Sistemas Eléctricos Eduardo Zamora D. Clase 9: Estado Estaconaro y Flujo de Potenca EL400 - Conversón de la Energía y Sstemas Eléctrcos Eduardo Zamora D. Temas - Líneas de Transmsón - El Sstema Eléctrco - Matrz de Admtanca - Flujo de Potenca

Más detalles

RESOLUCION DE ECUACIONES NO-LINEALES

RESOLUCION DE ECUACIONES NO-LINEALES Tema 3: Resolucón de ecuacones no lneales TEMA 3. RESOLUCION DE ECUACIONES NO-LINEALES 1. Introduccón. Nomenclatura 3. Resolucón de una únca ecuacón de la forma =F() 4. Resolucón de una únca ecuacón de

Más detalles

Laboratorio Mat Análisis Numérico QUINTA SESIÓN

Laboratorio Mat Análisis Numérico QUINTA SESIÓN Laboratoro de Computacón para las Aplcacones de la Matemátca en Ingenería Laboratoro Mat 270 - Análss Numérco QUINTA SESIÓN Sstemas Lneales : Métodos Iteratvos Semana del Lunes 07 al 11 de Mayo del 2018

Más detalles

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004)

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004) FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Xménez & San Martín, 004) Capítulo. Nocones báscas de álgebra de matrces Fe de erratas.. Cálculo de la transpuesta de una matrz

Más detalles

APLICACIONES DE LOS SISTEMAS LINEALES 1. MODELACION DE POLINOMIOS CONOCIENDO UN NUMERO DETERMINADO DE PUNTOS DEL PLANO.

APLICACIONES DE LOS SISTEMAS LINEALES 1. MODELACION DE POLINOMIOS CONOCIENDO UN NUMERO DETERMINADO DE PUNTOS DEL PLANO. APLICACIONES DE LOS SISTEMAS LINEALES 1. MODELACION DE POLINOMIOS CONOCIENDO UN NUMERO DETERMINADO DE PUNTOS DEL PLANO. Dado un numero n de puntos del plano ( a, b ) es posble encontrar una funcón polnómca

Más detalles

CAPÍTULO 4 MARCO TEÓRICO

CAPÍTULO 4 MARCO TEÓRICO CAPÍTULO 4 MARCO TEÓRICO Cabe menconar que durante el proceso de medcón, la precsón y la exacttud de cualquer magntud físca está lmtada. Esta lmtacón se debe a que las medcones físcas sempre contenen errores.

Más detalles

ANEXO A: Método de Interpolación de Cokriging Colocado

ANEXO A: Método de Interpolación de Cokriging Colocado ANEXO A: Método de Interpolacón de Corgng Colocado A. Conceptos Báscos de Geoestadístca Multvarada La estmacón conunta de varables aleatoras regonalzadas, más comúnmente conocda como Corgng (Krgng Conunto),

Más detalles

TEMA 5. INTERPOLACION

TEMA 5. INTERPOLACION TEMA 5.. Introduccón. Nomenclatura. Interpolacón lneal 4. Interpolacón cuadrátca 5. Interpolacón por splnes cúbcos 6. RESUMEN 7. Programacón en Matlab INTERPOLACION . Introduccón En el Tema 4, se ha descrto

Más detalles

TEMA 5. INTERPOLACION

TEMA 5. INTERPOLACION Tema 5: Interpolacón TEM 5. INTERPOLCION. Introduccón. Nomenclatura. Interpolacón lneal 4. Interpolacón cuadrátca 5. Interpolacón por splnes cúbcos. RESUMEN 7. Programacón en Matlab Cálculo numérco en

Más detalles

UNIVERSIDAD TECNOLOGICA NACIONAL - FACULTAD REGIONAL ROSARIO Departamento de Ingeniería Química. Cátedra: Integración IV

UNIVERSIDAD TECNOLOGICA NACIONAL - FACULTAD REGIONAL ROSARIO Departamento de Ingeniería Química. Cátedra: Integración IV UNIVERSIDAD TECNOOGICA NACIONA - ACUTAD REGIONA ROSARIO Departamento de Ingenería Químca Cátedra: Integracón IV Tema: Smulacón de Evaporadores lash Alumnos: Damán Match, Marcos Boss y Juan M. Pgnan Profesores:

Más detalles

5. PROGRAMAS BASADOS EN RELACIONES DE RECURRENCIA.

5. PROGRAMAS BASADOS EN RELACIONES DE RECURRENCIA. Programacón en Pascal 5. PROGRAMAS BASADOS EN RELACIONES DE RECURRENCIA. Exsten numerosas stuacones que pueden representarse medante relacones de recurrenca; entre ellas menconamos las secuencas y las

Más detalles

Nuevo método de aproximaciones sucesivas para obtención de raíces de polinomios

Nuevo método de aproximaciones sucesivas para obtención de raíces de polinomios Nuevo método de apromacones sucesvas para obtencón de raíces de polnomos Roberto Elzondo Vllarreal A, Vrglo A. González A,B, Ramón Cantú Cuéllar A A FIME-UANL B CIIDIT-UANL roelzon@hotmal.com, vrgonzal@gmal.com,

Más detalles

ÁLGEBRA LINEAL. Tarea 1. Nombre: Fecha:

ÁLGEBRA LINEAL. Tarea 1. Nombre: Fecha: ÁLGEBRA LINEAL Tarea. Investque a) Defncón de vector b) Operacones de vectores c) Defncón de matr d) Operacones de matrces e) Defncón de matr traspuesta Bblografía: ÁLGEBRA LINEAL Tarea. a) Investque )

Más detalles

75.12 ANÁLISIS NUMÉRICO I GUÍA DE PROBLEMAS INTEGRACIÓN

75.12 ANÁLISIS NUMÉRICO I GUÍA DE PROBLEMAS INTEGRACIÓN Análss Numérco Facultad de ngenería - UBA 75. ANÁLSS NUMÉRCO FACULTAD DE NGENERÍA UNVERSDAD DE BUENOS ARES GUÍA DE PROBLEMAS 4 6. NTEGRACÓN. Calcular la sguente ntegral utlzando las fórmulas del trapeco

Más detalles

INTRODUCCIÓN AL MÉTODO DE LOS ELEMENTOS FINITOS: UN ENFOQUE MATEMÁTICO

INTRODUCCIÓN AL MÉTODO DE LOS ELEMENTOS FINITOS: UN ENFOQUE MATEMÁTICO MEF para problemas do orden Problema undmensonal INTRODUCCIÓN AL MÉTODO DE LOS ELEMENTOS FINITOS: UN ENFOQUE MATEMÁTICO Govann Calderón y Rodolfo Gallo Grupo Cencas de la Computacón Departamento de Matemátcas

Más detalles

315 M/R Versión 1 Integral 1/ /1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA

315 M/R Versión 1 Integral 1/ /1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA 35 M/R Versón Integral / 28/ UNIVERSIDAD NACIONAL AIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA ASIGNATURA: Investgacón de Operacones I CÓDIGO: 35 MOMENTO: Prueba Integral FECHA DE

Más detalles

6.9 El trazador cúbico

6.9 El trazador cúbico 4.9 El trazador cúbco El polnomo de nterpolacón es útl s se usan pocos datos y que además tengan un comportamento polnomal, así su representacón es un polnomo de grado bajo y adecuado. S no se cumplen

Más detalles

Algoritmos matemáticos para:

Algoritmos matemáticos para: Algortmos matemátcos para: sstemas de ecuacones lneales, nversón de matrces y mínmos cuadrados Jose Agular Inversón de matrces Defncón(Inversadeunamatrz):SeaAunamatrz nxn.unamatrzcde nxn esunanversadeascaaci.

Más detalles

OCW-V.Muto Técnicas iterativas para resolver sistemas lineales Cap. XVII CAPITULO XVII. TECNICAS ITERATIVAS PARA RESOLVER SISTEMAS LINEALES

OCW-V.Muto Técnicas iterativas para resolver sistemas lineales Cap. XVII CAPITULO XVII. TECNICAS ITERATIVAS PARA RESOLVER SISTEMAS LINEALES CAPITULO XVII. TECNICAS ITERATIVAS PARA RESOLVER SISTEMAS LINEALES. INTRODUCCION Y METODO Una técnca teratva para resolver un sstema lneal A x = b de n n empeza con una aproxmacón ncal x (0) a la solucón

Más detalles

Estimación no lineal del estado y los parámetros

Estimación no lineal del estado y los parámetros Parte III Estmacón no lneal del estado y los parámetros 1. Estmacón recursva El ltro de Kalman extenddo 12 es una técnca muy utlzada para la la estmacón recursva del estado de sstemas no lneales en presenca

Más detalles

l i-1,j vij Etapa i lij

l i-1,j vij Etapa i lij UIVERSIDAD TECOLOGICA ACIOAL -ACULTAD REGIOAL ROSARIO Departamento de Ingenería Químca Cátedra: Integracón IV Tema: Modelado de Equpos de Separacón Multcomponente en Cascadas Contracorrente Múltple Etapa

Más detalles

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD 10. VIBRACIONES EN SISEMAS CON N GRADOS DE LIBERAD 10.1. Matrces de rgdez, nerca y amortguamento Se puede demostrar que las ecuacones lneales del movmento de un sstema dscreto de N grados de lbertad sometdo

Más detalles

Gráficos de flujo de señal

Gráficos de flujo de señal Gráfcos de flujo de señal l dagrama de bloques es útl para la representacón gráfca de sstemas de control dnámco y se utlza extensamente en el análss y dseño de sstemas de control. Otro procedmento alternatvo

Más detalles

Universidad Simón Bolívar Conversión de Energía Eléctrica - Prof. José Manuel Aller

Universidad Simón Bolívar Conversión de Energía Eléctrica - Prof. José Manuel Aller Unversdad Smón Bolívar Conversón de Energía Eléctrca Prof José anuel Aller 41 Defncones báscas En este capítulo se estuda el comportamento de los crcutos acoplados magnétcamente, fjos en el espaco El medo

Más detalles

Modelado de un Robot Industrial KR-5

Modelado de un Robot Industrial KR-5 RESUMEN Modelado de un Robot Industral KR-5 (1) Eduardo Hernández 1, Samuel Campos 1, Jorge Gudno 1, Janeth A. Alcalá 1 (1) Facultad de Ingenería Electromecánca, Unversdad de Colma, km 2 Carretera Manzanllo-Barra

Más detalles

Utilizar sumatorias para aproximar el área bajo una curva

Utilizar sumatorias para aproximar el área bajo una curva Cálculo I: Guía del Estudante Leccón 5 Apromacón del área bajo la curva Leccón 5: Apromacón del área bajo una curva Objetvo: Utlzar sumatoras para apromar el área bajo una curva Referencas: Stewart: Seccón

Más detalles

Aspectos fundamentales en el análisis de asociación

Aspectos fundamentales en el análisis de asociación Carrera: Ingenería de Almentos Perodo: BR01 Docente: Lc. María V. León Asgnatura: Estadístca II Seccón A Análss de Regresón y Correlacón Lneal Smple Poblacones bvarantes Una poblacón b-varante contene

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

Ecuaciones diferenciales ordinarias

Ecuaciones diferenciales ordinarias Ecuacones derencales ordnaras Motvacón Las ecuacones que se componen de una uncón desconocda de sus dervadas son llamadas ECUACIONES DIFERENCIALES ales ecuacones desempeñan un papel mportante en ngenería

Más detalles

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso CURSO ITERACIOAL: COSTRUCCIÓ DE ESCEARIOS ECOÓMICOS ECOOMETRÍA AVAZADA Instructor: Horaco Catalán Alonso Modelo de Regresón Lneal Smple El modelo de regresón lneal representa un marco metodológco, que

Más detalles

Generación de e Modelos 3D a Partir de e Datos de e Rango de e Vistas Parciales.

Generación de e Modelos 3D a Partir de e Datos de e Rango de e Vistas Parciales. Generacón de e Modelos 3D a Partr de e Datos de e Rango de e Vstas Parcales. Santago Salamanca Mño Escuela de Ingenerías Industrales Unversdad de Extremadura (UNED, UCLM, UEX) Introduccón (I) Qué es un

Más detalles

17/02/2015. Ángel Serrano Sánchez de León

17/02/2015. Ángel Serrano Sánchez de León Ángel Serrano Sánchez de León 1 Índce Introduccón Varables estadístcas Dstrbucones esde frecuencas c Introduccón a la representacón gráfca de datos Meddas de tendenca central: meda (artmétca, geométrca,

Más detalles

OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls. Examen Final

OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls. Examen Final OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls Examen Fnal Pregunta ( punto) Responda brevemente a las sguentes preguntas: a) Cuál es el obetvo en el aprendzae del Perceptron

Más detalles

CAPÍTULO 5 MÉTODO DE LA FUNCIÓN ELÍPTICA DE JACOBI

CAPÍTULO 5 MÉTODO DE LA FUNCIÓN ELÍPTICA DE JACOBI CAPÍTULO 5: MÉTODO DE LA FUNCIÓN ELÍPTICA DE JACOBI 57 CAPÍTULO 5 MÉTODO DE LA FUNCIÓN ELÍPTICA DE JACOBI 5. Resumen Se busca solucón a las ecuacones acopladas que descrben los perfles de onda medante

Más detalles

x j x 1,,x n, j 1,,n La condición necesaria y suficiente es que el determinante Jacobiano de la transformación no se anule,

x j x 1,,x n, j 1,,n La condición necesaria y suficiente es que el determinante Jacobiano de la transformación no se anule, Mecánca Cambo de Coordenadas En coordenadas Cartesanas estamos acostumbrados a pensar a los vectores base como versores (vectores de norma 1 o untaros) drgdos a lo largo de los correspondentes ejes, en

Más detalles

IDENTIFICACIÓN Y MODELADO DE PLANTAS DE ENERGÍA SOLAR

IDENTIFICACIÓN Y MODELADO DE PLANTAS DE ENERGÍA SOLAR IDENTIFICACIÓN Y MODELADO DE PLANTAS DE ENERGÍA SOLAR En esta práctca se llevará a cabo un estudo de modelado y smulacón tomando como base el ntercambador de calor que se ha analzado en el módulo de teoría.

Más detalles

. Demuestre que: f x

. Demuestre que: f x UNIVERSIDAD NACIONAL DE INGENIERIA P.A. - FACULTAD DE INGENIERIA MECANICA // EXAMEN FINAL DE METODOS NUMERICOS (MB56) SOLO SE PERMITE EL USO DE UNA HOJA DE FORMULARIO Y CALCULADORA ESCRIBA CLARAMENTE SUS

Más detalles

Vectores en el espacio

Vectores en el espacio ectores en el espaco Los puntos y los vectores en el espaco se pueden representar como ternas de números reales (a,b,c) c b a Por el Teorema de Ptagoras, la norma del vector = (a,b,c) es = a 2 +b 2 +c

Más detalles

Matemáticas Avanzadas para Ingeniería Convergencia de Series de Potencias

Matemáticas Avanzadas para Ingeniería Convergencia de Series de Potencias Mateátcas Avanzadas para Ingenería Convergenca de Seres de Potencas. Para la sere de potencas + ( + 2 + z) ( + ) = converge sólo para su centro z o = 2 + 3 y rado R = 4 Tenendo la varable z, teneos una

Más detalles

Por: Ing César Chilet León

Por: Ing César Chilet León Por: Ing César Chlet eón 1 El flujo de potenca tambén es conocdo tambén como flujo de carga. El flujo de potenca es una herramenta para el análss de redes. En tareas de planfcacón de redes Determnacón

Más detalles

UNIVERSIDAD TECNOLOGICA NACIONAL - FACULTAD REGIONAL ROSARIO Departamento de Ingeniería Química. Cátedra: Integración IV

UNIVERSIDAD TECNOLOGICA NACIONAL - FACULTAD REGIONAL ROSARIO Departamento de Ingeniería Química. Cátedra: Integración IV UNIVERSIDAD TECNOLOGICA NACIONAL - FACULTAD REGIONAL ROSARIO Departamento de Ingenería Químca Cátedra: Integracón IV Tema: Resolucón de Sstemas de Ecuacones Lneales Alumnos: Damán Match, Marcos Boss y

Más detalles

CAPITULO 3º SOLUCIÓN ECUACIÓN DE ESTADO- 01. Ing. Diego A. Patiño G. M.Sc, Ph.D.

CAPITULO 3º SOLUCIÓN ECUACIÓN DE ESTADO- 01. Ing. Diego A. Patiño G. M.Sc, Ph.D. CAPITULO 3º SOLUCIÓN ECUACIÓN DE ESTADO- 0 Ing. Dego A. Patño G. M.Sc, Ph.D. Solucón de la Ecuacón de Estado Solucón de Ecuacones de Estado Estaconaras: Para el caso estaconaro (nvarante en el tempo),

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERIA P.A FACULTAD DE INGENIERIA MECANICA 16/12/2011 DACIBAHCC EXAMEN FINAL DE METODOS NUMERICOS (MB536)

UNIVERSIDAD NACIONAL DE INGENIERIA P.A FACULTAD DE INGENIERIA MECANICA 16/12/2011 DACIBAHCC EXAMEN FINAL DE METODOS NUMERICOS (MB536) UNIVERSIDAD NACIONAL DE INGENIERIA P.A. 0- FACULTAD DE INGENIERIA MECANICA 6//0 EXAMEN FINAL DE METODOS NUMERICOS (MB536) SOLO SE PERMITE EL USO DE UNA HOJA DE FORMULARIO Y CALCULADORA ESCRIBA CLARAMENTE

Más detalles

X=f(X) SUSTITUCIÓN SUCESIVA O ITERACION DIRECTA O PUNTO FIJO ACELERACIÓN DE LA CONVERGENCIA (WEGSTEIN) F(X)=0 BISECCIÓN NEWTON-RAPHSON

X=f(X) SUSTITUCIÓN SUCESIVA O ITERACION DIRECTA O PUNTO FIJO ACELERACIÓN DE LA CONVERGENCIA (WEGSTEIN) F(X)=0 BISECCIÓN NEWTON-RAPHSON UNA UNICA ECUACIÓN X=f(X) SUSTITUCIÓN SUCESIVA O ITERACION DIRECTA O PUNTO FIJO ACELERACIÓN DE LA CONVERGENCIA (WEGSTEIN) F(X)=0 BISECCIÓN NEWTON-RAPHSON SECANTE + SECANTE MEJORADO REGULA FALSI O FALSA

Más detalles

Dpto. Física y Mecánica

Dpto. Física y Mecánica Dpto. Físca y Mecánca Mecánca analítca Introduccón Notacón Desplazamento y fuerza vrtual Fuerza de lgadura Trabao vrtual Energía cnétca. Ecuacones de Lagrange Prncpode los trabaos vrtuales Prncpo de D

Más detalles

Tema 3. Teoremas de la Teoría de Circuitos

Tema 3. Teoremas de la Teoría de Circuitos Tema 3. Teoremas de la Teoría de Crcutos 3.1 Introduccón 3. Superposcón 3.3 Transformacón de fuentes 3.4 Teorema de Theenn 3.5 Teorema de Norton 3.6 Máxma transferenca de potenca Th Th L nálss de Crcutos

Más detalles

CAPITULO 7. METODOLOGÍA DEL PLAN DE PENSIONES ALTERNATIVO. Como se explica en el capítulo 4, una anualidad es una serie de pagos que se realizan

CAPITULO 7. METODOLOGÍA DEL PLAN DE PENSIONES ALTERNATIVO. Como se explica en el capítulo 4, una anualidad es una serie de pagos que se realizan CAPITULO 7. METODOLOGÍA DEL PLAN DE PENSIONES ALTERNATIVO 7. Anualdad de Vda Como se elca en el caítulo 4, una anualdad es una sere de agos que se realzan durante un temo determnado, nombrándose a esta

Más detalles

Introducción al Método de los Elementos Finitos

Introducción al Método de los Elementos Finitos S 4 v v 5 Introduccón al Método de los Elementos Fntos Parte 4 Estmacón de error en problemas elíptcos Alberto Cardona, Víctor Facnott Cmec-Intec (UNL/Concet), Santa Fe, Argentna Estmacón de error en problemas

Más detalles

Números Complejos II. Ecuaciones

Números Complejos II. Ecuaciones Complejos 1º Bachllerato Departamento de Matemátcas http://selectvdad.ntergranada.com Raúl González Medna Ecuacones 1. Resolver las sguentes ecuacones y determnar en qué campo numérco tenen solucón: a)

Más detalles

Proposiciones. Proposiciones. Bloques de proposiciones. Proposición if. Verdadero o Falso. Diagrama de flujo if-else

Proposiciones. Proposiciones. Bloques de proposiciones. Proposición if. Verdadero o Falso. Diagrama de flujo if-else Proposcones Proposcones Maro Medna C. maromedna@udec.cl Expresones Artmétcas (b + c) De control (f ) De asgnacón (X = Y) Llamadas a funcones (prntf( )) Termnadas por un punto y coma (;) Bloques de proposcones

Más detalles

EJERCICIOS RESUELTOS VARIABLE ALEATORIA UNIDIMENSIONAL

EJERCICIOS RESUELTOS VARIABLE ALEATORIA UNIDIMENSIONAL Gestón Aeronáutca: Estadístca Teórca Facultad Cencas Económcas y Empresarales Departamento de Economía Aplcada Profesor: Santago de la Fuente Fernández EJERCICIOS RESUELTOS VARIABLE ALEATORIA UNIDIMENSIONAL

Más detalles

Resolución de sistemas lineales por métodos directos

Resolución de sistemas lineales por métodos directos Resolucón de sstemas lneales por métodos drectos Descomposcón LU S la matr del sstema Ax = b se expresa como producto de una matr trangular nferor, L, de una superor, U, la resolucón del msmo se reduce

Más detalles

ALGUNOS MODELOS DE UNA NEURONA

ALGUNOS MODELOS DE UNA NEURONA ALGUNOS MODELOS DE UNA NEURONA w 1 Μ w 2 w m ADALINE ADAptve Lnear Element Wdrow y Hoff 1960 w 1 Μ w 2 w m El Adalne x 0 x 1 x 2 Μ Μ x m con w 2 w = x = w 1 w m v b m v m = w j x j + b = j= 1 = 0 [ b w

Más detalles

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE CIENCIAS BASICAS.

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE CIENCIAS BASICAS. UNIVERSIDAD FRANCISCO DE AULA SANTANDER FACULTAD DE CIENCIAS BÁSICAS DEARTAMENTO DE CIENCIAS BASICAS. DERIVADAS ARCIALES DE ORDEN SUERIOR. S es una uncón de dos varables al dervar la uncón parcalmente

Más detalles

NÚMEROS COMPLEJOS. y sabemos que no podemos calcular raíces de números negativos en R. Para resolver este problema introduciremos el valor i = 1

NÚMEROS COMPLEJOS. y sabemos que no podemos calcular raíces de números negativos en R. Para resolver este problema introduciremos el valor i = 1 NÚMEROS COMPLEJOS 1. Qué es un número complejo? Defncones. La ecuacón x + 1 = 0 no tene solucón en el campo real puesto que s ntentamos resolverla tendremos que x = ± 1 y sabemos que no podemos calcular

Más detalles

La representación Denavit-Hartenberg

La representación Denavit-Hartenberg La representacón Denavt-Hartenberg José Cortés Parejo. Marzo 8 Se trata de un procedmeto sstemátco para descrbr la estructura cnemátca de una cadena artculada consttuda por artculacones con. un solo grado

Más detalles

PUBLICACIONES DE 4º CURSO

PUBLICACIONES DE 4º CURSO PUBLICACIONES DE 4º CURSO Grado: DERECHO-ADE Asgnatura: ECONOMERÍA Grupos: Únco ema: ESQUEMA EMA Profesores: Inmaculada Vllanúa Departamento de ANÁLISIS ECONÓMICO Curso Académco 04/5 ema : El Modelo Lneal

Más detalles

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE CIENCIAS BASICAS. DERIVADAS PARCIALES DE ORDEN SUPERIOR.

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE CIENCIAS BASICAS. DERIVADAS PARCIALES DE ORDEN SUPERIOR. UNIVERSIDAD FRANCISCO DE AULA SANTANDER FACULTAD DE CIENCIAS BÁSICAS DEARTAMENTO DE CIENCIAS BASICAS. DANIEL SAENZ CONTRERAS EMAIL SAENZCODANIEL8@HOTMAIL.COM DERIVADAS ARCIALES DE ORDEN SUERIOR. S es una

Más detalles

Circuitos eléctricos en corriente continúa. Subcircuitos equivalentes Equivalentes en Serie Equivalentes en Paralelo Equivalentes de Thevenin y Norton

Circuitos eléctricos en corriente continúa. Subcircuitos equivalentes Equivalentes en Serie Equivalentes en Paralelo Equivalentes de Thevenin y Norton ema II Crcutos eléctrcos en corrente contnúa Indce Introduccón a los crcutos resstvos Ley de Ohm Leyes de Krchhoff Ley de correntes (LCK) Ley de voltajes (LVK) Defncones adconales Subcrcutos equvalentes

Más detalles

OPERACIONES BÁSICAS. (Notas de clase) Separadores flash

OPERACIONES BÁSICAS. (Notas de clase) Separadores flash OPERACIONE BÁICA (Notas de clase eparadores flash Profesor Asocado Andrés oto Agüera Curso 2003-2004 Operacones Báscas Balances de matera y energía Caracteracón del estado de equlbro termodnámco de un

Más detalles

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio.

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio. Pág. NOTA: En todos los ejerccos se deberá justfcar la respuesta explcando el procedmento segudo en la resolucón del ejercco. CURSO 0 - CONTROL OCTUBRE 00 A contnuacón se presentan 5 preguntas con respuestas

Más detalles

SOLUCIÓN NUMÉRICA DE ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN

SOLUCIÓN NUMÉRICA DE ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN SOLUCIÓN NUMÉRICA DE ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN SOLUCION NUMERICA Una solucón de esta ecuacón ncal con CI es una funcón ϕ : ( x ε, x + ε ) R tal que 0 0 ϕ '( x) = f ( x, ϕ( x)),

Más detalles

Máximos y mínimos de una función real de dos variables reales

Máximos y mínimos de una función real de dos variables reales Mámos mínmos de una uncón real Dencón Sea D una regón del plano Sea :D R Se dce que alcanza su valor mámo absoluto M en un punto P =, ) D cuando M =, ),),) D Se dce que tene un mámo relatvo en un punto

Más detalles

EL ELEMENTO FINITO APLICADO A LAS ESTRUCTURA S METALICAS

EL ELEMENTO FINITO APLICADO A LAS ESTRUCTURA S METALICAS EL ELEMENTO FINITO APLICADO A LAS ESTRUCTURA S METALICAS ING. F. JAVIER ANAYA ESTRELLA INTRODUCCION UNA REGION COMPLEJA QUE DEFINE UN CONTINUO SE DISCRETIZA EN FORMAS GEOMETRICAS SIMPLES LLAMADAS ELEMENTOS

Más detalles

Operadores por Regiones

Operadores por Regiones Operadores por Regones Fltros por Regones Los fltros por regones ntentan determnar el cambo de valor de un píxel consderando los valores de sus vecnos I[-1,-1] I[-1] I[+1,-1] I[-1, I[ I[+1, I[-1,+1] I[+1]

Más detalles

Números Reales y Complejos

Números Reales y Complejos Apéndce C Números Reales Complejos Ejerccos resueltos Halla los números reales que cumplen la condcón a a S a 0 : a a a 0 No este solucón S a < 0 : a a a a Halla todos los números r tales que r < a) S

Más detalles

Aplicación de curvas residuo y de permeato a sistemas batch y en continuo

Aplicación de curvas residuo y de permeato a sistemas batch y en continuo Aplcacón de curvas resduo de permeato a sstemas batch en contnuo Alan Dder érez Ávla En el presente trabajo se presentara de manera breve como obtener las ecuacones que generan las curvas de resduo, de

Más detalles

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS TEMA NÚMEROS COMPLEJOS. EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS DEFINICIONES Al resolver ecuacones del tpo : x + = 0 x = ± que no tene solucón en los números reales. Los números complejos nacen del deseo

Más detalles

Perspectiva inversa para Ray Tracing

Perspectiva inversa para Ray Tracing erspectva nversa para Ray Tracng efncón de la cámara José ortés areo, Abrl 7 a cámara vrtual suele defnrse en funcón de un conunto de parámetros ntutvos: Observador unto Focal: unto de Mra: stanca Focal:

Más detalles

OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls. Preguntas y Ejercicios para Evaluación: Tema 5

OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls. Preguntas y Ejercicios para Evaluación: Tema 5 OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls Preguntas y Ejerccos para Evaluacón: Tema 5 1. Contestar brevemente a las sguentes cuestones relaconadas con las Redes de Base

Más detalles

SEMANA 13. CLASE 14. MARTES 20/09/16

SEMANA 13. CLASE 14. MARTES 20/09/16 SEMAA 3. CLASE. MARTES 20/09/6. Defncones de nterés.. Estadístca descrptva. Es la parte de la Estadístca que se encarga de reunr nformacón cuanttatva concernente a ndvduos, grupos, seres de hechos, etc..2.

Más detalles

sea un nº real. Hallar su cociente. Solución. Se multiplica numerador y denominador por el conjugado del denominador.

sea un nº real. Hallar su cociente. Solución. Se multiplica numerador y denominador por el conjugado del denominador. . Hallar "a" para que el complejo : a a) sea real puro b) sea magnaro puro Lo prmero de todo es hacer la dvsón en forma bnómca, multplcando numerador y denomnador por el conjugado del denomnador, de esta

Más detalles

Tecnología y Ciencias del Agua ISSN: Instituto Mexicano de Tecnología del Agua México

Tecnología y Ciencias del Agua ISSN: Instituto Mexicano de Tecnología del Agua México Tecnología y Cencas del Agua ISS: 087-86 revsta.tyca@gmal.com Insttuto Mexcano de Tecnología del Agua Méxco Marón-Domínguez, Davd Ernesto; Gutérrez-de-la-Rosa, Alberto Resolucón de la ecuacón de la adveccón-dspersón

Más detalles

Sistemas con Capacidad de Reacción Química 5 de mayo de 2009 Cuestiones y problemas: Cuest: 9.2, 4, 6, 10, 19. Prob: 4.16.

Sistemas con Capacidad de Reacción Química 5 de mayo de 2009 Cuestiones y problemas: Cuest: 9.2, 4, 6, 10, 19. Prob: 4.16. Índce 5 CELINA GONZÁLEZ ÁNGEL JIMÉNEZ IGNACIO LÓPEZ RAFAEL NIEO Sstemas con Capacdad de Reaccón Químca 5 de mayo de 2009 Cuestones y problemas: Cuest: 9.2, 4, 6, 0, 9. Prob: 4.6. subrayados y en negrta

Más detalles

Nociones sobre cuadrados mínimos por Dr. Horacio Bruzzone

Nociones sobre cuadrados mínimos por Dr. Horacio Bruzzone Nocones sobre cuadrados mínmos por Dr. Horaco Bruzzone 1. Introduccón Supongamos que, a través de una sere de medcones, se han determnado un conjunto de n pares de valores de dos magntudes físcas, X e

Más detalles