Trabajo, Energía y Potencial

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Trabajo, Energía y Potencial"

Transcripción

1 Cátedra de Física Experimental II Física III Trabajo, Energía y Potencial Prof. Dr. Victor H. Rios 2015

2 METAS DE APRENDIZAJE Al estudiar este capítulo, usted aprenderá: A calcular la energía potencial eléctrica de un conjunto de cargas. El significado e importancia del potencial eléctrico. A determinar el potencial eléctrico que un conjunto de cargas produce en un punto en el espacio. El uso de las superficies equipotenciales para visualizar la forma en que varía el potencial eléctrico en el espacio. A emplear el potencial eléctrico para calcular el campo eléctrico.

3 Contenidos - El concepto físico de trabajo. - Energía potencial eléctrica. - Energía para la formación de un sistema de cargas puntuales discretas. - Aplicaciones a cristales iónicos - Energía en el caso de sistemas continuos. - Potencial y campo electrostático de una carga puntual. - Mostraciones en clase

4

5 Introducción Este capítulo trata de la energía que se asocia con las interacciones eléctricas. Cada vez que se enciende una luz, un reproductor de CD o un aparato eléctrico, se utiliza energía eléctrica, un e- lemento indispensable de nuestra sociedad tecnológica. Así como el concepto de energía hizo posible resolver con facilidad algunos tipos de problemas de mecánica, el empleo de las ideas de energía hace más fácil la solución de una variedad de problemas de electricidad. Cuando una partícula con carga se mueve en un campo eléctrico, el campo ejerce una fuerza que efectúa trabajo sobre la partícula. Este trabajo siempre se puede expresar en términos de la energía potencial eléctrica. Así como la energía potencial gravitatoria depende de la altura de una masa sobre la superficie terrestre, la energía potencial eléctrica depende de la posición que ocupa la partícula con carga en el campo eléctrico. Describiremos la energía potencial eléctrica utilizando un concepto nuevo, llamado potencial eléctrico o simplemente potencial. Es frecuente que en el estudio de los circuitos, una diferencia de potencial entre un punto y otro reciba el nombre de voltaje. Los conceptos de potencial y voltaje son cruciales para entender la manera en que funcionan los circuitos eléctricos, y tienen aplicaciones de gran importancia en los haces de electrones que se utilizan en la radioterapia contra el cáncer, los aceleradores de partículas de alta energía y muchos otros aparatos.

6 Energía potencial eléctrica La fuerza de atracción entre dos masas es conservativa, del mismo modo se puede demostrar que la fuerza de interacción entre cargas es conservativa. El trabajo de una fuerza conservativa, es igual a la diferencia entre el valor inicial y el valor final de una función que solamente depende de las coordenadas que denominamos energía potencial. B A F. dl E pa E pb El trabajo infinitesimal es el producto escalar del vector fuerza F por el vector desplazamiento dl, tangente a la trayectoria. dw = F * dl = F dl cosθ = F * dr Fig.2 Esquema de la trayectoria donde dr es el desplazamiento infinitesimal de la partícula cargada q en la dirección radial.

7 Para calcular el trabajo total, integramos entre la posición inicial A, distante r A del centro de fuerzas y la posición final B, distante r B del centro fijo de fuerzas. Fig.2 Esquema de la trayectoria El trabajo W no depende del camino seguido por la partícula para ir desde la posición A a la posición B. La fuerza de atracción F, que ejerce la carga fija Q sobre la carga q es conservativa. La energía potencial es : El nivel cero de energía potencial se ha establecido en el infinito, para r =, E p =0

8 Energía potencial de una distribución de cargas discretas Vamos a calcular ahora la energía necesaria para formar la distribución uniforme de cargas positivas. O bien, la energía que se liberaría cuando la distribución uniforme de carga positiva explotase de modo que cada parte de ella estuviese a una distancia infinita una de la otra. Determinaremos la expresión de la energía de un sistema de tres cargas, y la generalizamos para una distribución continua de carga. Consideremos un sistema de tres cargas puntuales fijas q 1, q 2 y q 3, tal como se indica en la fig.3 q 1 q 1 q 1 Fig. 3 q 2 q 3 q 2 q 3 q 2 q 3 La energía de este sistema U vale :

9 Llamando V 1 al potencial producido por las cargas q 2 y q 3 en la posición que ocupa q 1. La energía de la carga q 1 en el campo producido por las otras dos es: q 2 q 3 Análogamente, llamando V 2 al potencial producido por las cargas q 1 y q 3 en la posición que ocupa q 2. La energía de la carga q 2 en el campo producido por las otras dos es: q 1 q 3 Del mismo modo, llamando V 3 al potencial producido por las cargas q 1 y q 2 en la posición que ocupa q 3. La energía de la carga q 3 en el campo producido por las otras dos es: q 1 Sumando estas tres contribuciones obtenemos el doble de las energías del sistema de partículas q 2

10 Ejemplo 1 - Sistema de cargas puntuales Dos cargas puntuales se localizan en el eje x, q 1 = - 2e en x = 0 y q 2 =+e en x = a. a) Determine el trabajo que debe realizar una fuerza externa para llevar una tercera carga puntual q 3 = + e del infinito a x = 2a. b) Determine la energía potencial total del sistema de tres cargas. SOLUCIÓN La figura presenta el arreglo final de las tres cargas. a) El trabajo que debe hacer una fuerza externa sobre q3 es igual a la diferencia entre dos cantidades: la energía potencial U asociada con q3 cuando está en x = 2a y la energía potencial que tiene cuando está infinitamente lejos. La segunda de éstas es igual a cero, por lo que el trabajo que debe realizarse es igual a U. Las distancias entre las cargas son r13 = a y r23 = a, por lo que a partir de la ecuación anterior Si q3 se lleva del infinito a lo largo del eje + x, es atraída por q1 pero repelida con más fuerza por q2; por ello, debe hacerse un trabajo positivo para llevar q3 a la posición x = 2a.

11 b) La energía potencial total del conjunto de tres cargas está dado por la ecuación : Física III -15

12 Generalización de la expresión de la energía para el caso continuo N i q i V i U N j ij j i r q k V 1 N i N j ij j i j i r q q k U 1 1 ; 2 Z r ' v X Y dq' r ( r ' ) dτ' Consideremos el caso de la distribución Volumétrica, la energía será: ) ( ) ( 2 1 ) ( 2 1 r r V r d r V q U i i i Fig. 7 donde Física III -15

13 Concepto de potencial Del mismo modo que hemos definido el campo eléctrico, el potencial es una propiedad del punto P del espacio que rodea la carga Q. Definimos potencial V como la energía potencial de la unidad de carga positiva imaginariamente situada en P, V = E p / q. El potencial es una magnitud escalar V Q r La unidad de medida del potencial en el S.I. de unidades es el volt (V)

14 Relaciones entre fuerzas y campos Una carga en el seno de un campo eléctrico E experimenta una fuerza proporcional al campo cuyo módulo es : F = q E Fig. 15 Campo eléctrico cuya dirección es la misma, pero el sentido puede ser el mismo o el contrario dependiendo de que la carga sea positiva o negativa. Relaciones entre campo y diferencia de potencial

15 En la fig. 16, vemos la interpretación geométrica. Fig. 6 Interpretación de E y V

16 CAMPOS CONSERVATIVOS CONDICION ELECTROSTATICA El campo eléctrostático E es conservativo, lo que quiere decir que la integral del E a lo largo de un camino cerrado es: c E. dl 0 Prueba Un campo vectorial E independiente del tiempo es conservativo cuando se deriva de un campo escalar V(r) es denominado potencial de E, es decir existe una función V (r) tal que: E V V x V iˆ y ˆ V j z kˆ Dado el potencial V podemos calcular el vector campo eléctrico E, mediante el operador gradiente. Cuando se cumple esta condición podemos escribir: dv ( r) V. dr E. dr es una diferencial exacta.

17 Interpretación física En particular, si F U representa el campo de fuerzas El trabajo mecánico para trasladar una partícula de A a B, será: Ya que W AB F. dr r ( B) r ( A) F. dr du U ( B) U ( A) du U( B) U( A) y z A F r r (B) (A) U( r ) es la energía potencial de la partícula en el campo de fuerzas x B F El trabajo del campo será: W AB U( B) U( A) U Si el camino entre A y B es cerrado ( A= B), resulta: W AA F. dr C 0

18 Trabajo realizado por el campo eléctrico El trabajo que realiza el campo eléctrico sobre una carga q cuando se mueve desde una posición en el que el potencial es V A a otro lugar en el que el potencial es V B es: W B F. dl EpA EpB q ( VA VB A ) Fig. 7 Campo y potencial eléctrico

19 A partir de la ecuación W B F. dl EpA EpB q ( VA VB A ) a) El campo eléctrico realiza un trabajo W cuando una carga positiva q se mueve desde un lugar A en el que el potencial es alto a otro B en el que el potencial es más bajo, Si q > 0 y VA > VB entonces W > 0 b) El campo eléctrico realiza un trabajo cuando una carga negativa q se mueve desde un lugar B en el que el potencial es más bajo a otro A en el que el potencial es más alto. c) Una fuerza externa tendrá que realizar un trabajo para trasladar una carga positiva q desde un lugar B en el que el potencial es más bajo hacia otro lugar A en el que el potencial más alto. d) Una fuerza externa tendrá que realizar un trabajo para trasladar una carga negativa q desde un lugar A en el que el potencial es más alto hacia otro lugar B en el que el potencial más bajo.

20 Electrón volts La magnitud e de la carga del electrón se usa para definir una unidad de energía que es útil en muchos cálculos con los sistemas atómico y nuclear. Cuando una partícula con carga q se desplaza de un punto en el que el potencial es Vb a otro en que es Va, el cambio en la energía potencial U es Si la carga q es igual a la magnitud e de la carga del electrón, x de potencial es Vab, el cambio en la energía es C, y la diferencia Esta cantidad de energía se define como 1 electrón volt (1 ev): A menudo se utilizan los múltiplos mev, kev, MeV, GeV y TeV. CUIDADO Recuerde que el electrón volt es una unidad de energía, no una unidad de potencial ni de diferencia de potencial!!!

21 Ejemplo 2 - Fuerza eléctrica y potencial eléctrico En el interior de un acelerador lineal, un protón (carga +e = x C se desplaza en línea recta de un punto a a otro punto b una distancia total d = 0.50 m. A lo largo de esta línea, el campo eléctrico es uniforme con magnitud E =1.5 x 10 7 V/m = 1.5 x10 7 N/C en la dirección de a a b. Determine a) la fuerza sobre el protón; b) el trabajo realizado sobre este por el campo; c) la diferencia de potencial Va -Vb. SOLUCIÓN a) La fuerza sobre el protón está en la misma dirección que el campo eléctrico, y su magnitud es b) La fuerza es constante y está en la misma dirección que el campo eléctrico, de manera que el trabajo efectuado sobre el protón es

22 c) La diferencia de potencial es el trabajo por unidad de carga, que es Se obtiene el mismo resultado con más facilidad si se recuerda que 1 electrón volt es igual a 1 volt multiplicado por la carga e. Como el trabajo realizado es 7.5 x 10 6 ev y la carga es e, la diferencia de potencial es (7.5 x 10 6 ev) / e = 7.5 x 10 6 V. Ejemplo 3 - Potencial debido a dos cargas puntuales Un dipolo eléctrico consiste en dos cargas puntuales, q1 = +12 nc y q2 = -12 nc, colocadas a una distancia de 10 cm una de la otra (figura ). Calcule los potenciales en los puntos a, b y c sumando los potenciales debidos a cada carga. SOLUCIÓN Para encontrar V en cada punto, se hace la suma algebraica

23 En el punto a el potencial debido a la carga positiva q1 es y el potencial debido a la carga q2 es El potencial Va en el punto a es la suma de éstos: Con cálculos similares se demuestra que en el punto b el potencial debido a la carga positiva es V, el potencial debido a la carga negativa es V, y En el punto c, el potencial debido a la carga positiva es El potencial debido a la carga negativa es 2830 V, y el potencial total es igual a cero: El potencial también es igual a cero en el infinito (infinitamente lejos de ambas cargas).

24 Bibliografía - Alonso; Finn. "Física ". Cap. 21. Addison-Wesley Iberoamericana. - Gettys; Keller; Skove. "Física clásica y moderna". Cap. 22. McGraw-Hill. - Halliday; Resnick. "Fundamentos de física". Cap. 29. CECSA. - Roller; Blum. "Física". Cap. 28. Reverté. - Serway. "Física". Cap. 25. McGraw-Hill. - Tipler. "Física". Cap. 20. Reverté.

25 Energía potencial eléctrica: La fuerza eléctrica causada por cualquier conjunto de cargas es una fuerza conservativa. El trabajo W realizado por la fuerza eléctrica sobre una partícula con carga que se mueve en un campo eléctrico se representa por el cambio en una función de energía potencial U. La energía potencial eléctrica para dos cargas puntuales q y q 0 depende de su separación r. La energía potencial eléctrica para una carga q 0 en presencia de un conjunto de cargas q 1, q 2, q 3 depende de la distancia de q 0 a cada una de las demás cargas.

26 Potencial eléctrico: El potencial, denotado por V, es energía potencial por unidad de carga. La diferencia de potencial entre dos puntos es igual a la cantidad de trabajo que se requeriría para trasladar una unidad de carga de prueba positiva entre esos puntos. El potencial V debido a una cantidad de carga se calcula mediante una suma (si la carga es un conjunto de cargas puntuales) o mediante integración (si la carga es una distribución). La diferencia de potencial entre dos puntos a y b, también llamada potencial de a con respecto a b, está dado por la integral de línea de El potencial de un punto dado se encuentra obteniendo primero y después resolviendo la integral.

27 Cálculo del campo eléctrico a partir del potencial eléctrico: Si se conoce el potencial V como función de las coordenadas x, y y z, las componentes del campo eléctrico en cualquier punto están dadas por las derivadas parciales de V.

28 Apéndice Física III -15

29 El dipolo eléctrico El dipolo eléctrico es un tipo de distribución de carga que se presenta frecuentemente como veremos en el tema dedicado a los dieléctricos. Un dipolo eléctrico está formado por dos cargas, una positiva +Q y otra negativa -Q del mismo valor, separadas una distancia d. El potencial en el punto P distante r 1 de la carga Q y r 2 de la carga +Q es Expresamos r 1 y r 2 en función de r y q, que es la posición del punto P expresada en coordenadas polares. Fig. 17 Dipolo eléctrico Teniendo en cuenta que d es pequeño frente a r, podemos obtener una buena aproximación empleando el desarrollo en serie

30 Para expresar de forma aproximada los cocientes r / r 1 y r / r 2. Despreciando los términos de orden superior a d 2 / r 2 El potencial se expresa en función de r y θ Es interesante destacar, que el potencial debido a un dipolo disminuye con la inversa del cuadrado de la distancia r, mientras que para una carga puntual disminuye con la inversa de r.

31 Fig. Potencial del Dipolo Eléctrico Física III -15

32 Uniones Intermoleculares Se establecen entre átomos cargados eléctricamente y que pertenecen a dos especies químicas distintas. Las especies químicas son iones o moléculas. La carga eléctrica proviene de que estas especies son iones, o átomos involucrados en un dipolo permanente o en un dipolo inducido. Fuerzas Moleculares de Van der Waals La base de las fuerzas de van der Waals es la existencia de dipolos eléctricos en las moléculas Estos dipolos pueden ser permanentes, fugaces o inducidos. - m + + H O + H Los dipolos permanentes derivan de la asimetría de las cargas electrónicas. -

33 Fuerzas Moleculares de Van der Waals Física III -15 El momento dipolar permanente se determina por espectroscopía (efecto Stark) o por la constante dieléctrica. Momentos Dipolares (m) m [D] CCl 4 0 H 2 0 H HCl 1.08 HI 0.42 D (Debye): 3.3 x C/m

34 Fin Física III -15

Potencial eléctrico. du = - F dl

Potencial eléctrico. du = - F dl Introducción Como la fuerza gravitatoria, la fuerza eléctrica es conservativa. Existe una función energía potencial asociada con la fuerza eléctrica. Como veremos, la energía potencial asociada a una partícula

Más detalles

Campo y potencial eléctrico de una carga puntual

Campo y potencial eléctrico de una carga puntual Campo y potencial eléctrico de una carga puntual Concepto de campo Energía potencial Concepto de potencial Relaciones entre fuerzas y campos Relaciones entre campo y diferencia de potencial Trabajo realizado

Más detalles

CONCEPTOS BÁSICOS DE ELECTRICIDAD

CONCEPTOS BÁSICOS DE ELECTRICIDAD CONCEPTOS BÁSICOS DE ELECTRICIDAD Ley de Coulomb La ley de Coulomb nos describe la interacción entre dos cargas eléctricas del mismo o de distinto signo. La fuerza que ejerce la carga Q sobre otra carga

Más detalles

JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 Energía Potencial eléctrica

JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 Energía Potencial eléctrica Energía Potencial eléctrica Si movemos la carga q2 respecto a la carga q1 Recordemos que la diferencia en la energía tenemos que: potencial U cuando una partícula se mueve entre dos puntos a y b bajo la

Más detalles

Campo eléctrico 1: Distribuciones discretas de carga

Campo eléctrico 1: Distribuciones discretas de carga Campo eléctrico 1: Distribuciones discretas de carga Introducción Carga eléctrica Conductores y aislantes y carga por inducción Ley de Coulomb El campo eléctrico Líneas de campo eléctrico Movimiento de

Más detalles

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico q 1 q 2 Prof. Félix Aguirre 35 Energía Electrostática Potencial Eléctrico La interacción electrostática es representada muy bien a través de la ley de Coulomb, esto es: mediante fuerzas. Existen, sin embargo,

Más detalles

TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS

TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1. CONCEPTO DE TRABAJO: A) Trabajo de una fuerza constante Todos sabemos que cuesta trabajo tirar de un sofá pesado, levantar una pila de libros

Más detalles

Introducción. El concepto de energía potencial también tiene una aplicación muy importante en el estudio de la electricidad.

Introducción. El concepto de energía potencial también tiene una aplicación muy importante en el estudio de la electricidad. Potencial Eléctrico Presentación basada en el material contenido en: R. Serway,; Physics for Scientists and Engineers, Saunders College Publishers, 3 rd edition. Introducción El concepto de energía potencial

Más detalles

Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía.

Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía. INTRODUCCIÓN. Mecánica Racional 20 Este método es útil y ventajoso porque analiza las fuerzas, velocidad, masa y posición de una partícula sin necesidad de considerar las aceleraciones y además simplifica

Más detalles

Dinámica. Fuerza es lo que produce cualquier cambio en la velocidad de un objeto. Una fuerza es lo que causa una aceleración

Dinámica. Fuerza es lo que produce cualquier cambio en la velocidad de un objeto. Una fuerza es lo que causa una aceleración Tema 4 Dinámica Fuerza Fuerza es lo que produce cualquier cambio en la velocidad de un objeto Una fuerza es lo que causa una aceleración La fuerza neta es la suma de todas las fuerzas que actúan sobre

Más detalles

TEMA 8 CAMPO ELÉCTRICO

TEMA 8 CAMPO ELÉCTRICO TEMA 8 CAMPO ELÉCTRICO INTERACCIÓN ELECTROSTÁTICA Los antiguos griegos ya sabían que el ámbar frotado con lana adquiría la propiedad de atraer cuerpos ligeros. Todos estamos familiarizados con los efectos

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

Biopolímero s (4831)

Biopolímero s (4831) Biopolímero s (4831) 2.2. Interacciones electrostáticas Las interacciones que se presentan entre iones, dipolos permanentes o inducidos, cuadrupolos permanentes o inducidos, etc. reciben el nombre de interacciones

Más detalles

Entonces el trabajo de la fuerza eléctrica es : =F d (positivo porque la carga se desplaza en el sentido en que actúa la fuerza (de A a B)

Entonces el trabajo de la fuerza eléctrica es : =F d (positivo porque la carga se desplaza en el sentido en que actúa la fuerza (de A a B) Consideremos la siguiente situación. Una carga Q que genera un campo eléctrico uniforme, y sobre este campo eléctrico se ubica una carga puntual q.de tal manara que si las cargas son de igual signo la

Más detalles

CAMPO ELÉCTRICO FCA 10 ANDALUCÍA

CAMPO ELÉCTRICO FCA 10 ANDALUCÍA CMO LÉCTRICO FC 0 NDLUCÍ. a) xplique la relación entre campo y potencial electrostáticos. b) Una partícula cargada se mueve espontáneamente hacia puntos en los que el potencial electrostático es mayor.

Más detalles

Representación de un Vector

Representación de un Vector VECTORES Vectores Los vectores se caracterizan por tener una magnitud, expresable por un número real, una dirección y un sentido. Un ejemplo de vectores son los desplazamientos. Otro ejemplo de vectores

Más detalles

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano 24 Unidad II Vectores 2.1 Magnitudes escalares y vectoriales Unidad II. VECTORES Para muchas magnitudes físicas basta con indicar su valor para que estén perfectamente definidas y estas son las denominadas

Más detalles

Líneas Equipotenciales

Líneas Equipotenciales Líneas Equipotenciales A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. En esta experiencia se estudia

Más detalles

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d.

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d. C U R S O: FÍSICA COMÚN MATERIAL: FC-09 TRABAJO Y ENERGÍA La energía desempeña un papel muy importante en el mundo actual, por lo cual se justifica que la conozcamos mejor. Iniciamos nuestro estudio presentando

Más detalles

Órbitas producidas por fuerzas centrales

Órbitas producidas por fuerzas centrales Capítulo 10 Órbitas producidas por fuerzas centrales 10.1 Introducción En un capítulo anterior hemos visto una variedad de fuerzas, varias de las cuales, como por ejemplo la elástica, la gravitatoria y

Más detalles

1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen.

1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen. Física 2º de Bachillerato. Problemas de Campo Eléctrico. 1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen. 2.-

Más detalles

Te damos los elementos básicos de los vectores para que puedas entender las operaciones básicas.

Te damos los elementos básicos de los vectores para que puedas entender las operaciones básicas. 4 año secundario Vectores, refrescando conceptos adquiridos Te damos los elementos básicos de los vectores para que puedas entender las operaciones básicas. El término vector puede referirse al: concepto

Más detalles

MATERIA Y ENERGÍA (Física)

MATERIA Y ENERGÍA (Física) MATERIA Y ENERGÍA (Física) 1. Tema 1: Conceptos generales. 1. La materia. Propiedades macroscópicas y su medida 2. Estructura microscópica de la materia 3. Interacción gravitatoria y electrostática 4.

Más detalles

INTRODUCCIÓN A VECTORES Y MAGNITUDES

INTRODUCCIÓN A VECTORES Y MAGNITUDES C U R S O: FÍSIC Mención MTERIL: FM-01 INTRODUCCIÓN VECTORES Y MGNITUDES La Física tiene por objetivo describir los fenómenos que ocurren en la naturaleza, a través de relaciones entre magnitudes físicas.

Más detalles

Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA

Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA Conoce los vectores, sus componentes y las operaciones que se pueden realizar con ellos. Aprende cómo se representan las rectas y sus posiciones relativas. Impreso por Juan Carlos Vila Vilariño Centro

Más detalles

Nivelación de Matemática MTHA UNLP 1. Vectores

Nivelación de Matemática MTHA UNLP 1. Vectores Nivelación de Matemática MTHA UNLP 1 1. Definiciones básicas Vectores 1.1. Magnitudes escalares y vectoriales. Hay magnitudes que quedan determinadas dando un solo número real: su medida. Por ejemplo:

Más detalles

1. Magnitudes vectoriales

1. Magnitudes vectoriales FUNDACIÓN INSTITUTO A DISTANCIA EDUARDO CABALLERO CALDERON Espacio Académico: Física Docente: Mónica Bibiana Velasco Borda mbvelascob@uqvirtual.edu.co CICLO: V INICADORES DE LOGRO VECTORES 1. Adquiere

Más detalles

Geometría Tridimensional

Geometría Tridimensional Capítulo 4 Geometría Tridimensional En dos dimensiones trabajamos en el plano mientras que en tres dimensiones trabajaremos en el espacio, también provisto de un sistema de coordenadas. En el espacio,

Más detalles

Información importante. 1. El potencial eléctrico. Preuniversitario Solidario. 1.1. Superficies equipotenciales.

Información importante. 1. El potencial eléctrico. Preuniversitario Solidario. 1.1. Superficies equipotenciales. 1.1 Superficies equipotenciales. Preuniversitario Solidario Información importante. Aprendizajes esperados: Es guía constituye una herramienta que usted debe manejar para poder comprender los conceptos

Más detalles

Seminario Universitario Material para estudiantes. Física. Unidad 2. Vectores en el plano. Lic. Fabiana Prodanoff

Seminario Universitario Material para estudiantes. Física. Unidad 2. Vectores en el plano. Lic. Fabiana Prodanoff Seminario Universitario Material para estudiantes Física Unidad 2. Vectores en el plano Lic. Fabiana Prodanoff CONTENIDOS Vectores en el plano. Operaciones con vectores. Suma y producto por un número escalar.

Más detalles

6. VECTORES Y COORDENADAS

6. VECTORES Y COORDENADAS 6. VECTORES Y COORDENADAS Página 1 Traslaciones. Vectores Sistema de referencia. Coordenadas. Punto medio de un segmento Ecuaciones de rectas. Paralelismo. Distancias Página 2 1. TRASLACIONES. VECTORES

Más detalles

Tema 2 Límites de Funciones

Tema 2 Límites de Funciones Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos

Más detalles

Álgebra Vectorial. Principios de Mecánica. Licenciatura de Física. Curso 2007-2008. 1

Álgebra Vectorial. Principios de Mecánica. Licenciatura de Física. Curso 2007-2008. 1 Álgebra Vectorial Principios de Mecánica. Licenciatura de Física. Curso 2007-2008. 1 Indice. 1. Magnitudes Escalares y Vectoriales. 2. Vectores. 3. Suma de Vectores. Producto de un vector por un escalar.

Más detalles

Las leyes de Kepler y la ley de la Gravitación Universal

Las leyes de Kepler y la ley de la Gravitación Universal Las leyes de Kepler y la ley de la Gravitación Universal Rosario Paredes y Víctor Romero Rochín Instituto de Física, UNAM 16 de septiembre de 2014 Resumen Estas notas describen con cierto detalle la deducción

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 13 y #14

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 13 y #14 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 3 y #4 Desigualdades Al inicio del Capítulo 3, estudiamos las relaciones de orden en los número reales y el signi cado de expresiones

Más detalles

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO 1. Trabajo mecánico y energía. El trabajo, tal y como se define físicamente, es una magnitud diferente de lo que se entiende sensorialmente por trabajo. Trabajo

Más detalles

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define. VECTORES El estudio de los vectores es uno de tantos conocimientos de las matemáticas que provienen de la física. En esta ciencia se distingue entre magnitudes escalares y magnitudes vectoriales. Se llaman

Más detalles

TRABAJO Y ENERGÍA Página 1 de 13

TRABAJO Y ENERGÍA Página 1 de 13 TRABAJO Y ENERGÍA Página 1 de 13 EJERCICIOS DE TRABAJO Y ENERGÍA RESUELTOS: Ejemplo 1: Calcular el trabajo necesario para estirar un muelle 5 cm, si la constante del muelle es 1000 N/m. La fuerza necesaria

Más detalles

Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores

Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Universidad Politécnica de Madrid 5 de marzo de 2010 2 4.1. Planificación

Más detalles

Definición operacional, independientemente de cualquier sistema de referencia

Definición operacional, independientemente de cualquier sistema de referencia Carácter de las magnitudes físicas: Magnitudes escalares y vectoriales. Vectores unitarios, Operaciones con vectores. No todas las magnitudes físicas tienen las mismas características matemáticas El carácter

Más detalles

164 Ecuaciones diferenciales

164 Ecuaciones diferenciales 64 Ecuaciones diferenciales Ejercicios 3.6. Mecánica. Soluciones en la página 464. Una piedra de cae desde el reposo debido a la gravedad con resistencia despreciable del aire. a. Mediante una ecuación

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos Boletín 5 Campo eléctrico Ejercicio 1 La masa de un protón es 1,67 10 7 kg y su carga eléctrica 1,6 10 19 C. Compara la fuerza de repulsión eléctrica entre dos protones situados en

Más detalles

Trabajo, fuerzas conservativas. Energia.

Trabajo, fuerzas conservativas. Energia. Trabajo, fuerzas conservativas. Energia. TRABAJO REALIZADO POR UNA FUERZA CONSTANTE. Si la fuerza F que actúa sobre una partícula constante (en magnitud y dirección) el movimiento se realiza en línea recta

Más detalles

TEMA: CAMPO ELÉCTRICO

TEMA: CAMPO ELÉCTRICO TEMA: CAMPO ELÉCTRICO C-J-06 Una carga puntual de valor Q ocupa la posición (0,0) del plano XY en el vacío. En un punto A del eje X el potencial es V = -120 V, y el campo eléctrico es E = -80 i N/C, siendo

Más detalles

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos

Más detalles

Electrostática: ejercicios resueltos

Electrostática: ejercicios resueltos Electrostática: ejercicios resueltos 1) Dos cargas de 4 y 9 microculombios se hallan situadas en los puntos (2,0) y (4,0) del eje 0X. Calcula el campo y el potencial eléctrico en el punto medio. 2) Dos

Más detalles

Cap. 24 La Ley de Gauss

Cap. 24 La Ley de Gauss Cap. 24 La Ley de Gauss Una misma ley física enunciada desde diferentes puntos de vista Coulomb Gauss Son equivalentes Pero ambas tienen situaciones para las cuales son superiores que la otra Aquí hay

Más detalles

UNIDAD I NÚMEROS REALES

UNIDAD I NÚMEROS REALES UNIDAD I NÚMEROS REALES Los números que se utilizan en el álgebra son los números reales. Hay un número real en cada punto de la recta numérica. Los números reales se dividen en números racionales y números

Más detalles

ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o.

ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o. ESTÁTICA Sesión 2 2 VECTORES 2.1. Escalares y vectores 2.2. Cómo operar con vectores 2.2.1. Suma vectorial 2.2.2. Producto de un escalar y un vector 2.2.3. Resta vectorial 2.2.4. Vectores unitarios 2.2.5.

Más detalles

Lección 4: Suma y resta de números racionales

Lección 4: Suma y resta de números racionales GUÍA DE MATEMÁTICAS II Lección : Suma y resta de números racionales En esta lección recordaremos cómo sumar y restar números racionales. Como los racionales pueden estar representados como fracción o decimal,

Más detalles

TRABAJO POTENCIA Y ENERGÍA

TRABAJO POTENCIA Y ENERGÍA TRABAJO POTENCIA Y ENERGÍA TRABAJO, POTENCIA Y ENERGÍA Todos habitualmente utilizamos palabras como trabajo, potencia o energía. En esta unidad precisaremos su significado en el contexto de la física;

Más detalles

5.3 Esfuerzos y deformaciones producidos por flexión. Puente grúa. 5.3.1 Flexión pura

5.3 Esfuerzos y deformaciones producidos por flexión. Puente grúa. 5.3.1 Flexión pura 5.3 Esfuerzos y deformaciones producidos por flexión Puente grúa 5.3.1 Flexión pura Para cierta disposición de cargas, algunos tramos de los elementos que las soportan están sometidos exclusivamente a

Más detalles

FÍSICA 2º DE BACHILLERATO Problemas: CAMPO ELÉCTRICO NOVIEMBRE.2011

FÍSICA 2º DE BACHILLERATO Problemas: CAMPO ELÉCTRICO NOVIEMBRE.2011 FÍSIC º DE BCHILLER Problemas: CMP ELÉCRIC NVIEMBRE.0. Dos cargas puntuales iguales, de, 0 6 C cada una, están situadas en los puntos (0,8) m y B (6,0) m. Una tercera carga, de, 0 6 C, se sitúa en el punto

Más detalles

V = Ep /q = w /q = 75. 10-4 J / 12. 10-8 C = 6,25. 10 4 V

V = Ep /q = w /q = 75. 10-4 J / 12. 10-8 C = 6,25. 10 4 V Ejercicio resuelto Nº 1 En un punto de un campo eléctrico, una carga eléctrica de 12. 10-8 C, adquiere una energía potencial de 75. 10-4 J. Determinar el valor del Potencial Eléctrico en ese punto. En

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS EXPRESIONES ALGEBRAICAS. POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones algebraicas: bac,

Más detalles

Vectores en R n y producto punto

Vectores en R n y producto punto Vectores en R n y producto punto Departamento de Matemáticas, CCIR/ITESM 10 de enero de 011 Índice 4.1. Introducción............................................... 1 4.. Vector..................................................

Más detalles

Nombre:..Curso:.. GUIA DE TRABAJO Y POTENCIA MECANICA. Un niño traslada una caja desde el punto A al punto B recorriendo 4 m (fig.

Nombre:..Curso:.. GUIA DE TRABAJO Y POTENCIA MECANICA. Un niño traslada una caja desde el punto A al punto B recorriendo 4 m (fig. Nombre:..Curso:.. GUIA DE TRABAJO Y POTENCIA MECANICA Trabajo realizado por una fuerza. Un niño traslada una caja desde el punto A al punto B recorriendo 4 m (fig. N 1), fig N 1 Desde el punto de vista

Más detalles

Subespacios vectoriales en R n

Subespacios vectoriales en R n Subespacios vectoriales en R n Víctor Domínguez Octubre 2011 1. Introducción Con estas notas resumimos los conceptos fundamentales del tema 3 que, en pocas palabras, se puede resumir en técnicas de manejo

Más detalles

3.2 Potencial debido a un sistema de cargas puntuales. 3.4 Cálculo del potencial para distribuciones continuas de carga.

3.2 Potencial debido a un sistema de cargas puntuales. 3.4 Cálculo del potencial para distribuciones continuas de carga. CAPÍTULO 3 El potencial eléctrico Índice del capítulo 3 31 3.1 Diferencia de potencial eléctrico. 3.2 Potencial debido a un sistema de cargas puntuales. 3.33 Determinación del potencial eléctrico a partir

Más detalles

d s = 2 Experimento 3

d s = 2 Experimento 3 Experimento 3 ANÁLISIS DEL MOVIMIENTO EN UNA DIMENSIÓN Objetivos 1. Establecer la relación entre la posición y la velocidad de un cuerpo en movimiento 2. Calcular la velocidad como el cambio de posición

Más detalles

TEMA 4 FRACCIONES MATEMÁTICAS 1º ESO

TEMA 4 FRACCIONES MATEMÁTICAS 1º ESO TEMA 4 FRACCIONES Criterios De Evaluación de la Unidad 1 Utilizar de forma adecuada las fracciones para recibir y producir información en actividades relacionadas con la vida cotidiana. 2 Leer, escribir,

Más detalles

CURSO BÁSICO DE FÍSICA MECÁNICA PROYECTO UNICOMFACAUCA TU PROYECTO DE VIDA

CURSO BÁSICO DE FÍSICA MECÁNICA PROYECTO UNICOMFACAUCA TU PROYECTO DE VIDA UNICOMFACAUCA TU DE VIDA Tabla de contenido... 2 PARTES DE UN VECTOR... 3 Notación... 5 Tipos de vectores... 5 Componentes de un vector... 6 Operaciones con vectores... 7 Suma de vectores... 7 Resta de

Más detalles

TEORÍA TEMA 9. 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N)

TEORÍA TEMA 9. 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N) 1. Definición de Viga de alma llena TEORÍA TEMA 9 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N) 3. Determinación de los esfuerzos característicos i. Concepto de Polígonos de Presiones ii. Caso

Más detalles

Qué son los monomios?

Qué son los monomios? Qué son los monomios? Recordemos qué es una expresión algebraica. Definición Una expresión algebraica es aquella en la que se utilizan letras, números y signos de operaciones. Si se observan las siguientes

Más detalles

INTERACCIÓN GRAVITATORIA

INTERACCIÓN GRAVITATORIA INTERACCIÓN GRAVITATORIA 1. Teorías y módulos. 2. Ley de gravitación universal de Newton. 3. El campo gravitatorio. 4. Energía potencial gravitatoria. 5. El potencial gravitatorio. 6. Movimientos de masas

Más detalles

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Lineal Ma1010 es en R n y producto punto Departamento de Matemáticas ITESM es en R n y producto punto Álgebra Lineal - p. 1/40 En este apartado se introduce el concepto de vectores en el espacio

Más detalles

JOSE VICENTE CONTRERAS JULIO CALCULO INTEGRAL LA ANTIDERIVADA

JOSE VICENTE CONTRERAS JULIO CALCULO INTEGRAL LA ANTIDERIVADA CALCULO INTEGRAL LA ANTIDERIVADA Así como las operaciones matemáticas de la adición, la multiplicación y la potenciación tienen sus inversas en la sustracción, la división y la radicación, la diferenciación

Más detalles

GEOMETRÍA MOLECULAR. Lic. Lidia Iñigo

GEOMETRÍA MOLECULAR. Lic. Lidia Iñigo GEOMETRÍA MOLECULAR Lic. Lidia Iñigo Hemos dicho al estudiar uniones químicas que un enlace covalente es polar cuando existe cierta diferencia de electronegatividad entre los átomos que se unen. La magnitud

Más detalles

requerido). vectoriales, y operan según el Álgebra a continuación. 2.1.2 Vector. dirección. representados.

requerido). vectoriales, y operan según el Álgebra a continuación. 2.1.2 Vector. dirección. representados. 2.1 Vectores. 2.1.1 Introducción. Cuando queremos referirnos al tiempo que demanda un suceso determinado, nos basta con una magnitud (se demoró 3 segundos, saltó durante 1 minuto, volverá el próximo año,

Más detalles

Leyes de movimiento. Leyes del movimiento de Newton. Primera ley de Newton o ley de la inercia. Segunda ley de Newton

Leyes de movimiento. Leyes del movimiento de Newton. Primera ley de Newton o ley de la inercia. Segunda ley de Newton Leyes de movimiento Leyes del movimiento de Newton La mecánica, en el estudio del movimiento de los cuerpos, se divide en cinemática y dinámica. La cinemática estudia los diferentes tipos de movimiento

Más detalles

G = 6'67.10-11 N.m 2 /kg 2

G = 6'67.10-11 N.m 2 /kg 2 Demostrar que el campo gravitatorio es un campo conservativo. Un campo es conservativo si el trabajo que realizan las fuerzas del campo para trasladar una masa de un punto a otro es independiente del camino

Más detalles

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 1 de agosto de 2003 1. Introducción Cualquier modelo de una situación es una simplificación de la situación real. Por lo tanto,

Más detalles

03 ENERGÍA ALGUNOS COMENTARIOS Y CUESTIONES

03 ENERGÍA ALGUNOS COMENTARIOS Y CUESTIONES 03 ENERGÍA ALGUNOS COMENTARIOS Y CUESTIONES Feynman: Es importante darse cuenta que en la física actual no sabemos lo que la energía es 03.0 Le debe interesar al óptico la energía? 03.1 Fuerza por distancia.

Más detalles

LINEAS EQUIPOTENCIALES

LINEAS EQUIPOTENCIALES LINEAS EQUIPOTENCIALES Construcción de líneas equipotenciales. Visualización del campo eléctrico y del potencial eléctrico. Análisis del movimiento de cargas eléctricas en presencia de campos eléctricos.

Más detalles

NÚMEROS NATURALES Y NÚMEROS ENTEROS

NÚMEROS NATURALES Y NÚMEROS ENTEROS NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de un rebaño) y de

Más detalles

Definición de vectores

Definición de vectores Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre

Más detalles

MICROECONOMÍA II PRÁCTICA TEMA III: MONOPOLIO

MICROECONOMÍA II PRÁCTICA TEMA III: MONOPOLIO MICROECONOMÍA II PRÁCTICA TEMA III: MONOPOLIO EJERCICIO 1 Primero analizamos el equilibrio bajo el monopolio. El monopolista escoge la cantidad que maximiza sus beneficios; en particular, escoge la cantidad

Más detalles

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales Práctica 4 - Parte Límite de funciones En lo que sigue, veremos cómo la noción de límite introducida para sucesiones se etiende al caso de funciones reales. Esto nos permitirá estudiar el comportamiento

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II ANDALUCÍA CNVCATRIA JUNI 009 SLUCIÓN DE LA PRUEBA DE ACCES AUTR: José Luis Pérez Sanz pción A Ejercicio En este límite nos encontramos ante la indeterminación. Agrupemos la

Más detalles

Instituto de Energía y Desarrollo Sustentable ENERGÍA. CONOCIMIENTOS MÍNIMOS Energía desde la Física IEDS CNEA

Instituto de Energía y Desarrollo Sustentable ENERGÍA. CONOCIMIENTOS MÍNIMOS Energía desde la Física IEDS CNEA Instituto de Energía y Desarrollo Sustentable ENERGÍA CONOCIMIENTOS MÍNIMOS Energía desde la Física IEDS CNEA 09 1. CONCEPTOS BÁSICOS DE MECÁNICA: FUERZA Y MASA La segunda ley de Newton proporciona significados

Más detalles

SUMA Y RESTA DE VECTORES

SUMA Y RESTA DE VECTORES SUMA Y RESTA DE VECTORES Definición de vectores Un vector es la expresión que proporciona la medida de cualquier magnitud vectorial. Un vector es todo segmento de recta dirigido en el espacio. Cada vector

Más detalles

Colisión de dos partículas

Colisión de dos partículas Capítulo 14 Colisión de dos partículas 14.1 Descripción de un proceso de colisión en el sistema centro de masa En el capítulo anterior describimos la colisión de un proyectil contra un centro de fuerza

Más detalles

PROPORCIONALIDAD - teoría

PROPORCIONALIDAD - teoría PROPORCIONALIDAD RAZÓN: razón de dos números es el cociente indicado de ambos. Es decir, la razón de los dos números a y b es a:b, o lo que es lo mismo, la fracción b a. PROPORCIÓN: es la igualdad de dos

Más detalles

3.1 DEFINICIÓN. Figura Nº 1. Vector

3.1 DEFINICIÓN. Figura Nº 1. Vector 3.1 DEFINICIÓN Un vector (A) una magnitud física caracterizable mediante un módulo y una dirección (u orientación) en el espacio. Todo vector debe tener un origen marcado (M) con un punto y un final marcado

Más detalles

Experimento 7 MOMENTO LINEAL. Objetivos. Teoría. Figura 1 Dos carritos sufren una colisión parcialmente inelástica

Experimento 7 MOMENTO LINEAL. Objetivos. Teoría. Figura 1 Dos carritos sufren una colisión parcialmente inelástica Experimento 7 MOMENTO LINEAL Objetivos 1. Verificar el principio de conservación del momento lineal en colisiones inelásticas, y 2. Comprobar que la energía cinética no se conserva en colisiones inelásticas

Más detalles

INSTITUTO VALLADOLID PREPARATORIA página 37

INSTITUTO VALLADOLID PREPARATORIA página 37 INSTITUTO VALLADOLID PREPARATORIA página 37 página 38 SUMA DE FRACCIONES CONCEPTO Las cuatro operaciones fundamentales, suma, resta, multiplicación y división, con fracciones algebraicas se realizan bajo

Más detalles

TEMA 5: INTRODUCCIÓN A LA SIMETRÍA MOLECULAR

TEMA 5: INTRODUCCIÓN A LA SIMETRÍA MOLECULAR Tema 5 Simetría Molecular 1 TEMA 5: INTRODUCCIÓN A LA SIMETRÍA MOLECULAR La simetría de una molécula determina muchas de sus propiedades e incluso determina cómo se producen algunas reacciones. El estudio

Más detalles

El generador de Van de Graaff

El generador de Van de Graaff Cuando se introduce un conductor cargado dentro de otro hueco y se ponen en contacto, toda la carga del primero pasa al segundo, cualquiera que sea la carga inicial del conductor hueco Teóricamente, el

Más detalles

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones Fracciones. Las fracciones y los números Racionales Las fracciones se utilizan cotidianamente en contextos relacionados con la medida, el reparto o como forma de relacionar dos cantidades. Tenemos entonces

Más detalles

E.U.I.T.I.Z. (1º Electrónicos) Curso 2006-07 Electricidad y Electrometría. P. resueltos Tema 1 1/27

E.U.I.T.I.Z. (1º Electrónicos) Curso 2006-07 Electricidad y Electrometría. P. resueltos Tema 1 1/27 E.U.I.T.I.Z. (1º Electrónicos) Curso 2006-07 Electricidad y Electrometría. P. resueltos Tema 1 1/27 Tema 1. Problemas resueltos 1. Cuáles son las similitudes y diferencias entre la ley de Coulomb y la

Más detalles

Apuntes de Mecánica Newtoniana Cinemática de la Partícula

Apuntes de Mecánica Newtoniana Cinemática de la Partícula Apuntes de Mecánica Newtoniana Cinemática de la Partícula Ariel Fernández Daniel Marta Introducción. En este capítulo se introducirán los elementos necesarios para la descripción del movimiento de una

Más detalles

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD CULHUACÁN INTEGRANTES

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD CULHUACÁN INTEGRANTES INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD CULHUACÁN INTEGRANTES CÁRDENAS ESPINOSA CÉSAR OCTAVIO racsec_05@hotmail.com Boleta: 2009350122 CASTILLO GUTIÉRREZ

Más detalles

El ímpetu de un cuerpo es el producto de la masa del cuerpo por su vector velocidad

El ímpetu de un cuerpo es el producto de la masa del cuerpo por su vector velocidad 3. Fuerza e ímpetu El concepto de ímpetu (cantidad de movimiento o momentum surge formalmente en 1969 y se define como: El ímpetu de un cuerpo es el producto de la masa del cuerpo por su vector velocidad

Más detalles

Para cada cada valor de la función original lo multiplicas por 3 lo recorres 45 a la derecha y lo subes 5 unidades.

Para cada cada valor de la función original lo multiplicas por 3 lo recorres 45 a la derecha y lo subes 5 unidades. 3.5 Gráficas de las funciones: f(x) = a sen (bx + c) + d f(x) = a cos (bx + c) + d f(x) = a tan (bx + c) + d en donde a, b, c, y d son números reales En la sección 3.4 ya realizamos algunos ejemplos en

Más detalles

ELECTRICIDAD BÁSICA EN REPARACIÓN DE AUTOMÓVILES

ELECTRICIDAD BÁSICA EN REPARACIÓN DE AUTOMÓVILES ELECTRICIDAD BÁSICA EN REPARACIÓN DE AUTOMÓVILES 1) CONCEPTOS BÁSICOS DE ELECTRICIDAD 1.1 TEORÍA ELECTRÓNICA Los físicos distinguen cuatro diferentes tipos de fuerzas que son comunes en todo el Universo.

Más detalles

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite

Más detalles

Los números racionales

Los números racionales Los números racionales Los números racionales Los números fraccionarios o fracciones permiten representar aquellas situaciones en las que se obtiene o se debe una parte de un objeto. Todas las fracciones

Más detalles

4. LA ENERGÍA POTENCIAL

4. LA ENERGÍA POTENCIAL 4. LA ENERGÍA POTENCIAL La energía potencial en un punto es una magnitud escalar que indica el trabajo realizado por las fuerzas de campo para traer la carga desde el infinito hasta ese punto. Es función

Más detalles

1 Estática Básica Prohibida su reproducción sin autorización. CONCEPTOS DE FISICA MECANICA. Conceptos de Física Mecánica

1 Estática Básica Prohibida su reproducción sin autorización. CONCEPTOS DE FISICA MECANICA. Conceptos de Física Mecánica 1 CONCEPTOS DE FISICA MECANICA Introducción La parte de la física mecánica se puede dividir en tres grandes ramas de acuerdo a lo que estudia cada una de ellas. Así, podemos clasificarlas según lo siguiente:

Más detalles