Clase 15 Espacios vectoriales Álgebra Lineal

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Clase 15 Espacios vectoriales Álgebra Lineal"

Transcripción

1 Espacios vectoriales Clase 5 Espacios vectoriales Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia En esta sección estudiaremos uno de los conceptos más centrales del álgebra lineal que es el de espacio vectorial La idea es tomar ciertas propiedades de R n y generalizarlas adecuadamente Definición Sea V un conjunto en el cual dos operaciones llamadas suma y multiplicación escalar han sido definidas Si u y v son elementos de V la suma de u y v se denotará por u + v Si c es un escalar el múltiplo escalar de u por c se denotará por cu Si las siguientes condiciones son válidas para todo u v w V y para todo escalar c y d entonces V se denomina un espacio vectorial y sus elementos serán llamados vectores u + v V Clausura bajo la suma u + v v + u Conmutatividad (u + v + w u + (v + w Asociatividad Existe V tal que u + u Existencia del vector cero 5 Para cada u V existe u V tal que u + ( u Existencia del vector inverso 6 cu V Clausura bajo la multiplicación escalar 7 c(u + v cu + cv Distributividad 8 (c + du cu + du Distributividad 9 c(du (cdu u u Observaciones (a Cuando decimos escalares nos referiremos a números reales Por tanto deberíamos decir que V es un espacio vectorial real También es posible que los escalares sean números complejos; en cuyo caso V sería espacio vectorial complejo En este curso cuando digamos espacio vectorial nos estamos refiriendo a un espacio vectorial real (b La definición de espacio vectorial no especifica de que está compuesto V Tampoco especifica que las operaciones "suma" y "multiplicación escalar" sean las operaciones a las que estamos acostumbrados Esta observación se aclarará con los siguientes ejemplos Ejemplos (a Para n R n es un espacio vectorial con la adición y la multiplicación por escalar usuales (b El conjunto de las matrices de orden m n es un espacio vectorial con las operaciones de adición de matrices y el producto de un escalar por una matriz Este espacio vectorial se denotará por M mn (c Sea P el conjunto de todos los polinomios de grado menor o igual a con coeficientes reales es decir P a + a x + a x j a a a R Definamos la adición y multiplicación por escalar como se muestra a continuación dados p a + a x + a x y q b + b x + b x en P p + q (a + b + (a + b x + (a + b x

2 Si c es un escalar cp (ca + (ca x + (ca x Con las operaciones descritas anteriormente se puede verificar que P es un espacio vectorial (d En general dado n el conjunto P n de todos los polinomios de grado menor o igual a n es un espacio vectorial (con operaciones análogas a las definidas en (c (e Sea F el conjunto de todas las funciones con valores reales definida sobre la recta de los números reales Si f y g son funciones de este tipo y c es un escalar entonces f + g y c f están definidas mediante ( f + g(x f (x + g(x y (c f (x c f (x F junto con estas dos operaciones es un espacio vectorial (f El conjunto M mn de las matrices de orden m n no es un espacio vectorial si se toma como adición el producto usual de matrices y como multiplicación escalar el producto de un escalar por una matriz Subespacios vectoriales Definición Un subconjunto W de un espacio vectorial V se denomina subespacio de V si W mismo es un espacio vectorial con los mismos escalares adición y multiplicación por escalares que V Teorema Sean V un espacio vectorial y W un subconjunto no vacío de V Entonces W es un subespacio de V si y sólo si (a Si u v W entonces u + v W y (b Si u W y c R entonces cu W Ejercicio Cuál de los siguientes subconjuntos del espacio vectorial V dado es subespacio? (a W fa M nn j A es simétricag V M nn (d H f f F j f + f g V F (b D f f F j f es diferenciableg V F (e K fa M a a a g V M (c S f f F j f + f g V F (f G a + a x + a x + a x j a a a V P El siguiente lema nos da una condición necesaria pero no suficiente para que un subconjunto sea subespacio Lema Si W es un subespacio de V entonces W Ejemplo Es S fa M j a a g un subespacio de M? Solución No Notemos que A S y B S Pero A + B / S Conjuntos generadores Definición 5 El conjunto de todas las combinaciones lineales de un conjunto de vectores S fv v v k g en un espacio vectorial V se conoce como el espacio generado por v v v k y se denota por espacio (v v v k espacio (S Si V espacio (S S se denomina un conjunto generador para V (y se dice que V es generado por S Teorema 6 espacio (v v v k es un subespacio de V Ejemplo Muestre que H fasen (x + b cos (x j a b Rg es un subespacio de F Solución Notemos que H espacio(senx cos x Por el teorema anterior H es un subespacio de F Ejemplo Muestre que W fa + a x + a x + a x j a a a g es un subespacio de P Solución Como a a + a tenemos que a + a x + a x + a x a + a (x + x + a (x + x Luego W espacio( x + x x + x Por tanto W es un subespacio de P

3 Independencia lineal Definición 7 Un conjunto de vectores fv v v k g de un espacio vectorial V es linealmente dependiente (LD si existen escalares c c c k al menos uno de los cuales no sea cero tal que c v + c v + + c k v k Un conjunto de vectores que no es linealmente dependiente se dice que es linealmente independiente (LI Teorema 8 Un conjunto de vectores fv v v k g de un espacio vectorial V es LD si y sólo si al menos uno de los vectores puede ser expresado como combinación lineal de los otros Ejemplo Cuáles de los siguientes subconjuntos del espacio vectorial dado es linealmente dependiente? (a x x V P (b sen (x cos (x V F Solución (a Sean a b y c tales que a + bx + cx Derivando obtenemos b + cx y derivando nuevamente tenemos c con lo que c b y a Es decir f x x g es un conjunto linealmente independiente (b Por la identidad Pitagórica sen (x + cos (x Como es combinación lineal de sen (x y cos (x el conjunto es linealmente dependiente Ejemplo Sea fu v wg un conjunto linealmente independiente en un espacio vectorial V (a Es fu + w u + v v + wg LD o LI en V? (b Es fu w u + v v wg LD o LI en V? Solución (a Consideremos la combinación lineal a (u + w + b (u + v + c (v + w ( Reuniendo términos semejantes (a + b u + (b + c v + (a + c w Dado que fu v wg es LI en V se tiene que 8 8 a + b b + c a + c 5!! 5 Por tanto a b c es la única solución a ( Luego fu + w u + v v + wg es LI en V a b b c c (b De nuevo consideremos la combinación lineal a (u w + b ( u + v + c (v w ( Agrupando términos semejantes (a b u + (b + c v + ( a c w Como fu v wg es LI en V tenemos que 8 8 a b b + c a c 5!! 5 a c b c c c c var libre Tomando c 6 existen escalares a b y c no nulos que satisfacen ( Así fu w u + v v wg es LD en V Bases Definición 9 Un subconjunto B de un espacio vectorial V es una base para V si (a B genera a V y (b B es linealmente independiente

4 Ejemplo A continuación introducimos las bases estándares de los principales espacios vectoriales Espacio Base estándar Ejemplo R n fe e e n g base estándar de R ; P n x x x n x x x x x 5 base estándar de P 5 M mn Eij j i m j n base estándar de M Como lo ilustra el ejemplo E ij es una matriz de orden m n cuya entrada ij es igual a y las restantes entradas todas iguales a cero Ejemplo Halle una base para el subespacio W de matrices antisimétricas de orden Solución Si A es una matriz antisimétrica se tiene que A T A Luego A T a c a b a b + c + A O + b d c d b + c d Así a d y c b Por tanto existe b R tal que b A b b De este modo B es una base para W Ejemplo Halle una base para el siguiente subespacio de P Solución Notemos que W a + bx W espacio bx + ax j a b R p (x W p (x a + bx bx + ax a + x + b x x Como el conjunto + x x x es LI en P podemos afirmar que es una base para W B p (x + x p (x x x Coordenadas Teorema Sea B una base para un espacio vectorial V Para todo v V existe una única forma de expresar el vector v como combinación lineal de los vectores de B Definición Sea B fv v v n g una base para un espacio vectorial V Sea v V tal que v c v + c v + + c n v n Los escalares c c c n se conocen como las coordenadas de v con respecto a B y el vector [v] B 6 c c n 7 5

5 se denomina el vector coordenado de v con respecto a B Ejemplo Sea p (x + x x Halle [p] B donde B x x es la base estándar de P Si q (x P cumple que [q] B 5 halle q (x Solución Por definición [p] B 5 Por otro lado si [q] B 5 q (x + x + x + x Ejemplo Sea A Halle [A] B donde B fe E E E g es la base estándar de M Solución Por definición A E + E + E + E Luego [A] B Teorema Sea B una base para un espacio vectorial V Para todo u v V y c R (a [u + v] B [u] B + [v] B (b [cu] B c [u] B Teorema Sea B fv v v n g una base para un espacio vectorial V y sean u u k V Entonces fu u k g es LI en V si y sólo si f[u ] B [u k ] B g es LI en R n Dimensión Teorema Sea B fv v v n g una base para un espacio vectorial V (a Cualquier conjunto con más de n vectores en V debe ser linealmente dependiente (b Cualquier conjunto con menos de n vectores en V no puede generar a V Teorema 5 Si un espacio vectorial V tiene una base con n vectores entonces toda base para V tiene exactamente n vectores Definición 6 Sea V un espacio vectorial La dimensión de V denotada dim (V es el número de vectores en una base para V Por convención dim fg Ejemplo Halle la dimensión de los siguientes subespacios del espacio vectorial dado (a W A M j A T A V M (b W A M j A T A V M (c S A M j A T A V M (d H espacio (sen (x cos (x sen (x V F Solución (a Sabemos que una base para W es B Por tanto dim (W (b Si A W entonces existen a b c R tales que A a b a c b c 5 a B z } { 5 + b B z } { B z } { 5 + c 5 Así B fb B B g genera a W Es fácil verificar que B es linealmente independiente en M Luego B es una base para W Por tanto dim (W Qué puede decir para el caso general n n? 5

6 (c Procediendo de forma análoga que (b se prueba que B Con lo que dim S Qué puede decir para el caso n n? es base para S (d Sea B fsen (x cos (x sen (xg Es claro que B genera a H Veamos que B es linealmente independiente en F sean a b c tales que a sen (x + b cos (x + c sen (x para todo x R Entonces Para x π se tiene que a ; para x π se tiene que b y para x π se tiene que c Así B es linealmente independiente Por tanto una base para H Así dim (H Ejemplo dim (R n n dim (P n n + dim (M mn m n Teorema 7 Sea V un espacio vectorial con dim(v n Entonces (a Cualquier conjunto linealmente independiente con exactamente n vectores en V es una base para V (b Cualquier conjunto generador de V compuesto con exactamente n vectores es una base para V Ejemplo Verifique si el conjunto B dado es una base para el espacio vectorial V correspondiente (a B + x + x V P (b B V A M j A T A Solución (a Notemos que dim (P y que B tiene exactamente vectores Luego B es una base para P si y sólo si B es LI en P Ahora bien sean a b c tales que a + b( + x + c( + x Luego (a + b + c + bx + cx fxx g es LI a + b + c b c a b c Por lo tanto B es una base para V (b Notemos que dim (V y que B sólo tiene elementos Por tanto B no es una base para V Teorema 8 Sea W un subespacio de un espacio vectorial de dimensión finita V Entonces (a W es de dimensión finita y dim W dim V (b dim W dim V si y sólo si W V 6

Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR}

Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR} Subespacios Capítulo 1 Definición 1.1 Subespacio Sea H un subconjunto no vacio de un espacio vectorial V K. Si H es un espacio vectorial sobre K bajo las operaciones de suma y multiplicación por escalar

Más detalles

Tema 3. Espacios vectoriales

Tema 3. Espacios vectoriales Tema 3. Espacios vectoriales Estructura del tema. Definición y propiedades. Ejemplos. Dependencia e independencia lineal. Conceptos de base y dimensión. Coordenadas Subespacios vectoriales. 0.1. Definición

Más detalles

Estructuras algebraicas

Estructuras algebraicas Tema 2 Estructuras algebraicas básicas 2.1. Operación interna Definición 29. Dados tres conjuntos A, B y C, se llama ley de composición en los conjuntos A y B y resultado en el conjunto C, y se denota

Más detalles

1. ESPACIOS VECTORIALES

1. ESPACIOS VECTORIALES 1 1. ESPACIOS VECTORIALES 1.1. ESPACIOS VECTORIALES. SUBESPACIOS VECTORIALES Denición 1. (Espacio vectorial) Decimos que un conjunto no vacío V es un espacio vectorial sobre un cuerpo K, o K-espacio vectorial,

Más detalles

Espacios generados, dependencia lineal y bases

Espacios generados, dependencia lineal y bases Espacios generados dependencia lineal y bases Departamento de Matemáticas CCIR/ITESM 14 de enero de 2011 Índice 14.1. Introducción............................................... 1 14.2. Espacio Generado............................................

Más detalles

y λu = Idea. Podemos sumar vectores y multiplicar por un escalar. El resultado vuelve a ser un vector Definición de espacio vectorial.

y λu = Idea. Podemos sumar vectores y multiplicar por un escalar. El resultado vuelve a ser un vector Definición de espacio vectorial. Espacios vectoriales Espacios y subespacios R n es el conjunto de todos los vectores columna con n componentes. Además R n es un espacio vectorial. Ejemplo Dados dos vectores de R por ejemplo u = 5 v =

Más detalles

Tema 2 ESPACIOS VECTORIALES

Tema 2 ESPACIOS VECTORIALES Tema 2 ESPACIOS VECTORIALES Prof. Rafael López Camino Universidad de Granada 1 Espacio vectorial Definición 1.1 Un espacio vectorial es una terna (V, +, ), donde V es un conjunto no vacío y +, son dos

Más detalles

Espacios vectoriales

Espacios vectoriales Espacios vectoriales Problemas teóricos Muchos de estos problemas me los han enseñado mis colegas: profesores Flor de María Correa Romero, Carlos Domínguez Albino, Sergio González Govea, Myriam Rosalía

Más detalles

Subespacios vectoriales en R n

Subespacios vectoriales en R n Subespacios vectoriales en R n Víctor Domínguez Octubre 2011 1. Introducción Con estas notas resumimos los conceptos fundamentales del tema 3 que, en pocas palabras, se puede resumir en técnicas de manejo

Más detalles

1 Espacios y subespacios vectoriales.

1 Espacios y subespacios vectoriales. UNIVERSIDAD POLITÉCNICA DE CARTAGENA Departamento de Matemática Aplicada y Estadística Espacios vectoriales y sistemas de ecuaciones 1 Espacios y subespacios vectoriales Definición 1 Sea V un conjunto

Más detalles

Anexo 1: Demostraciones

Anexo 1: Demostraciones 75 Matemáticas I : Álgebra Lineal Anexo 1: Demostraciones Espacios vectoriales Demostración de: Propiedades 89 de la página 41 Propiedades 89- Algunas propiedades que se deducen de las anteriores son:

Más detalles

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases. BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades

Más detalles

MATEMÁTICAS I TEMA 1: Espacios Vectoriales. 1 Definición de espacio vectorial. Subespacios

MATEMÁTICAS I TEMA 1: Espacios Vectoriales. 1 Definición de espacio vectorial. Subespacios Sonia L. Rueda ETS Arquitectura. UPM Curso 2007-2008. 1 MATEMÁTICAS I TEMA 1: Espacios Vectoriales 1 Definición de espacio vectorial. Subespacios Dados dos conjuntos V y K se llama ley de composición externa

Más detalles

Tema 2. Aplicaciones lineales y matrices.

Tema 2. Aplicaciones lineales y matrices. Tema 2 Aplicaciones lineales y matrices. 1 Índice general 2. Aplicaciones lineales y matrices. 1 2.1. Introducción....................................... 2 2.2. Espacio Vectorial.....................................

Más detalles

Fascículo 2. Álgebra Lineal. Cursos de grado. Gabriela Jeronimo Juan Sabia Susana Tesauri. Universidad de Buenos Aires

Fascículo 2. Álgebra Lineal. Cursos de grado. Gabriela Jeronimo Juan Sabia Susana Tesauri. Universidad de Buenos Aires Fascículo 2 Cursos de grado ISSN 1851-1317 Gabriela Jeronimo Juan Sabia Susana Tesauri Álgebra Lineal Departamento de Matemática Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires 2008

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Departamento de Matemáticas, CCIR/ITESM 4 de enero de 2 Índice 3.. Objetivos................................................ 3.2. Motivación...............................................

Más detalles

Vector Spaces 4.1 ESPACIOS VECTORIALES Y SUBESPACIOS. 2012 Pearson Education, Inc.

Vector Spaces 4.1 ESPACIOS VECTORIALES Y SUBESPACIOS. 2012 Pearson Education, Inc. 4 Vector Spaces 4. ESPACIOS VECTORIALES Y SUBESPACIOS 0 Pearson Education, Inc. ESPACIOS VECTORIALES Y SUBESPACIOS Definición: Un espacio vectorial es un conjunto no vacío V de objetos, sobre el cual se

Más detalles

Espacios vectoriales con producto interno

Espacios vectoriales con producto interno Capítulo 8 Espacios vectoriales con producto interno En este capítulo, se generalizarán las nociones geométricas de distancia y perpendicularidad, conocidas en R y en R 3, a otros espacios vectoriales.

Más detalles

Espacios vectoriales y aplicaciones lineales

Espacios vectoriales y aplicaciones lineales Capítulo 3 Espacios vectoriales y aplicaciones lineales 3.1 Espacios vectoriales. Aplicaciones lineales Definición 3.1 Sea V un conjunto dotado de una operación interna + que llamaremos suma, y sea K un

Más detalles

Espacios vectoriales y Aplicaciones lineales

Espacios vectoriales y Aplicaciones lineales Espacios vectoriales y Aplicaciones lineales Espacios vectoriales. Subespacios vectoriales Espacios vectoriales Definición Sea V un conjunto dotado de una operación interna + que llamaremos suma, y sea

Más detalles

Problemas de Álgebra Lineal Espacios Vectoriales

Problemas de Álgebra Lineal Espacios Vectoriales Problemas de Álgebra Lineal Espacios Vectoriales 1. Estudia cuáles de los siguientes subconjuntos son subespacios de R n para el n que corresponda: i) S 1 = {(x, y, z, t) R 4 x + y + z + t = b} siendo

Más detalles

Espacios vectoriales. Bases. Coordenadas

Espacios vectoriales. Bases. Coordenadas Capítulo 5 Espacios vectoriales. Bases. Coordenadas OPERACIONES ENR n Recordemos que el producto cartesiano de dos conjuntos A y B consiste en los pares ordenados (a,b) tales que a A y b B. Cuando consideramos

Más detalles

elemento neutro y elemento unidad: inversa aditiva (opuesto): para todo λ K 0, existe un único µ K tal que λµ = 1;

elemento neutro y elemento unidad: inversa aditiva (opuesto): para todo λ K 0, existe un único µ K tal que λµ = 1; 3. Espacios Vectoriales 3.1. Definición de espacio vectorial Un cuerpo es una estructura algebraica (K, +, ) formada por un conjunto K no vacio y dos operaciones internas + y que verifican las siguientes

Más detalles

1 El espacio vectorial R n.

1 El espacio vectorial R n. Manuel Gutiérrez Departamento de Álgebra, Geometría y Topología Universidad de Málaga February 26, 2009 1 El espacio vectorial R n. La estructura de espacio vectorial es posiblemente la estructura más

Más detalles

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES. ÁLGEBRA PARA INGENIEROS (Solucionario)

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES. ÁLGEBRA PARA INGENIEROS (Solucionario) Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS (Solucionario) 2 Í N D I C E CAPÍTULO : MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES CAPÍTULO 2: ESPACIOS VECTORIALES

Más detalles

Ortogonalidad y Series de Fourier

Ortogonalidad y Series de Fourier Capítulo 4 Ortogonalidad y Series de Fourier El adjetivo ortogonal proviene del griego orthos (recto) y gonia (ángulo). Este denota entonces la perpendicularidad entre dos elementos: dos calles que se

Más detalles

Objetivos: Al inalizar la unidad, el alumno:

Objetivos: Al inalizar la unidad, el alumno: Unidad 3 espacios vectoriales Objetivos: Al inalizar la unidad, el alumno: Describirá las características de un espacio vectorial. Identiicará las propiedades de los subespacios vectoriales. Ejempliicará

Más detalles

Comenzaremos recordando algunas definiciones y propiedades estudiadas en el capítulo anterior.

Comenzaremos recordando algunas definiciones y propiedades estudiadas en el capítulo anterior. Capítulo 2 Matrices En el capítulo anterior hemos utilizado matrices para la resolución de sistemas de ecuaciones lineales y hemos visto que, para n, m N, el conjunto de las matrices de n filas y m columnas

Más detalles

4.1 El espacio dual de un espacio vectorial

4.1 El espacio dual de un espacio vectorial Capítulo 4 Espacio dual Una de las situaciones en donde se aplica la teoría de espacios vectoriales es cuando se trabaja con espacios de funciones, como vimos al final del capítulo anterior. En este capítulo

Más detalles

4 Aplicaciones Lineales

4 Aplicaciones Lineales Prof Susana López 41 4 Aplicaciones Lineales 41 Definición de aplicación lineal Definición 23 Sean V y W dos espacios vectoriales; una aplicación lineal f de V a W es una aplicación f : V W tal que: 1

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Tema 3 Aplicaciones Lineales 3.1 Introducción Se presentan en este tema las aplicaciones entre espacios vectoriales, particularmente las aplicaciones lineales, que de una manera informal pueden definirse

Más detalles

Espacios vectoriales

Espacios vectoriales Espacios vectoriales Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza 1 Concepto de espacio vectorial y propiedades 1.1 Definición Se llama espacio vectorial sobre K (IR o C a toda terna

Más detalles

Tema III. Capítulo 2. Sistemas generadores. Sistemas libres. Bases.

Tema III. Capítulo 2. Sistemas generadores. Sistemas libres. Bases. Tema III Capítulo 2 Sistemas generadores Sistemas libres Bases Álgebra Lineal I Departamento de Métodos Matemáticos y de Representación UDC 2 Sistemas generadores Sistemas libres Bases 1 Combinación lineal

Más detalles

E 1 E 2 E 2 E 3 E 4 E 5 2E 4

E 1 E 2 E 2 E 3 E 4 E 5 2E 4 Problemas resueltos de Espacios Vectoriales: 1- Para cada uno de los conjuntos de vectores que se dan a continuación estudia si son linealmente independientes, sistema generador o base: a) (2, 1, 1, 1),

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Primeras definiciones Una aplicación lineal de un K-ev de salida E a un K-ev de llegada F es una aplicación f : E F tal que f(u + v) = f(u) + f(v) para todos u v E f(λ u) = λ f(u)

Más detalles

ESPACIO VECTORIAL ESPACIO VECTORIAL SUBESPACIO VECTORIAL BASE Y DIMENSIÓN N DE UN

ESPACIO VECTORIAL ESPACIO VECTORIAL SUBESPACIO VECTORIAL BASE Y DIMENSIÓN N DE UN Tema 5.- ESPACIOS VECTORIALES ESPACIO VECTORIAL SUBESPACIO VECTORIAL BASE Y DIMENSIÓN N DE UN ESPACIO VECTORIAL Fundamentos Matemáticosde la Ingeniería 1 Aunque históricamente el primer trabajo de Álgebra

Más detalles

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS 2 Í N D I C E CAPÍTULO MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES MATRICES. MATRIZ. DEFINICIÓN 2. ALGUNOS

Más detalles

1. Cambios de base en R n.

1. Cambios de base en R n. er Curso de Ingeniero de Telecomunicación. Álgebra. Curso 8-9. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema 5. Cambios de Base. Aplicaciones Lineales. Teoría y Ejercicios Resueltos..

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

Matemáticas I: Hoja 3 Espacios vectoriales y subespacios vectoriales

Matemáticas I: Hoja 3 Espacios vectoriales y subespacios vectoriales Matemáticas I: Hoa 3 Espacios vectoriales y subespacios vectoriales Eercicio 1. Demostrar que los vectores v 1, v 2, v 3, v 4 expresados en la base canónica forman una base. Dar las coordenadas del vector

Más detalles

Tema 7: Valores y vectores propios

Tema 7: Valores y vectores propios Tema 7: es y clausura s Espacios y Permutaciones es y clausura Una permutación p = {p 1, p 2,..., p n } de los números {1, 2,..., n} es una nueva ordenación de los elementos {1, 2,..., n}, es decir, un

Más detalles

Tema 2: Espacios vectoriales

Tema 2: Espacios vectoriales Tema 2: Espacios vectoriales La estructura de espacio vectorial juega un papel fundamental en el álgebra lineal pues es la base de todos los conceptos que ahí se desarrollan. Vamos en la siguiente sección

Más detalles

13.TRANSFORMACIONES LINEALES 273 13.1. DEFINICIÓN DE TRANSFORMACIÓN LINEAL... 273 13.2. DETERMINACIÓN DE UNA TRANSFORMACIÓN LINEAL... 275 13.3.

13.TRANSFORMACIONES LINEALES 273 13.1. DEFINICIÓN DE TRANSFORMACIÓN LINEAL... 273 13.2. DETERMINACIÓN DE UNA TRANSFORMACIÓN LINEAL... 275 13.3. ÍNDICE 13.TRANSFORMACIONES LINEALES 273 13.1. DEFINICIÓN DE TRANSFORMACIÓN LINEAL............. 273 13.2. DETERMINACIÓN DE UNA TRANSFORMACIÓN LINEAL...... 275 13.3. REPRESENTACIÓN MATRICIAL DE UNA TRANSFORMACIÓN

Más detalles

Formas bilineales y cuadráticas.

Formas bilineales y cuadráticas. Tema 4 Formas bilineales y cuadráticas. 4.1. Introducción. Conocidas las nociones de espacio vectorial, aplicación lineal, matriz de una aplicación lineal y diagonalización, estudiaremos en este tema dos

Más detalles

TEMA 1. VECTORES Y MATRICES

TEMA 1. VECTORES Y MATRICES TEMA 1. VECTORES Y MATRICES 1.1. Definición de vector. Operaciones elementales 1.2. Matrices. Operaciones elementales 1.3. Traza y Determinante 1.4. Aplicaciones 1.1. DEFINICIÓN DE VECTOR. OPERACIONES

Más detalles

4 APLICACIONES LINEALES. DIAGONALIZACIÓN

4 APLICACIONES LINEALES. DIAGONALIZACIÓN 4 APLICACIONES LINEALES DIAGONALIZACIÓN DE MATRICES En ocasiones, y con objeto de simplificar ciertos cálculos, es conveniente poder transformar una matriz en otra matriz lo más sencilla posible Esto nos

Más detalles

1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS

1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS 1 1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS 1.1. ESPACIOS VECTORIALES 1. Analizar cuáles de los siguientes subconjuntos de R 3 son subespacios vectoriales. a) A = {(2x, x, 7x)/x R} El conjunto A es una

Más detalles

Tema 4: Aplicaciones lineales

Tema 4: Aplicaciones lineales Tema 4: Aplicaciones lineales Definición, primeras propiedades y ejemplos Definición. Sean V y W dos espacios vectoriales sobre un cuerpo K. Una función f : V W se dice que es una aplicación lineal si

Más detalles

520142: ALGEBRA y ALGEBRA LINEAL

520142: ALGEBRA y ALGEBRA LINEAL 520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición

Más detalles

Tema 2: Espacios Vectoriales

Tema 2: Espacios Vectoriales Tema 2: Espacios Vectoriales José M. Salazar Octubre de 2016 Tema 2: Espacios Vectoriales Lección 2. Espacios vectoriales. Subespacios vectoriales. Bases. Lección 3. Coordenadas respecto de una base. Ecuaciones.

Más detalles

3 Espacios Vectoriales

3 Espacios Vectoriales Prof. Susana López 31 3 Espacios Vectoriales 3.1 Introducción Un ector fijo en el plano no es más que un segmento orientado en el que hay que distinguir tres características: -dirección: la de la recta

Más detalles

Curso de Procesamiento Digital de Imágenes

Curso de Procesamiento Digital de Imágenes Curso de Procesamiento Digital de Imágenes Impartido por: Elena Martínez Departamento de Ciencias de la Computación IIMAS, UNAM, cubículo 408 http://turing.iimas.unam.mx/~elena/teaching/pdi-lic.html elena.martinez@iimas.unam.mx

Más detalles

La aplicación derivada sobre el espacio E de los polinomios en una variable, E D E, es

La aplicación derivada sobre el espacio E de los polinomios en una variable, E D E, es Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS 1 Aplicaciones lineales Núcleo e Imagen Tipos de aplicaciones lineales Sean E y E k-espacios vectoriales Definición 11 Una

Más detalles

Tema 3. Aplicaciones lineales. 3.1. Introducción

Tema 3. Aplicaciones lineales. 3.1. Introducción Tema 3 Aplicaciones lineales 3.1. Introducción Una vez que sabemos lo que es un espacio vectorial y un subespacio, vamos a estudiar en este tema un tipo especial de funciones (a las que llamaremos aplicaciones

Más detalles

E. T. S. de Ingenieros Industriales Universidad Politécnica de Madrid. Grado en Ingeniería en Tecnologías Industriales. Grado en Ingeniería Química

E. T. S. de Ingenieros Industriales Universidad Politécnica de Madrid. Grado en Ingeniería en Tecnologías Industriales. Grado en Ingeniería Química E. T. S. de Ingenieros Industriales Universidad Politécnica de Madrid Grado en Ingeniería en Tecnologías Industriales Grado en Ingeniería Química Apuntes de Álgebra ( Curso 2014/15) Departamento de Matemática

Más detalles

1. El teorema de la función implícita para dos y tres variables.

1. El teorema de la función implícita para dos y tres variables. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lección. Aplicaciones de la derivación parcial.. El teorema de la función implícita para dos tres variables. Una ecuación con dos incógnitas. Sea f :( x, ) U f(

Más detalles

Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades:

Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades: Capítulo 1 DETERMINANTES Definición 1 (Matriz traspuesta) Llamaremos matriz traspuesta de A = (a ij ) a la matriz A t = (a ji ); es decir la matriz que consiste en poner las filas de A como columnas Definición

Más detalles

Aplicaciones lineales

Aplicaciones lineales Capítulo 4 Aplicaciones lineales 4.1. Introduccción a las aplicaciones lineales En el capítulo anterior encontramos la aplicación de coordenadas x [x] B que asignaba, dada una base del espacio vectorial,

Más detalles

CAPÍTULO II. 2 El espacio vectorial R n

CAPÍTULO II. 2 El espacio vectorial R n CAPÍTULO II 2 El espacio vectorial R n A una n upla (x 1, x 2,..., x n ) de números reales se le denomina vector de n coordenadas o, simplemente, vector. Por ejemplo, el par ( 3, 2) es un vector de R 2,

Más detalles

Tópicos. en Álgebra Lineal

Tópicos. en Álgebra Lineal Tópicos en Álgebra Lineal Miguel A Marmolejo L Manuel M Villegas L Departamento de Matemáticas Universidad del Valle Índice general Introducción 1 Índice de guras iii Capítulo 1 Prerrequisitos 1 11 Matrices

Más detalles

1. APLICACIONES LINEALES

1. APLICACIONES LINEALES 1 1 APLICACIONES LINEALES El objetivo de este capítulo es el estudio de las aplicaciones lineales u homomorfismos entre espacios vectoriales Este tipo de aplicaciones respeta la estructura de espacio vectorial

Más detalles

CAPÍTULO II. 3 El grupo lineal

CAPÍTULO II. 3 El grupo lineal CAPÍTULO II 3 El grupo lineal Como ya se advirtió en el capítulo precedente, los grupos de transformaciones juegan un importante papel en el estudio de la geometría. En esta sección nos ocuparemos de aquellas

Más detalles

Bibliografía recomendada

Bibliografía recomendada Álgebra II Guía del Examen a Título de Suficiencia Escuela Superior de Física y Matemáticas del Instituto Politécnico Nacional Licenciatura en Física y Matemáticas Esta guía está elaborada por el colectivo

Más detalles

Valores propios y vectores propios

Valores propios y vectores propios Capítulo 6 Valores propios y vectores propios En este capítulo investigaremos qué propiedades son intrínsecas a una matriz, o su aplicación lineal asociada. Como veremos, el hecho de que existen muchas

Más detalles

Sea un espacio vectorial sobre y sea un producto interno en ; entonces, : , y los vectores

Sea un espacio vectorial sobre y sea un producto interno en ; entonces, : , y los vectores FASÍCULO: ESPACIOS CON PRODUCTO INTERNO Teorema. Sea un espacio vectorial sobre y sea un producto interno en ; entonces, : i) ii) iii) iv) Ejemplo: Sean el espacio vectorial con el producto interno definido

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios

Más detalles

Valores y vectores propios de una matriz. Juan-Miguel Gracia

Valores y vectores propios de una matriz. Juan-Miguel Gracia Juan-Miguel Gracia Índice 1 Valores propios 2 Polinomio característico 3 Independencia lineal 4 Valores propios simples 5 Diagonalización de matrices 2 / 28 B. Valores y vectores propios Definiciones.-

Más detalles

ESTRUCTURAS ALGEBRAICAS

ESTRUCTURAS ALGEBRAICAS ESTRUCTURAS ALGEBRAICAS Se ha trabajado con números complejos, polinomio y matrices y hemos efectuado con ellos ciertas operaciones: sin embargo no todas las operaciones se comportan de la misma manera,

Más detalles

Sección 4.5: Transformaciones del plano y del espacio. Sección 4.6: Problema de mínimos cuadrados y aplicaciones.

Sección 4.5: Transformaciones del plano y del espacio. Sección 4.6: Problema de mínimos cuadrados y aplicaciones. Tema 4 Producto escalar En bachiller habéis visto los conceptos de producto escalar, longitud, distancia y perpendicularidad en R y R 3 En este tema del curso se generalizan estos conceptos a R n, junto

Más detalles

3.- DETERMINANTES. a 11 a 22 a 12 a 21

3.- DETERMINANTES. a 11 a 22 a 12 a 21 3.- DETERMINANTES. 3.1. -DEFINICIÓN Dada una matriz cuadrada de orden n, se llama determinante de esta matriz (y se representa por A o deta al polinomio cuyos términos son todos los productos posibles

Más detalles

Objetivos: Al inalizar la unidad, el alumno:

Objetivos: Al inalizar la unidad, el alumno: Unidad 7 transformaciones lineales Objetivos: Al inalizar la unidad, el alumno: Comprenderá los conceptos de dominio e imagen de una transformación. Distinguirá cuándo una transformación es lineal. Encontrará

Más detalles

Algebra Lineal: Aplicaciones a la Física

Algebra Lineal: Aplicaciones a la Física Algebra Lineal: Aplicaciones a la Física Resumen del curso 2014 para Lic. en Física (2 o año), Depto. de Física, UNLP. Prof.: R. Rossignoli 0. Repaso de estructuras algebraicas básicas Un sistema algebraico

Más detalles

Vectores y Valores Propios

Vectores y Valores Propios Capítulo 11 Vectores y Valores Propios Las ideas de vector y valor propio constituyen conceptos centrales del álgebra lineal y resultan una valiosa herramienta en la solución de numerosos problemas de

Más detalles

Espacio afín. Transformaciones afines y movimientos

Espacio afín. Transformaciones afines y movimientos Capítulo Espacio afín. Transformaciones afines y movimientos. Espacio afín y espacio afín métrico Definición. El espacio afín (tridimensional) está constituido por los siguientes elementos. El espacio

Más detalles

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices Estructura del tema. Conceptos básicos y ejemplos Operaciones básicas con matrices Método de Gauss Rango de una matriz Concepto de matriz regular y propiedades Determinante asociado a una

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Sistemas de Ecuaciones Lineales y Matrices Oscar G Ibarra-Manzano, DSc Departamento de Area Básica - Tronco Común DES de Ingenierías Facultad de Ingeniería, Mecánica, Eléctrica y Electrónica Trimestre

Más detalles

vectoriales N(f) e Im(f) N(f) = (5,1,0),( 3,0,1) y f(1,0,0)=(2,-1,1). Se pide:

vectoriales N(f) e Im(f) N(f) = (5,1,0),( 3,0,1) y f(1,0,0)=(2,-1,1). Se pide: .- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) Ax, así como los subespacios vectoriales N(f) e Im(f) a) f(x,y) = (x,-y) b) f(x,y)

Más detalles

ESTRUCTURAS ALGEBRAICAS

ESTRUCTURAS ALGEBRAICAS ESTRUCTURAS ALGEBRAICAS 1.1. LEY DE COMPOSICIÓN INTERNA Definición 1.1.1. Sea E un conjunto, se llama ley de composición interna en E si y sólo si a b = c E, a, b E. Observación 1.1.1. 1. también se llama

Más detalles

ÁLGEBRA LINEAL I Soluciones a la Práctica 6

ÁLGEBRA LINEAL I Soluciones a la Práctica 6 ÁLGEBRA LINEAL I Soluciones a la Práctica 6 Aplicaciones lineales (Curso 2009 2010) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales, determinar cuáles son homomorfismos, monomorfismos,

Más detalles

CAPÍTULO II. 4 El grupo afín

CAPÍTULO II. 4 El grupo afín CAPÍTULO II 4 El grupo afín En geometría clásica, antes de la aparición de los espacios vectoriales, se hablaba de puntos en lugar de vectores. Para nosotros serán términos sinónimos salvo que, cuando

Más detalles

Álgebra y Trigonometría CNM-108

Álgebra y Trigonometría CNM-108 Álgebra y Trigonometría CNM-108 Clase 2 Ecuaciones, desigualdades y funciones Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre CURSO CERO Departamento de Matemáticas Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre Capítulo 1 La demostración matemática Demostración por inducción El razonamiento por inducción es una

Más detalles

TEST DE ÁLGEBRA. 6.- Sea el subespacio de R 3 S = { (x,,y,z) / x +y+z = 0} a) es de dimensión 1 b) es de dimensión 2 c) es R 3 d) NDLA

TEST DE ÁLGEBRA. 6.- Sea el subespacio de R 3 S = { (x,,y,z) / x +y+z = 0} a) es de dimensión 1 b) es de dimensión 2 c) es R 3 d) NDLA TEST DE ÁLGEBRA 1.- Sea f:r 4 -----> R 5 una apli. lineal a) Dim ker(f) tiene que ser 3 b) Dim ker(f) será 4 c) Dim ker(f) es 5 2.- El sistema homogéneo 3 x % 8 y % ð z 0 y & z 0 a) tiene soluciones no

Más detalles

4. ESPACIOS VECTORIALES Y APLICACIONES LINEALES

4. ESPACIOS VECTORIALES Y APLICACIONES LINEALES Espacios Vectoriales y Aplicaciones Lineales 4. ESPACIOS VECTORIALES Y APLICACIONES LINEALES SUMARIO: INTRODUCCIÓN OBJETIVOS INTRODUCCIÓN TEÓRICA 1.- Espacios Vectoriales..- Propiedades de un Espacio Vectorial..-

Más detalles

Tema 10: Límites y continuidad de funciones de varias variables

Tema 10: Límites y continuidad de funciones de varias variables Tema 10: Límites y continuidad de funciones de varias variables 1 Funciones de varias variables Definición 1.1 Llamaremos función real de varias variables atodafunciónf : R n R. Y llamaremos función vectorial

Más detalles

Notas de Espacios Vectoriales

Notas de Espacios Vectoriales Notas de Espacios Vectoriales José Luis Mancilla Aguilar Depto. de Matemática, Fac. de Ingeniería, Univ. de Buenos Aires jmancil@fi.uba.ar 1 Propósito El objeto de estas notas es repasar las principales

Más detalles

Espacios vectoriales y aplicaciones lineales.

Espacios vectoriales y aplicaciones lineales. Práctica 2 Espacios vectoriales y aplicaciones lineales. Contenido: Localizar bases de espacios vectoriales. Suma directa. Bases y dimensiones. Cambio de base. Aplicaciones lineales. Matriz asociada en

Más detalles

Propiedades de la adición de vectores y la multiplicación de un vector por un escalar

Propiedades de la adición de vectores y la multiplicación de un vector por un escalar ÁLGEBRA MATRICIAL PROF. MARIELA SARMIENTO SESIÓN : ESPACIO VECTORIAL Propiedades de la adición de vectores y la multiplicación de un vector por un escalar Teorema.1: Si A, B y C son vectores cualesquiera

Más detalles

Espacios vectoriales

Espacios vectoriales Espacios vectoriales [Versión preliminar] Prof. Isabel Arratia Z. Algebra Lineal 1 En el estudio de las matrices y, en particular, de los sistemas de ecuaciones lineales realizamos sumas y multiplicación

Más detalles

Producto Interno y Ortogonalidad

Producto Interno y Ortogonalidad Producto Interno y Ortogonalidad Departamento de Matemáticas, CSI/ITESM 15 de octubre de 2009 Índice 8.1. Contexto................................................ 1 8.2. Introducción...............................................

Más detalles

Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1

Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1 . ESPACIOS VECTORIALES Consideremos el siguiente subconjunto de R 4 : S = {(x, x 2, x 3, x 4 )/x x 4 = 0 x 2 x 4 = x 3 a. Comprobar que S es subespacio vectorial de R 4. Para demostrar que S es un subespacio

Más detalles

Tema 4.- El espacio vectorial R n.

Tema 4.- El espacio vectorial R n. Tema 4- El espacio vectorial R n Subespacios vectoriales de R n Bases de un subespacio Rango de una matriz 4 Bases de R n Cambios de base 5 Ejercicios En este tema estudiamos la estructura vectorial del

Más detalles

Transformaciones Lineales. Definiciones básicas de Transformaciones Lineales. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.

Transformaciones Lineales. Definiciones básicas de Transformaciones Lineales. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com. Transformaciones Lineales Definiciones básicas de Transformaciones Lineales wwwmathcommx José de Jesús Angel Angel jjaa@mathcommx MathCon c 007-009 Contenido 1 Transformaciones Lineales 11 Núcleo e imagen

Más detalles

Tema 7: ESPACIOS VECTORIALES AFINES

Tema 7: ESPACIOS VECTORIALES AFINES Tema 7: ESPACIOS VECTORIALES AFINES Prof. Rafael López Camino Departamento de Geometría y Topología Universidad de Granada Material docente para el alumno Asignatura: Geometría I. Curso 2003/04 Licenciatura:

Más detalles

EJERCICIOS DE CÁLCULO DIFERENCIAL EN VARIAS VARIABLES

EJERCICIOS DE CÁLCULO DIFERENCIAL EN VARIAS VARIABLES UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS EJERCICIOS DE CÁLCULO DIFERENCIAL EN VARIAS VARIABLES Ramón Bruzual Marisela Domínguez Caracas,

Más detalles

Listas de vectores y conjuntos de vectores

Listas de vectores y conjuntos de vectores Listas de vectores y conjuntos de vectores La explicación de los temas Dependencia lineal y Bases en el curso de Álgebra Lineal se puede basar en uno de los siguientes dos conceptos (o en ambos): ) listas

Más detalles

Apuntes de Matemática Discreta 9. Funciones

Apuntes de Matemática Discreta 9. Funciones Apuntes de Matemática Discreta 9. Funciones Francisco José González Gutiérrez Cádiz, Octubre de 004 Universidad de Cádiz Departamento de Matemáticas ii Lección 9 Funciones Contenido 9.1 Definiciones y

Más detalles

Conceptos Básicos de Algebra Lineal y Geometría Multidimensional. Alvaro Cofré Duvan Henao

Conceptos Básicos de Algebra Lineal y Geometría Multidimensional. Alvaro Cofré Duvan Henao Conceptos Básicos de Algebra Lineal y Geometría Multidimensional Alvaro Cofré Duvan Henao ii Índice general 1 Sistemas de ecuaciones lineales 1 11 El método de eliminación de Gauss 3 12 Determinantes 8

Más detalles

Tema 2: Espacios vectoriales

Tema 2: Espacios vectoriales Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 Tema 2: Espacios vectoriales Ejercicios 1. En R 2 se definen las siguientes operaciones: (x 1, y 1 ) + (x 2, y 2 ) = (x 1 + x 2, y 1 +

Más detalles

5.1Definición transformación lineal de núcleo ó kernel, e imagen de una transformación lineal y sus propiedades

5.1Definición transformación lineal de núcleo ó kernel, e imagen de una transformación lineal y sus propiedades 5- ransformaciones Lineales 5Definición transformación lineal de núcleo ó kernel, e imagen de una transformación lineal sus propiedades Se denomina transformación lineal a toda función,, cuo dominio codominio

Más detalles