Percentil q (p q ) Si en este conjunto de valores se quiere encontrar el percentil 20, la solución gráfica es muy simple

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Percentil q (p q ) Si en este conjunto de valores se quiere encontrar el percentil 20, la solución gráfica es muy simple"

Transcripción

1 Percentil q (p q ) Una medida de posición muy útil para describir una población, es la denominada 'percentil'. En forma intuitiva podemos decir que es un valor tal que supera un determinado porcentaje de los miembros de la población. Por ejemplo, considere un curso de cuarenta alumnos que se forma en línea por orden de estatura, primero los grandes y al final los chicos. Suponga, además, que se considera chico a un alumno de la cuarta parte final de esta línea. Éste es un concepto relativo a este curso, con toda seguridad variará al referirse a otro. Es fácil aceptar que los chicos de octavo básico tienen menor estatura que los chicos de cuarto medio. Como la cuarta parte corresponde al 25% de la población, en el ejemplo que se menciona, los chicos de un curso, son aquellos cuya estatura no supera el percentil veinticinco de la población formada por los alumnos del curso. Si una variable pudiese asumir muchos valores, la representación de la proporción del total, menor o igual que un valor, tendría una forma creciente parecida a la siguiente: Si en este conjunto de valores se quiere encontrar el percentil 20, la solución gráfica es muy simple

2 Como puede verse, el valor de la variable bajo el cual se encuentra un 20% de los valores, es algo mayor que 2. En forma aproximada se podría conocer los percentiles usando este tipo de gráfico. La descripción intuitiva de percentil en una población continua, como la anterior, no es difícil de entender. Sin embargo, la definición en una muestra de tamaño finito puede resultar más difícil porque, en este caso, los valores que representan las proporciones acumuladas tienen una representación gráfica en forma de escalera. Ejemplo. Considere los siguientes datos de una muestra de tamaño En una muestra de tamaño n, cada dato representa 1 enésimo del total. En este caso, en que hay diez datos, esta proporción es un décimo. En el gráfico, puede observarse que la gráfica muestra un salto de un décimo (10%) en cada dato muestral. El primer salto se observa en el número 4,el menor de los datos. Antes del valor 4, la curva asume el valor cero y a partir de él, un décimo. El segundo salto se produce en 8, a partir del cual la gráfica comienza a valer dos décimos. Así se producen los saltos hasta alcanzar el valor uno (100%) a partir del último dato muestral 22.

3 Si en este ejemplo se decide calcular el percentil 25, se observa que la recta horizontal trazada a la altura del 25%, cruza la gráfica de escalera justo al llegar al tercer dato ordenado (11), por lo tanto, éste es el valor buscado. (Nótese que percentiles cercanos, mayores que 20 y menores que 30, tienen el mismo valor 11). Sin embargo, si se desea calcular un percentil que coincida con una proporción asociada a un dato de la muestra, se produce una indefinición. Tómese el caso del percentil 20. En este caso la línea horizontal que busca cortar la gráfica de escalera, coincide justamente con un tramo horizontal de ésta; el que corre a la altura del 20% entre los datos muestrales 8 y 11. Cualquier valor entre 8 y 11 podría ser considerado como el percentil 20. Más adelante se usará una convención para encontrar salidas a esta indefinición.

4 La presentación gráfica hecha anteriormente corresponde a la siguiente definición de percentil: Definición. Sea q un número real tal que 0<=q<=100. El percentil q ( p q ). es un valor del recorrido de las observaciones tal que: 1º. A lo menos q% de las observaciones son menores o iguales que p q. 2º. A lo menos (100-q)% de las observaciones son mayores o iguales que p q. Para calcular un percentil, no es práctico usar esta definición. Resulta más conveniente usar la siguiente regla que se deduce de la misma. Para obtener el percentil q (0<q<100), se ordenan los datos de menor a mayor y se calcula el número Si no es entero, el percentil está dado por:

5 Esto es, el dato cuyo orden es el entero inmediatamente superior a. Si es entero, el percentil cumple la siguiente condición: Es decir, p q se encuentra entre dos datos de orden consecutivo. El menor es el de orden dado por mayor es el dato siguiente en la muestra ordenada. y el En el caso del ejemplo anterior, el percentil 25 se obtuvo calculando en primer lugar el 25% de 10, dado que éste es el tamaño n de la muestra. Entonces, está dado por. Por lo tanto, el entero inmediatamente superior es 3. En consecuencia, el percentil 25 es el tercer dato en el orden creciente; es decir 11. Tal como ya se determinó gráficamente. Al calcular el percentil 20, tenemos que, valor entero. Por lo tanto, el percentil 20 es cualquier número entre el segundo y tercer dato ordenado. Es decir, cualquier número entre 8 y 11. NOTA. El cálculo de un percentil de una muestra presenta algunas dificultades por tratarse de un conjunto de datos en que se producen incrementos de la proporción acumulada en forma de saltos, y no suavemente como en el caso de una variable continua. Estos saltos representados por un gráfico de escalera son los que producen situaciones indefinidas en los casos que se indicó anteriormente. Sin embargo, el uso inicial del gráfico de escalera y alguna ejercitación con la fórmula de cálculo, ayudan a entender un procedimiento que en un comienzo aparece mucho más difícil. CÓMO DECIDIR EN EL CASO DE MÚLTIPLES SOLUCIONES PARA UN PERCENTIL. Como se vio anteriormente, existen situaciones en el cálculo de un percentil muestral en las que todo un intervalo de números reales cumple con las condiciones de ser el percentil buscado. Esta respuesta no es útil porque habitualmente se necesita un único valor como resultado. Para obtener este único resultado hay diversas soluciones. Aquí se usará aquella que calcula un punto de intervalo entregado por el cálculo anterior usando el mismo porcentaje que define al percentil.

6 El procedimiento es el siguiente: 1. Se calcula la longitud del intervalo mediante la diferencia de sus extremos. 2. La longitud calculada anteriormente se multiplica por el porcentaje que define el percentil. 3. El valor obtenido en 2. se suma al límite inferior del intervalo calculado. Este resultado es el percentil buscado. Ejemplo. Como se vio en los cálculos precedentes, el percentil 20 del conjunto de datos usado se encuentra entre 8 y 11. Aplicando el procedimiento recién descrito, calculamos la longitud del intervalo. Ésta resulta ser 11-8 = 3. A continuación calculamos el 20% de 3 y obtenemos 0.6. En consecuencia, el percentil 20 para este caso es = 8.6. Comentario. No hay sólo un criterio para calcular percentiles muestrales. De hecho, importantes programas de computación estadística entregan resultados diferentes debido a que usan criterios similares, pero no iguales. No debe causar sorpresa, entonces, encontrar estas diferencias originadas por la falta de un procedimiento universalmente aceptado. Algunos ejemplos de percentiles. Mediana. La mediana es el percentil 50.

7 Cuartiles. El primer cuartil, es el percentil 25. El tercer cuartil, es el percentil 75. Deciles. El k-ésimo decil, k entero entre 0 y 10, es el percentil 10*k. Ejemplo. En la tabla siguiente se presentan treinta datos simulados y ordenados, que permitirán practicar el cálculo de percentiles muestrales F r e c u e n c i a s G r á f i c a s P o l í g o n o s C e n t r a l i z a c i ó n P o s i c i ó n D i s p e r s i ó n C. v.

8 Calculo de Cuartiles, deciles y percentiles Cuartiles L o s c u a r t i l e s s o n l o s t r e s v a l o r e s d e l a v a r i a b l e q u e d i v i d e n a u n c o n j u n t o d e d a t o s o r d e n a d o s e n c u a t r o p a r t e s i g u a l e s. Q 1, Q 2 y Q 3 d e t e r m i n a n lo s v a l o r e s c o r r e s p o n d i e n t e s a l 2 5 %, a l 5 0 % y a l 7 5 % d e l o s d a t o s. Q 2 c o i n c i d e c o n l a m e d i a n a. Cálcu l o de l os cua r tile s 1 O r d e n a m o s l o s d a t o s d e m e n o r a m a y o r. 2 B u s c a m o s e l l u g a r q u e o c u p a c a d a c u a r t i l m e d i a n t e l a e x p r e s i ó n. N ú m e r o i m p a r d e d a t o s 2, 5, 3, 6, 7, 4, 9 N ú m e r o p a r d e d a t o s

9 2, 5, 3, 4, 6, 7, 1, 9 Cálcu l o de l os cua r tile s par a da tos a gr u pa d os E n p r i m e r l u g a r b u s c a m o s la c l a s e d o n d e s e e n c u e n t r a, e n la t a b l a d e l a s f r e c u e n c i a s a c u m u l a d a s. E j e r c i c i o d e c u a r t i l e s C a l c u l a r l o s c u a r t i l e s d e l a d i s t r i b u c i ó n d e l a t a b l a : f i F i [ 50, 60) 8 8 [ 60, 70) [ 70, 80) [ 80, 90) [ 90, 100) 10 58

10 [ 100, 110) 5 63 [ 110, 120) C á l c u l o d e l p r i m e r c u a r t i l C á l c u l o d e l s e g u n d o c u a r t i l C á l c u l o d e l t e r c e r c u a r t i l

11 Deciles i g u a l e s. L o s d e c i l e s s o n l o s n u e v e v a l o r e s q u e d i v i d e n l a s e r i e d e d a t o s e n d i e z p a r t e s d a t o s. L o s d e c i l e s d a n l o s v a l o r e s c o r r e s p o n d i e n t e s a l 1 0 %, a l 2 0 %... y a l 9 0 % d e lo s D 5 c o in c i d e c o n l a m e d i a n a. Cálcu l o de l os de ci le s E n p r i m e r l u g a r b u s c a m o s l a c l a s e d o n d e s e e n c u e n t r a, e n la t a b la d e la s f r e c u e n c i a s a c u m u l a d a s. E j e r c i c i o d e d e c i l e s C a l c u l a r l o s d e c i l e s d e la d i s t r i b u c i ó n d e l a t a b l a : f i F i [ 50, 60) 8 8 [ 60, 70) [ 70, 80) 16 34

12 [ 80, 90) [ 90, 100) [ 100, 110) 5 63 [ 110, 120) C á l c u l o d e l p r i m e r d e c i l C á l c u l o d e l s e g u n d o d e c i l C á l c u l o d e l t e r c e r d e c i l

13 C á l c u l o d e l c u a r t o d e c i l C á l c u l o d e l q u i n t o d e c i l C á l c u l o d e l s e x t o d e c i l C á l c u l o d e l s é p t i m o d e c i l C á l c u l o d e l o c t a v o d e c i l

14 C á l c u l o d e l n o v e n o d e c i l Percentiles i g u a l e s. L o s p e r c e n t i l e s s o n l o s 9 9 v a l o r e s q u e d i v i d e n l a s e r i e d e d a t o s e n p a r t e s d a t o s. L o s p e r c e n t i l e s d a n l o s v a l o r e s c o r r e s p o n d i e n t e s a l 1 %, a l 2 %... y a l 9 9 % d e lo s P 50 c o i n c i d e c o n l a m e d i a n a. Cálcu l o de l os pe rc en ti le s E n p r i m e r l u g a r b u s c a m o s l a c l a s e d o n d e s e e n c u e n t r a, e n la t a b la d e la s f r e c u e n c i a s a c u m u l a d a s.

15 E j e r c i c i o d e p e r c e n t i l e s C a l c u l a r e l p e r c e n t i l 3 5 y 6 0 d e l a d i s t r i b u c i ó n d e l a t a b l a : f i F i [ 50, 60) 8 8 [ 60, 70) [ 70, 80) [ 80, 90) [ 90, 100) [ 100, 110) 5 63 [ 110, 120) P e r c e n t i l 3 5 P e r c e n t i l 6 0

16

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS Ejemplos y ejercicios de Estadística Descriptiva yanálisis de Datos Diplomatura en Estadística Curso 007/08 Descripción estadística de una variable. Ejemplos

Más detalles

M i. Los datos vendrán en intervalos en el siguiente histograma de frecuencias acumuladas se ilustra la mediana.

M i. Los datos vendrán en intervalos en el siguiente histograma de frecuencias acumuladas se ilustra la mediana. Medidas de tendencia central y variabilidada para datos agrupados Media (media aritmética) ( X ) Con anterioridad hablamos sobre la manera de determinar la media de la muestra. Si hay muchos valores u

Más detalles

LA NÓMINA DENTRO DEL ESQUEMA FISCAL 2016

LA NÓMINA DENTRO DEL ESQUEMA FISCAL 2016 I N F O R M E S E I N S C R I P C I O N E S : I N S T R U C C I O N A M É X I C O T E L S. 5 5 5 4 7 7 6 3 Y 5 6 5 9 9 4 9 4 DE 9. 00 A 18. 00 H R S. LA I N S C R I P C I Ó N P U E D E R E A L I Z A R

Más detalles

Video. ó ó. é é. á ó. á í. é é ó

Video. ó ó. é é. á ó. á í. é é ó ó ñ í á ó ó ó í í ó ó ó í í ó ó ó é é á ó á í é é ó ó! á í í í í í!! ó! ó!! ñ á ñ ñ í í ñ í á ó ó ó ó á ó ó ó ó ó ú ó í ó ó á ó í ó ó á ó ó ó á ñ á ó á á ó í é ó é á é á ó í é ó ó ó ó á ó á ó í ó

Más detalles

CALCULO DE MEDIDAS DE RESUMEN CON DATOS TABULADOS

CALCULO DE MEDIDAS DE RESUMEN CON DATOS TABULADOS CALCULO DE MEDIDAS DE RESUMEN CON DATOS TABULADOS Jorge Galbiati Riesco Si los datos se presentan en tablas de recuencias por intervalos, se pueden obtener valores aproximados de las medidas de resumen,

Más detalles

Curso de Estadística Básica

Curso de Estadística Básica Curso de SESION 3 MEDIDAS DE TENDENCIA CENTRAL Y MEDIDAS DE DISPERSIÓN MCC. Manuel Uribe Saldaña MCC. José Gonzalo Lugo Pérez Objetivo Conocer y calcular las medidas de tendencia central y medidas de dispersión

Más detalles

SOLUCIONARIO Medidas de tendencia central y posición

SOLUCIONARIO Medidas de tendencia central y posición SOLUCIONARIO Medidas de tendencia central y posición SGUICEG046EM32-A16V1 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA Medidas de tendencia central y posición Ítem Alternativa 1 C 2 E Aplicación 3 E 4 E Comprensión

Más detalles

Gráficos estadísticos. Estadígrafo

Gráficos estadísticos. Estadígrafo Tema 12: Estadística y probabilidad Contenidos: Gráficos estadísticos - Estadígrafos de tendencia central Nivel: 4 Medio Gráficos estadísticos. Estadígrafo 1. Distribución de frecuencias Generalmente se

Más detalles

UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro)

UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro) UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro) 1. ESTADÍSTICA: CLASES Y CONCEPTOS BÁSICOS En sus orígenes históricos, la Estadística estuvo ligada a cuestiones de Estado (recuentos, censos,

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS (Universidad del Perú, DECANA DE AMERICA) MEDIDAS DE TENDENCIA CENTRAL 20/05/2008 Ing. SEMS 2.1 INTRODUCCIÓN En el capítulo anterior estudiamos de qué manera los

Más detalles

U.D.1: Análisis estadístico de una variable Consideraciones iniciales: Propuesta: 1.1 Distribución de frecuencias. Variables Cualitativas: Ejemplo

U.D.1: Análisis estadístico de una variable Consideraciones iniciales: Propuesta: 1.1 Distribución de frecuencias. Variables Cualitativas: Ejemplo U.D.1: Análisis estadístico de una variable Consideraciones iniciales: - Población: Es el conjunto de todos los elementos que cumplen una determinada característica. Ej.: Alumnos del colegio. - Individuo:

Más detalles

Probabilidad y Estadística, EIC 311

Probabilidad y Estadística, EIC 311 Probabilidad y Estadística, EIC 311 Medida de resumen 1er Semestre 2016 1 / 105 , mediana y moda para datos no Una medida muy útil es la media aritmética de la muestra = Promedio. 2 / 105 , mediana y moda

Más detalles

Z i

Z i Medidas de Variabilidad y Posición. Jesús Eduardo Pulido Guatire, marzo 010 Cuando trabajamos el aspecto denominado Medidas de Tendencia Central se observó que tanto la media como la mediana y la moda

Más detalles

Medidas de tendencia central y dispersión

Medidas de tendencia central y dispersión Estadística Aplicada a la Investigación en Salud Medwave. Año XI, No. 3, Marzo 2011. Open Access, Creative Commons. Medidas de tendencia central y dispersión Autor: Fernando Quevedo Ricardi (1) Filiación:

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

Medidas de tendencia central

Medidas de tendencia central Medidas de tendencia central Medidas de tendencia central Medidas de Posición: son aquellos valores numéricos que nos permiten o bien dar alguna medida de tendencia central, dividiendo el recorrido de

Más detalles

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA. Calcular las siguientes integrales definidas: b) d e d c) + d d) d e) sen d f) + d d ( ) En primer lugar se ha calculado una primitiva de f() Barrow. y después

Más detalles

Estadística descriptiva: problemas resueltos

Estadística descriptiva: problemas resueltos Estadística descriptiva: problemas resueltos BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL MARRERO RODRÍGUEZ (imarrero@ull.es)

Más detalles

Definiciones generales

Definiciones generales Deiniciones generales Objetivo Brindar al participante los conceptos teóricos básicos sobre Media Aritmética para datos no agrupados y agrupados En esta sesión Conceptos básicos de Media Aritmética para

Más detalles

ESTADISTICA Y PROBABILIDAD ESTADÍSTICA

ESTADISTICA Y PROBABILIDAD ESTADÍSTICA ESTADÍSTICA La estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comprobaciones y sacar conclusiones. Un estudio estadístico consta

Más detalles

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma

Más detalles

Unidad 8 Áreas y Volúmenes

Unidad 8 Áreas y Volúmenes Unidad 8 Áreas y Volúmenes PÁGINA 132 SOLUCIONES Unidades de medida. Pasa a centímetros cuadrados las siguientes cantidades. a) b) c) Pasa a metros cúbicos las siguientes unidades. a) b) c) Cuántos litros

Más detalles

CUARTILES, DIAGRAMA DE CAJA Y BIGOTES, DECILES Y PERCENTILES CON EXCEL Y CON GEOGEBRA

CUARTILES, DIAGRAMA DE CAJA Y BIGOTES, DECILES Y PERCENTILES CON EXCEL Y CON GEOGEBRA CUARTILES, DIAGRAMA DE CAJA Y BIGOTES, DECILES Y PERCENTILES CON EXCEL Y CON GEOGEBRA Son similares a la mediana en que también subdividen una distribución de mediciones de acuerdo con la proporción de

Más detalles

1. Los pesos (en Kgs.) de los niños recién nacidos en una clínica maternal durante el último año han sido:

1. Los pesos (en Kgs.) de los niños recién nacidos en una clínica maternal durante el último año han sido: . Los pesos (en Kgs.) de los niños recién nacidos en una clínica maternal durante el último año han sido: Peso [.5,.75) [.75,3) [3,3.5) [3.5,3.5) [3.5,3.75) [3.75,4) [4,4.5) [4.5,4.5] N o de niños 7 36

Más detalles

2. FRECUENCIAS. 2.1. Distribución de Frecuencias.

2. FRECUENCIAS. 2.1. Distribución de Frecuencias. 2. FRECUENCIAS 2.1. Distribución de Frecuencias. El manejo de la información requiere de la ordenación de datos de tal forma que permita la obtención de una forma más fácil la obtención de conclusiones

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA Medidas de tendencia central y de dispersión Giorgina Piani Zuleika Ferre 1. Tendencia Central Son un conjunto de medidas estadísticas que determinan un único valor que define el

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central Medidas de Tendencia Central En cualquier análisis o interpretación, se pueden usar muchas medidas descriptivas que representan las propiedades de tendencia central, variación y forma para resumir las

Más detalles

ESTADÍSTICA APLICADA. TEMA 1. ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA APLICADA. TEMA 1. ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA APLICADA. TEMA 1. ESTADÍSTICA DESCRIPTIVA Definición de Estadística: La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

MEDIDAS DE TENDENCIA CENTRAL O DE PRECISIÓN

MEDIDAS DE TENDENCIA CENTRAL O DE PRECISIÓN MEDIDAS DE TENDENCIA CENTRAL O DE PRECISIÓN Cuando se analiza un conjunto de datos, normalmente muestran una tendencia a agruparse o aglomerarse alrededor de un punto central. Para describir ese conjunto

Más detalles

UNIDAD 6. Estadística TABLAS DE FRECUENCIAS, GRÁFICOS DE BARRAS Y POLÍGONOS DE FRECUENCIAS

UNIDAD 6. Estadística TABLAS DE FRECUENCIAS, GRÁFICOS DE BARRAS Y POLÍGONOS DE FRECUENCIAS Matemática UNIDAD 6. Estadística 1 Medio GUÍA N 5 TABLAS DE FRECUENCIAS, GRÁFICOS DE BARRAS Y POLÍGONOS DE FRECUENCIAS Cada día aparecen gráficos o datos, por ejemplo en la prensa o en televisión. Quién

Más detalles

Pregunta 1. Pregunta 2. Pregunta 3. Pregunta 4. Pregunta 5. Pregunta 6. Pregunta 7. Comenzado el lunes, 25 de marzo de 2013, 17:24

Pregunta 1. Pregunta 2. Pregunta 3. Pregunta 4. Pregunta 5. Pregunta 6. Pregunta 7. Comenzado el lunes, 25 de marzo de 2013, 17:24 Comenzado el lunes, 25 de marzo de 2013, 17:24 Estado Finalizado Finalizado en sábado, 30 de marzo de 2013, 17:10 Tiempo empleado 4 días 23 horas Puntos 50,00/50,00 Calificación 10,00 de un máximo de 10,00

Más detalles

GEOMETRIA ANALITICA- GUIA DE EJERCICIOS DE LA RECTA Y CIRCUNFERENCIA PROF. ANNA LUQUE

GEOMETRIA ANALITICA- GUIA DE EJERCICIOS DE LA RECTA Y CIRCUNFERENCIA PROF. ANNA LUQUE Ejercicios resueltos de la Recta 1. Hallar la ecuación de la recta que pasa por el punto (4. - 1) y tiene un ángulo de inclinación de 135º. SOLUCION: Graficamos La ecuación de la recta se busca por medio

Más detalles

Límites y continuidad de funciones reales de variable real

Límites y continuidad de funciones reales de variable real Límites y continuidad de funciones reales de variable real Álvarez S., Caballero M.V. y Sánchez M. a M. salvarez@um.es, m.victori@um.es, marvega@um.es Índice 1. Definiciones 3 2. Herramientas 10 2.1. Funciones

Más detalles

1º BACH CCSS - MATEMÁTICAS - PROBLEMAS DE ANÁLISIS ESTADÍSTICO DE UNA VARIABLE ˆ EJERCICIO 25

1º BACH CCSS - MATEMÁTICAS - PROBLEMAS DE ANÁLISIS ESTADÍSTICO DE UNA VARIABLE ˆ EJERCICIO 25 1º BACH CCSS - MATEMÁTICAS - PROBLEMAS DE ANÁLISIS ESTADÍSTICO DE UNA VARIABLE ˆ EJERCICIO 24 Dada la siguiente tabla de ingresos: Ingresos mensuales Frecuencia Menos de 1000 35 [1000, 1100) 70 [1100,

Más detalles

4 E.M. Curso: Ejercicios de Estadísticas NOMBRE: 4º. Colegio SSCC Concepción - Depto. de Matemáticas. Guía N. Unidad de Aprendizaje: Estadísticas

4 E.M. Curso: Ejercicios de Estadísticas NOMBRE: 4º. Colegio SSCC Concepción - Depto. de Matemáticas. Guía N. Unidad de Aprendizaje: Estadísticas Curso: Colegio SSCC Concepción - Depto. de Matemáticas Unidad de Aprendizaje: Estadísticas Capacidades/Destreza/Habilidad: Racionamiento Matemático/ Comprensión, Aplicación/ Valores/ Actitudes: Respeto,

Más detalles

UNIDAD 6 Medidas de tendencia central

UNIDAD 6 Medidas de tendencia central UNIDAD Medidas de tendencia central UNIDAD MEDIDAS DE TENDENCIA CENTRAL = EJEMPLO. ó Al estudiar la información estadística de los histogramas y los polígonos de frecuencia, se puso en evidencia un significativo

Más detalles

MEDIDAS DE POSICIÓN. FUENTE: Gómez, Elementos de Estadística Descriptiva Levin & Rubin. Estadística para Administradores

MEDIDAS DE POSICIÓN. FUENTE: Gómez, Elementos de Estadística Descriptiva Levin & Rubin. Estadística para Administradores UNIVERSIDAD DE COSTA RICA ESCUELA DE ESTADÍSTICA Prof. Olman Ramírez Moreira MEDIDAS DE POSICIÓN FUENTE: Gómez, Elementos de Estadística Descriptiva Levin & Rubin. Estadística para Administradores 1 OBJETIVO

Más detalles

ESTADÍSTICA DESCRIPTIVA PARA EL TURISMO

ESTADÍSTICA DESCRIPTIVA PARA EL TURISMO ESTADÍSTICA DESCRIPTIVA PARA EL TURISMO RELACIÓN DE PROBLEMAS PROPUESTOS DE UNA VARIABLE Curso académico 2004-2005 DPTO. ECONOMÍA APLICADA I 1. Obtener las frecuencias acumuladas, las frecuencias relativas

Más detalles

LOS ESTADÍGRAFOS BÁSICOS Y SU INTERPRETACIÓN, M TENDENCIA CENTRAL

LOS ESTADÍGRAFOS BÁSICOS Y SU INTERPRETACIÓN, M TENDENCIA CENTRAL PreUnAB LOS ESTADÍGRAFOS BÁSICOS Y SU INTERPRETACIÓN, MEDIDAS DE TENDENCIA CENTRAL Clase # 26 Noviembre 2014 ESTADÍGRAFOS Concepto de estadígrafo Un estadígrafo, o estadístico, es un indicador que se calcula

Más detalles

SESIÓN 14 DERIVADAS SUCESIVAS DE UNA FUNCION, DE MÁXIMOS Y MÍNIMOS Y LA CONCAVIDAD DE UNA CURVA APLICANDO EL CRITERIO DE LA SEGUNDA DERIVADA

SESIÓN 14 DERIVADAS SUCESIVAS DE UNA FUNCION, DE MÁXIMOS Y MÍNIMOS Y LA CONCAVIDAD DE UNA CURVA APLICANDO EL CRITERIO DE LA SEGUNDA DERIVADA SESIÓN 14 DERIVADAS SUCESIVAS DE UNA FUNCION, DE MÁXIMOS Y MÍNIMOS Y LA CONCAVIDAD DE UNA CURVA APLICANDO EL CRITERIO DE LA SEGUNDA DERIVADA I. CONTENIDOS: 1. Derivadas sucesivas de una función 2. Concavidad

Más detalles

RELACIÓN DE EJERCICIOS TEMA 2

RELACIÓN DE EJERCICIOS TEMA 2 1. Sea una distribución estadística que viene dada por la siguiente tabla: Calcular: x i 61 64 67 70 73 f i 5 18 42 27 8 a) La moda, mediana y media. b) El rango, desviación media, varianza y desviación

Más detalles

Derivadas Parciales (parte 2)

Derivadas Parciales (parte 2) 40 Derivadas Parciales (parte 2) Ejercicio: Si donde y. Determinar Solución: Consideraremos ahora la situación en la que, pero cada una de las variables e es función de dos variables y. En este caso tiene

Más detalles

Un estudio estadístico consta de las siguientes fases: Recogida de datos. Organización y representación de datos. Análisis de datos.

Un estudio estadístico consta de las siguientes fases: Recogida de datos. Organización y representación de datos. Análisis de datos. La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico consta de las siguientes

Más detalles

GUIA INFORMATIVA DE RAZONES TRIGONOMÉTRICAS

GUIA INFORMATIVA DE RAZONES TRIGONOMÉTRICAS GUIA INFORMATIVA DE RAZONES TRIGONOMÉTRICAS Para el estudio de la Trigonometría es importante tomar en cuenta conocimientos básicos sobre: concepto de triángulo, su clasificación, conceptos de ángulos

Más detalles

SESIÓN 11 DERIVACIÓN DE FUNCIONES TRIGONOMETRICAS INVERSAS

SESIÓN 11 DERIVACIÓN DE FUNCIONES TRIGONOMETRICAS INVERSAS SESIÓN 11 DERIVACIÓN DE FUNCIONES TRIGONOMETRICAS INVERSAS I. CONTENIDOS: 1. Función inversa, conceptos y definiciones 2. Derivación de funciones trigonométricas inversas 3. Ejercicios resueltos 4. Estrategias

Más detalles

UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD = 3 2

UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD = 3 2 UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD 1.- Límites en el Infinito: lim x + f(x) = L Se dice que el límite de f (x) cuando x tiende a + es L ϵ Ɽ, si podemos hacer que f(x) se aproxime a L tanto como

Más detalles

Práctica 4 Límites, continuidad y derivación

Práctica 4 Límites, continuidad y derivación Práctica 4 Límites, continuidad y derivación En esta práctica utilizaremos el programa Mathematica para estudiar límites, continuidad y derivabilidad de funciones reales de variable real, así como algunas

Más detalles

Tema 2. Medidas de tendencia central para datos agrupados

Tema 2. Medidas de tendencia central para datos agrupados Tema 2. Medidas de tendencia central para datos agrupados Como se ha establecido antes, los datos se dice que están agrupados cuando están presentados como una distribución de frecuencias, es decir, cuando

Más detalles

DERIVADAS. TÉCNICAS DE DERIVACIÓN

DERIVADAS. TÉCNICAS DE DERIVACIÓN DERIVADAS. TÉCNICAS DE DERIVACIÓN Página 5 REFLEXIONA Y RESUELVE Tangentes a una curva y f () 5 5 9 4 Halla, mirando la gráfica y las rectas trazadas, f'(), f'(9) y f'(4). f'() 0; f'(9) ; f'(4) 4 Di otros

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7) TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de

Más detalles

Teorema de Bayes. mientras que B tiene una tasa de defectos del 4%.

Teorema de Bayes. mientras que B tiene una tasa de defectos del 4%. Teorema de Bayes Ejemplo: En una empresa manufacturera, una máquina A produce el 60% de la producción total, mientras que una máquina B el restante 40%. 71 El 2% de las unidades producidas por A son defectuosas,

Más detalles

II. ORGANIZACIÓN N Y PRESENTACIÓN N DE DATOS

II. ORGANIZACIÓN N Y PRESENTACIÓN N DE DATOS UNIVERSIDAD INTERAMERICANA PARA EL DESARROLLO ORGANIZACIÓN N Y PRESENTACIÓN N DE DATOS Contenido II. ORGANIZACIÓN N Y PRESENTACIÓN N DE DATOS II. Tablas de frecuencia II. Gráficos: histograma, ojiva, columna,

Más detalles

Materia: Matemática de Tercer Año Tema: Pendiente

Materia: Matemática de Tercer Año Tema: Pendiente Materia: Matemática de Tercer Año Tema: Pendiente Suponga que tiene un avión de juguete sobre el despegue, que se eleva 5 pies por cada 6 metros que recorre a lo largo de la horizontal. Cuál sería la pendiente

Más detalles

Estadística Inferencial. Estadística Descriptiva

Estadística Inferencial. Estadística Descriptiva INTRODUCCIÓN Estadística: Ciencia que trata sobre la teoría y aplicación de métodos para coleccionar, representar, resumir y analizar datos, así como realizar inferencias a partir de ellos. Recogida y

Más detalles

UNIDAD 3. La derivada. Objetivos. Al terminar la unidad, el alumno:

UNIDAD 3. La derivada. Objetivos. Al terminar la unidad, el alumno: UNIDAD La derivada Objetivos Al terminar la unidad, el alumno: Calculará la derivada de funciones utilizando el álgebra de derivadas. Determinará la relación entre derivación y continuidad. Aplicará la

Más detalles

J E F A D E L D E P A R T A M E N T O D E M E D I C I N A V E T E R I N A R I A

J E F A D E L D E P A R T A M E N T O D E M E D I C I N A V E T E R I N A R I A U N I V E R S I D A D D E E L S A L V A D O R F A C U L T A D D E C I E N C I A S A G R O N O M I C A S D E T E R M I N A C I Ó N D E A F L A T O X I N A S E N M A Í Z I M P O R T A D O P A R A E L A B

Más detalles

Distribuciones de Probabilidad

Distribuciones de Probabilidad Distribuciones de Probabilidad Variables Aleatorias Ahora se introducirá el concepto de variable aleatoria y luego se introducirán las distribuciones de probabilidad discretas más comunes en la práctica

Más detalles

Guía 3 Del estudiante Modalidad a distancia. Modulo CÁLCULO UNIVARIADO INGENIERÍA DE SISTEMAS II SEMESTRE

Guía 3 Del estudiante Modalidad a distancia. Modulo CÁLCULO UNIVARIADO INGENIERÍA DE SISTEMAS II SEMESTRE Guía 3 Del estudiante Modalidad a distancia Modulo CÁLCULO UNIVARIADO INGENIERÍA DE SISTEMAS II SEMESTRE DATOS DE IDENTIFICACION TUTOR Luis Enrique Alvarado Vargas Teléfono 435 29 52 CEL. 310 768 90 67

Más detalles

Funciones de varias variables.

Funciones de varias variables. Funciones de varias variables. Definición. Hasta ahora se han estudiado funciones de la forma y = f (x), f :D Estas funciones recibían el nombre de funciones reales de variable real ya que su valor y dependía

Más detalles

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím

Más detalles

Volumen de Sólidos de Revolución

Volumen de Sólidos de Revolución 60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido

Más detalles

Las Funciones Trigonométricas. Sección 5.3 Funciones Trigonométricas de números reales

Las Funciones Trigonométricas. Sección 5.3 Funciones Trigonométricas de números reales 5 Las Funciones Trigonométricas Sección 5.3 Funciones Trigonométricas de números reales Qué hemos visto? Si el lado inicial de un ángulo,, coincide con la parte del eje de x que se encuentra en el primer

Más detalles

UNIDAD 6. Estadística

UNIDAD 6. Estadística Matemática UNIDAD 6. Estadística 2 Medio GUÍA N 1 MEDIDAS DE DISPERSIÓN PARA DATOS NO AGRUPADOS ACTIVIDAD Consideremos los siguientes conjuntos de valores referidos a las edades de los jugadores de dos

Más detalles

Distribución muestral de proporciones. Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua

Distribución muestral de proporciones. Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua Distribución muestral de proporciones Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua Distribución muestral de Proporciones Existen ocasiones

Más detalles

Guía de Matemática Tercero Medio

Guía de Matemática Tercero Medio Guía de Matemática Tercero Medio Aprendizaje Esperado: 1. Plantean y resuelven problemas que involucran ecuaciones de segundo grado; explicitan sus procedimientos de solución y analizan la existencia y

Más detalles

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. Regla de la cadena Derivada de la función compuesta. Regla de la cadena Cuando en las matemáticas de bachillerato se introduce el concepto de derivada, su significado y su interpretación geométrica, se pasa al cálculo de

Más detalles

Julio Deride Silva. 27 de agosto de 2010

Julio Deride Silva. 27 de agosto de 2010 Estadística Descriptiva Julio Deride Silva Área de Matemática Facultad de Ciencias Químicas y Farmcéuticas Universidad de Chile 27 de agosto de 2010 Tabla de Contenidos Estadística Descriptiva Julio Deride

Más detalles

EJERCICIOS REPASO 2ª EVALUACIÓN

EJERCICIOS REPASO 2ª EVALUACIÓN MATRICES Y DETERMINANTES 1.) Sean las matrices: EJERCICIOS REPASO 2ª EVALUACIÓN a) Encuentre el valor o valores de x de forma que b) Igualmente para que c) Determine x para que 2.) Dadas las matrices:

Más detalles

A continuación se presenta la información de la altura promedio para el año de 1998 en Holanda de hombres y mujeres jóvenes.

A continuación se presenta la información de la altura promedio para el año de 1998 en Holanda de hombres y mujeres jóvenes. M150: Creciendo A) Presentación del problema LOS JOVENES CRECEN MAS ALTO A continuación se presenta la altura promedio para el año de 1998 en Holanda de hombres y mujeres jóvenes. B) Preguntas del problema

Más detalles

Hoja 6: Estadística descriptiva

Hoja 6: Estadística descriptiva Hoja : Estadística descriptiva Hoja : Estadística descriptiva May Dada la siguiente distribución de frecuencias, halle: a) la mediana; b) la media. Número (x) Frecuencia (y) May De enero a septiembre la

Más detalles

Unidad II: Fundamentos de la teoría de probabilidad

Unidad II: Fundamentos de la teoría de probabilidad Unidad II: Fundamentos de la teoría de probabilidad 2.1 Teoría elemental de probabilidad El Cálculo de Probabilidades se ocupa de estudiar ciertos experimentos que se denominan aleatorios, cuya característica

Más detalles

Conocer la forma de analizar las Medidas de Tendencia Central de una distribución con OpenOffice Calc.

Conocer la forma de analizar las Medidas de Tendencia Central de una distribución con OpenOffice Calc. Objetivo: Conocer la forma de analizar las Medidas de Tendencia Central de una distribución con OpenOffice Calc. CALC: MEDIDAS DE TENDENCIA CENTRAL Las medidas de tendencia central sirven como puntos de

Más detalles

Tema 11: Integral definida. Aplicaciones al cálculo de áreas

Tema 11: Integral definida. Aplicaciones al cálculo de áreas Tema 11: Integral definida. Aplicaciones al cálculo de áreas 1. Introducción Las integrales nos van a permitir calcular áreas de figuras no geométricas. En nuestro caso, nos limitaremos a calcular el área

Más detalles

ORGANIZACIÓN DE DATOS

ORGANIZACIÓN DE DATOS CAPÍTULO 13 ORGANIZACIÓN DE DATOS Siendo el dato el material que se debe procesar, es decir, la materia prima de la estadística, el primer paso es entonces la recolección de datos, para lo cual se emplean

Más detalles

CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA. (Se utiliza el valor de la función en el extremo izquierdo de cada subintervalo)

CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA. (Se utiliza el valor de la función en el extremo izquierdo de cada subintervalo) CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA El problema del área, el problema de la distancia tanto el valor del área debajo de la gráfica de una función como la distancia recorrida por un objeto

Más detalles

NOCIONES PRELIMINARES (*) 1

NOCIONES PRELIMINARES (*) 1 CONJUNTOS NOCIONES PRELIMINARES (*) 1 Conjunto no es un término definible, pero da idea de una reunión de cosas ( elementos ) que tienen algo en común. En matemática los conjuntos se designan con letras

Más detalles

Fundamentos de Estadística y Simulación Básica

Fundamentos de Estadística y Simulación Básica Fundamentos de Estadística y Simulación Básica TEMA 2 Estadística Descriptiva Clasificación de Variables Escalas de Medición Gráficos Tabla de frecuencias Medidas de Tendencia Central Medidas de Dispersión

Más detalles

5.2 Representaciones gráficas

5.2 Representaciones gráficas 5.2 Representaciones gráficas 5.2.1 Histogramas Un histograma es una gráfica de una distribución de frecuencias; en el eje horizontal de un sistema coordenado rectangular se representan los puntos que

Más detalles

Fase 2. Estudio de mercado: ESTADÍSTICA

Fase 2. Estudio de mercado: ESTADÍSTICA 1. CONCEPTO DE ESTADÍSTICA. ESTADÍSTICA DESCRIPTIVA 2. 3. TABLA DE FRECUENCIAS 4. REPRESENTACIONES GRÁFICAS 5. TIPOS DE MEDIDAS: A. MEDIDAS DE POSICIÓN B. MEDIDAS DE DISPERSIÓN C. MEDIDAS DE FORMA 1 1.

Más detalles

Estadística. Análisis de datos.

Estadística. Análisis de datos. Estadística Definición de Estadística La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un

Más detalles

GUÍAS DE TRABAJO. Matemáticas. Material de trabajo para los estudiantes UNIDAD 3. Preparado por: Héctor Muñoz

GUÍAS DE TRABAJO. Matemáticas. Material de trabajo para los estudiantes UNIDAD 3. Preparado por: Héctor Muñoz GUÍAS DE TRABAJO Material de trabajo para los estudiantes UNIDAD 3 Preparado por: Héctor Muñoz Diseño Gráfico por: www.genesisgrafica.cl Responde en tu cuaderno las siguientes preguntas. GUÍA DE TRABAJO

Más detalles

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x 1 REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN IBJ05 1. Se considera la función f ( ). Se pide: a) Encontrar los intervalos donde esta función es creciente y donde es decreciente. ( puntos) b) Calcular las asíntotas.

Más detalles

b) Haz otra distribución en 12 intervalos de la amplitud que creas conveniente.

b) Haz otra distribución en 12 intervalos de la amplitud que creas conveniente. Página EJERCICIOS Y PROBLEMAS PROPUESTOS PARA PRACTICAR Deseamos hacer una tabla con datos agrupados a partir de datos, cuyos valores extremos son 9 y. a) Si queremos que sean 0 intervalos de amplitud,

Más detalles

Tutorial MT-b1. Matemática Tutorial Nivel Básico. Elementos básicos de Aritmética

Tutorial MT-b1. Matemática Tutorial Nivel Básico. Elementos básicos de Aritmética 12345678901234567890 M ate m ática Tutorial MT-b1 Matemática 2006 Tutorial Nivel Básico Elementos básicos de Aritmética Matemática 2006 Tutorial Algunos elementos básicos de Aritmética Marco teórico: 1.

Más detalles

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x Modelo 4. Problema A.- (Calificación máima: puntos) 4 si Se considera la función real de variable real f ( ) si > a) Determínense las asíntotas de la función y los puntos de corte con los ejes. a. Asíntotas

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................

Más detalles

GUÍA DE LA UNIDAD FUNCIONES : DERIVADAS

GUÍA DE LA UNIDAD FUNCIONES : DERIVADAS Funciones Límites Derivadas Aplicaciones Gráficas C ontenidos Idea de Función. Elementos notables de la gráfica de una función. Funciones lineales. Función definida por intervalos. Función Valor Absoluto.

Más detalles

ESTADISTICA APLICADA A LA EDUCACIÒN CODIGO: HOC220 EJERCICIOS SOBRE MEDIDAS DE TENDENCIA CENTRAL, POSICIONAL Y DE DISPERSIÓN

ESTADISTICA APLICADA A LA EDUCACIÒN CODIGO: HOC220 EJERCICIOS SOBRE MEDIDAS DE TENDENCIA CENTRAL, POSICIONAL Y DE DISPERSIÓN ESTADISTICA APLICADA A LA EDUCACIÒN CODIGO: HOC220 EJERCICIOS SOBRE MEDIDAS DE TENDENCIA CENTRAL, POSICIONAL Y DE DISPERSIÓN COMPILADOR San Cristóbal, Abril 2011 CODIGO: HOC220 Página 1 1. A un conjunto

Más detalles

TEMA 5 FUNCIONES ELEMENTALES II

TEMA 5 FUNCIONES ELEMENTALES II Tema Funciones elementales Ejercicios resueltos Matemáticas B º ESO TEMA FUNCIONES ELEMENTALES II Rectas EJERCICIO. Halla la pendiente, la ordenada en el origen y los puntos de corte con los ejes de coordenadas

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL MEDIDAS DE TENDENCIA CENTRAL Al describir grupos de observaciones, con frecuencia es conveniente resumir la información con un solo número. Este número que, para tal fin, suele situarse hacia el centro

Más detalles

Evidentemente, la superficie es un triángulo rectángulo de base 1 y altura también la unidad, por tanto su área es 1/2.

Evidentemente, la superficie es un triángulo rectángulo de base 1 y altura también la unidad, por tanto su área es 1/2. LA INTEGRAL DEFINIDA En los dos temas anteriores se ha hecho el estudio de las primitivas de una función, descubriendo distintos procedimientos para el cálculo de primitivas, es decir, se han encontrado

Más detalles

Descomponemos la demanda y la oferta nacional por intervalos, ya que a ciertos niveles de precios, la demanda y/o la oferta es igual a cero.

Descomponemos la demanda y la oferta nacional por intervalos, ya que a ciertos niveles de precios, la demanda y/o la oferta es igual a cero. ANEXO: Soluciones lista. Ejercicios 4, 5 y 6 Ejercicio 4. Soluciones: a) Equilibrio del monopolio. Descomponemos la demanda y la oferta nacional por intervalos, ya que a ciertos niveles de precios, la

Más detalles

2. Recolección de información - Medidas de posición: moda, media aritmética, mínimo, máximo - Frecuencia absoluta, relativa y porcentual

2. Recolección de información - Medidas de posición: moda, media aritmética, mínimo, máximo - Frecuencia absoluta, relativa y porcentual Prueba Escrita de matemática / Nivel: Sétimo año 1. Estadística - Unidad estadística - Características - Datos u observaciones - Población - Muestra - Variabilidad de los datos - Variables cuantitativas

Más detalles

VOLUMENES DE SÓLIDOS DE REVOLUCION

VOLUMENES DE SÓLIDOS DE REVOLUCION OLUMENES DE SÓLIDOS DE REOLUCION Los sólidos de revolución son sólidos que se generan al girar una región plana alrededor de un eje. Por ejemplo: el cono es un sólido que resulta al girar un triángulo

Más detalles

Guía Nº2. Análisis Grafico del movimiento rectilíneo uniforme

Guía Nº2. Análisis Grafico del movimiento rectilíneo uniforme UNIDAD EDUCATIVA COLEGIO LOS PIRINEOS DON BOSCO INSCRITO EN EL M.P.P.E. Nº S2991D2023 RIF: J-09009977-8 PROF: JESUS URIBE ASIGNATURA: FISCA LAPSO: SEGUNDO AÑO: 4TO (A, B Y C) Guía Nº2 (Tema nuevo, aun

Más detalles

Distribución Normal Curva Normal distribución gaussiana

Distribución Normal Curva Normal distribución gaussiana Distribución Normal La distribución continua de probabilidad más importante en todo el campo de la estadística es la distribución normal. La distribución normal tiene grandes aplicaciones prácticas, en

Más detalles

MICROSOFT EXCEL PARA DIRECCIÓN FINANCIERA I. 1. Resolución de problemas de simulación de Montecarlo mediante el uso de la hoja de cálculo.

MICROSOFT EXCEL PARA DIRECCIÓN FINANCIERA I. 1. Resolución de problemas de simulación de Montecarlo mediante el uso de la hoja de cálculo. MICROSOFT EXCEL PARA DIRECCIÓN FINANCIERA I. 1. Resolución de problemas de simulación de Montecarlo mediante el uso de la hoja de cálculo. Mediante el modelo de Hertz o Simulación de Montecarlo, trataremos

Más detalles

b 11 cm y la hipotenusa

b 11 cm y la hipotenusa . RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS UNIDAD : Trigonometría II Resolver un triángulo es conocer la longitud de cada uno de sus lados y la medida de cada uno de sus ángulos. En el caso de triángulos rectángulos,

Más detalles

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a

Más detalles