UNIVERSIDAD SIMÓN BOLÍVAR DEPARTAMENTO DE MATEMÁTICAS PURAS Y APLICADAS PREPARADURÍAS DE MATEMÁTICAS V (MA-2112) PREPARADURÍA N 6

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIVERSIDAD SIMÓN BOLÍVAR DEPARTAMENTO DE MATEMÁTICAS PURAS Y APLICADAS PREPARADURÍAS DE MATEMÁTICAS V (MA-2112) PREPARADURÍA N 6"

Transcripción

1 Saúl I. Utrera B. Ingeniería de Materiales UNIVERSIDAD SIMÓN BOLÍVAR DEPARTAMENTO DE MATEMÁTICAS PURAS Y APLICADAS PREPARADURÍAS DE MATEMÁTICAS V (MA-11) PREPARADURÍA N 6 Máximos y mínimos: clasificación y Multiplicadores de Lagrange 1. Máximos y mínimos: Un punto (xx, yy ) es crítico de una función ff: R R sí y solo sí, satisface la relación: ff(xx, yy) = 0 0 Clasificación de puntos críticos: Si (xx, yy ) es un punto crítico de una función ff: R R y: (a) det HH(xx, yy ) > 0 yy h 11 > 0 eeee (xx, yy ) ff tttttttttt uuuu MMÍNNNNNNNN LLLLLLLLLL. (b) det HH(xx, yy ) > 0 yy h 11 < 0 eeee (xx, yy ) ff tttttttttt uuuu MMÁXXXXXXXX LLLLLLLLLL. (c) det HH(xx, yy ) < 0 (xx, yy ) eeee uuuu PPPPPPPPPP SSSSSSSSSS. (d) det HH(xx, yy ) = 0 EEEE cccccccccccccccc nnnn cccccccccccccccc. SSSS dddddddd eeeeeeeeeeeeeeee llllllllllllllllllll Hallar todos los puntos críticos de la función ff(xx, yy) = xx yy3 + 4yy xx yy + y clasificarlos. Los puntos críticos de una función ff(xx, yy) son todos aquellos en los que ff(xx, yy) = 0 0 con ff: R R. Entonces, necesitamos el gradiente de la función. Veamos: 1

2 (xx, yy) (xx, yy) = 4xx3 xxyy ff(xx, yy) = ff(xx, yy) = (xx, yy) (xx, yy) = yy + 8yy yyxx 4xx 3 xxyy ff(xx, yy) = yy + 8yy yyxx ff(xx, yy) = xx(xx yy ) yy(yy + 4 xx ) Luego: (11) xx = 0 ff(xx, yy) = 0 0 xx(xx yy ) (aa) yy(yy + 4 xx ) (bb) = 0 0 () yy = 0 (33) (xx yy ) = 0 (44) (yy + 4 xx ) = 0 De (1) tenemos: xx = 0 xx = 0 Sustituimos xx = 0 en (b): yy(yy + 4 xx ) = 0 yy(yy + 4) = 0 yy 1 = 0, yy = 4 Entonces, los primeros puntos críticos tienen la forma: {(xx, yy) xx = 0 (yy = 0 yy = 4)} AA = 0 0 yy BB = 0 4 De (3) tenemos: xx yy xx = yy xx = yy xx = ± yy xx = ± 1 yy xx = ± yy Sustituimos xx = ± yy en (b):

3 yy(yy + 4 xx ) = 0 yy yy yy = 0 yy 1 = 0, yy ii = ± 36 De resolver la ecuación de segundo grado! Entonces, los otros puntos críticos tienen la forma: (xx, yy) xx = ± yy (yy = 0 yy = 4 yy = ) PP ii = ± yy yy CC =, DD =, EE =, FF = 4 4 De sustituir () en (a) volveremos a obtener el punto AA. Para (4) debemos decidir cuál variable escribiremos en función de la otra. Aquí escribiremos yy en función de xx para simplificar las cuentas, así: yy + 4 xx = 0 yy = xx 4 Sustituimos en (a): xx(xx yy ) = 0 xx(xx (xx 4) ) = 0 xx(xx xx 4 + 8xx 16) = 0 xx(xx xx 4 + 8xx 16) = 0 xx(xx 4 10xx + 16) = 0 xx = 0, xx 4 10xx + 16 = 0 De sustituir xx = 0 en yy = xx 4 volvemos a obtener el punto BB. Si resolvemos la ecuación xx 4 10xx + 16 = 0 y sus soluciones la sustituimos en yy = xx 4 tendremos los puntos CC, DD, EE yy FF. Entonces, concluimos: LLLLLL pppppppppppp ccccítttttttttt dddd ff(xx, yy)ssssss: AA = 0 0, BB = 0, CC =, DD =, EE = yy FF =

4 Hemos concluido la primera etapa del ejercicio y, ciertamente, la más sencilla. Ahora debemos clasificarlos. Para esto seguimos los criterios establecidos al principio de esta preparaduría. Entonces, tendremos que calcular la Matriz Hessiana de ff(xx, yy), HH ff (xx, yy). La Matriz Hessiana de una función ff: R R está dada por: (xx, yy) HH ff (xx, yy) = (xx, yy) (xx, yy) (xx, yy) Con (xx, yy) = 4xx3 xxyy y (xx, yy) = yy + 8yy yyxx, tenemos: (xx, yy) = 1xx yy (xx, yy) = 4xxxx (xx, yy) = 4xxxx (xx, yy) = 4yy xx + 8 Entonces, la Matriz Hessiana de ff(xx, yy) es: HH ff (xx, yy) = 1xx yy 4xxxx 4xxxx 4yy xx + 8 Evaluamos la Matriz Hessiana para cada uno de los puntos críticos y calculamos el determinante asociado: Para AA = 0 0 : HH ff (0,0) = det HH ff(0,0) = 0 Según el literal (d) de los criterios de clasificación: no se puede concluir sobre el punto AA. 4

5 Para BB = 0 4 : HH ff (0, 4) = det HH ff(0, 4) = 56 Tenemos que det HH ff (0, 4) > 0 yy h 11 = 3 < 0, por lo tanto, según el literal (b) de los criterios de clasificación: en BB, ff(xx, yy) tiene un MÁXIMO LOCAL. Para CC = 4 : HH ff, 4 = 64 3 det HH ff, 4 = Tenemos que det HH ff, 4 < 0, por lo tanto, según el literal (c) de los criterios de clasificación: En CC, ff(xx, yy) tiene un PUNTO SILLA. Para DD = 4 : HH ff, 4 = det HH ff, 4 = 1536 Tenemos que det HH ff, 4 < 0, por lo tanto, según el literal (c) de los criterios de clasificación: En DD, ff(xx, yy) tiene un PUNTO SILLA. Para EE = : HH ff, = det HH ff, = 19 5

6 Tenemos que det HH ff, < 0, por lo tanto, según el literal (c) de los criterios de clasificación: En EE, ff(xx, yy) tiene un PUNTO SILLA. Para FF = : HH ff, = det HH ff, = 19 Tenemos que det HH ff, < 0, por lo tanto, según el literal (c) de los criterios de clasificación: En FF, ff(xx, yy) tiene un PUNTO SILLA. 1.. Sea ff(xx, yy) = xx + kkkkkk + yy, kk εε R, determinar los valores de kk para que: (a) En (0,0) sea un punto silla, (b) En (0,0) ff tiene un mínimo local, (c) El criterio de segunda derivada no permita concluir. Lo primero que tenemos que hacer es verificar que el (0,0) sea un punto crítico, ya que este podría ser uno de esos ejercicios mal intencionados en los que generalmente caemos los estudiantes: Según la definición, los puntos críticos son todos aquellos (xx, yy) tales que ff(xx, yy) = 0 0. (xx, yy) (xx, yy) = xx + kkkk ff(xx, yy) = ff(xx, yy) = (xx, yy) (xx, yy) = yy + kkkk xx + kkkk ff(xx, yy) = yy + kkkk = 0 0 xx + kkkk = 0 (11) yy + kkkk = 0 () 6

7 De (1) tenemos que xx + kkkk = 0 xx = kkkk xx = 1 kkkk. Sustituimos xx en () y nos queda: kk 1 kkkk + yy = 0 1 kk yy + yy = 0 yy 1 kk = 0 y = 0 (aa) Sustituimos (a) en xx = 1 kkkk: xx = 1 kkkk xx = 1 kk(0) x = 0 Entonces AA = (0,0) es un punto crítico. Verificado! Para clasificar necesitamos HH ff (xx, yy): (xx, yy) HH ff (xx, yy) = (xx, yy) (xx, yy) kk (xx, yy) = kk HH ff(xx, yy) = kk kk Evaluamos HH ff (xx, yy) en el punto (0,0) y calculamos el det HH ff (0,0) : HH ff (0,0) = kk kk det HH ff(0,0) = 4 kk (a) Para punto silla: det HH ff (0,0) < 0 4 kk < 0 4 < kk kk > > kk > Para kk εε (, ) (, ) en (0,0) ff tiene un PUNTO SILLA. (b) Para mínimo local: Tenemos dos condiciones det HH ff (0,0) > 0 y h 11 > 0 h 11 = > 0 Se cumple! 7

8 4 kk > 0 4 > kk > kk > kk > Para kk εε (,) en (0,0) ff tiene un MÍNIMO LOCAL. (c) Para que el criterio falle: det HH ff (0,0) = 00 4 kk = 0 4 = kk kk = kk = ± Para kk = ± en (0,0) el criterio de la segunda derivada falla.. Máximos y mínimos con restricciones (fronteras): Dados ff: R R y DD R, hallar los máximos y mínimos de ff que pertenecen a DD se traduce en: (a) Obtener los puntos críticos, (b) Descartar aquellos puntos que no pertenezcan a DD, (c) Evaluar ffen los puntos dentro de la frontera de DD, (d) Hallar los puntos críticos en la frontera de DD y evaluar ff en esos puntos. Para esto existen dos métodos: (d.1) Parametrizar la frontera, (d.). Multiplicadores de Lagrange. (e) Entre los valores de ff evaluados en los puntos críticos el más grande es un MÁXIMO GLOBAL y el más pequeño es un MÍNIMO GLOBAL.. A. Multiplicadores de Lagrange: El método consiste en hallar xx, yy y λλ tales que: ff(xx, yy) = λλ gg(xx, yy) gg(xx, yy) = 0 Multiplicador de Lagrange Donde gg(xx, yy) = 0 es la gráfica de la frontera de DD. 8

9 .1. Hallar los extremos globales de la función ff(xx, yy) = xx + 3yy sujeta a la restricción 3xx + yy = 3. Hallamos los puntos críticos de la función ff(xx, yy) = xx + 3yy mediante la relación ff(xx, yy) = 0 0. (xx, yy) (xx, yy) = ff(xx, yy) = ff(xx, yy) = (xx, yy) (xx, ff(xx, yy) = yy) = Por ff(xx, yy) 0 concluimos que NO hay puntos críticos. 0 Veamos ahora en la frontera de DD: 3xx + yy = 3 donde gg(xx, yy) = 3xx + yy 3. Usaremos Multiplicadores de Lagrange: Necesitamos gg(xx, yy) = (xx,yy) = 6xx (xx,yy) 4yy ff(xx, yy) = λλ gg(xx, yy) gg(xx, yy) = 0, entonces por Lagrange: ff(xx, yy) = λλ gg(xx, yy) = λλ 6xx 3 4yy gg(xx, yy) = 0 3xx + yy 3 = 0 Tendremos un sistema de ecuaciones como el que sigue: = λλ(6xx) (11) 3 = λλ(4yy) () 3xx + yy 3 = 0 (33) De (1) despejaremos xx, de () despejaremos yy y por último ambos despejes los sustituiremos en (3), así: = λλ(6xx) xx = 6λλ 3 = λλ(4yy) yy = 3 4λλ 3 1 3λλ + 3 4λλ 3 = 0 (44) 9

10 Despejaremos λλ de la expresión (4): 3 1 3λλ + 3 4λλ 3 = 0 8λλ + 7λλ 7λλ 4 4λλ = λλ = 0 35 = 7λλ λλ = ± 35 7 λλ 1 = 35 7, λλ = 35 7 Para cada valor de λλ consigo un xx e yy usando (1) y (): λλ 1 = xx =, yy = El primer punto crítico en la frontera de DD es: AA = 3 7 eeeeeeeeeeeeeeeeee ff eeee AA ff(aa) = = ff(aa) = = = 7 35 = = ff(aa) = Ahora vemos para λλ : λλ = xx =, yy = El otro punto crítico en la frontera de DD es: BB = 3 7 eeeeeeeeeeeeeeeeee ff eeee BB ff(bb) =

11 ff(bb) = ff(bb) = 1 35 Como ff(aa) > ff(bb) concluimos que: max DD 70 ff = yy min ff = 70 DD 3. Problemas propuestos: 3.1. Hallar y clasificar los puntos críticos de ff(xx, yy) = xx yy3 + 4yy xx yy +. (Resp.: En (0,4) ff tiene un máximo local, en (0,0) un mínimo local y ± 8, 4, (±, ) son puntos silla). 3.. Hallar y clasificar los puntos críticos de ff(xx, yy) = xx 3 4xx 16xx + yy 3 4yy. (Resp.: En 4, 0 ff tiene un máximo local, en 4, 3 8 un mínimo local y 3 (4,0), 4, 3 8 son puntos silla) Hallar los máximos y mínimos globales de ff(xx, yy) = xxxx(1 xx yy ) en [0,1]xx[0,1]. (Resp.: En 1, 1 ff tiene un máximo global y en (1,1) tiene un mínimo globa)l Determinar los valores máximos y mínimos globales de ff(xx, yy) = xx + 8yy yy en el disco cerrado xx + yy 4. (Resp.: En 0, ( 1 ) existe un mínimo global y (0, ) un 16 máximo global Calcule las dimensiones de la caja de mayor volumen que esté contenida en la región limitada por los tres planos coordenados y por el plano dado por {(xx, yy, zz) aaaa + bbbb + cccc 1 = 0, cccccc aa, bb, cc > 0}. Se sabe que la caja tiene tres de sus caras apoyadas en cada uno de los planos coordenados y el vértice que no pertenece a ninguna de esas tres caras está en el conjunto antes mencionado. (Resp.: Las dimensiones de la caja son xx = 1 1, yy = yy zz = 1 ). 3aa 3bb 3cc Cualquier error que encuentre notifíquelo al correo: sauliutrerab@gmail.com. Muchas gracias. 11

12 NOTA DEL AUTOR: Esta guía fue completada con ejercicios obtenidos de las guías de los profesores Libuska Juricek y Farith Briceño, además del texto oficial del curso y las notas del profesor Morales Bueno. Su uso es totalmente educativo. Se espera facilitar el estudio de una asignatura compleja como MA-11. Saúl I. Utrera B. Universidad Simón Bolívar Ingeniería de Materiales Carné:

RESUMEN TEORIA MATEMATICAS 5

RESUMEN TEORIA MATEMATICAS 5 RESUMEN TEORIA MATEMATICAS 5 LIMITES Definición. Sea :, lim,,, Significa que cuando, esta cerca de, entonces, esta cerca de L. De otra forma se dice que, pertenece a una bola centrada en, por otro lado,

Más detalles

Extremos condicionados. APUNTE: Extremos condicionados Multiplicadores de Lagrange

Extremos condicionados. APUNTE: Extremos condicionados Multiplicadores de Lagrange APUNTE: Etremos condicionados Multiplicadores de Larane UNIVERSIDAD NACIONAL DE RIO NEGRO Asinatura: Matemática Carreras: Lic en Administración, Lic en Turismo, Lic en Hotelería Profesor: Prof Mabel Chrestia

Más detalles

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN May 4, 2012 1. Optimización Sin Restricciones En toda esta sección D denota un subconjunto abierto de R n. 1.1. Condiciones Necesarias de Primer Orden. Proposición 1.1. Sea f : D R diferenciable. Si p

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

Laboratorio N 8, Extremos condicionados, Multiplicadores de Lagrange.

Laboratorio N 8, Extremos condicionados, Multiplicadores de Lagrange. Universidad Diego Portales Facultad de Ingeniería. Instituto de Ciencias Básicas Asignatura: Cálculo III Laboratorio N 8, Extremos condicionados, Multiplicadores de Lagrange. Introducción. En este laboratorio

Más detalles

Clase 9 Programación No Lineal

Clase 9 Programación No Lineal Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 9 Programación No Lineal ICS 110 Optimización Profesor : Claudio Seebach Apuntes de Clases

Más detalles

TEMARIO EXAMEN DIAGNÓSTICO INICIAL ADMISIÓN MATEMÁTICA

TEMARIO EXAMEN DIAGNÓSTICO INICIAL ADMISIÓN MATEMÁTICA POSTULACIÓN A PRIMER AÑO MEDIO N 1.- Resolver operaciones con números, ecuaciones y potencias. N 2.- Aplicar transformaciones isométricas y teselaciones. N 3.- Evaluar problemas de cálculo de perímetro

Más detalles

Práctica 6. Método de los multiplicadores de Lagrange. Extremos condicionados.

Práctica 6. Método de los multiplicadores de Lagrange. Extremos condicionados. Práctica 6. Método de los multiplicadores de Lagrange. Extremos condicionados. Análisis Matemático II. Departamento de Matemáticas. Diplomatura en Estadística / Ingeniería Técnica de Informática de Gestión

Más detalles

Derivadas Parciales (parte 2)

Derivadas Parciales (parte 2) 40 Derivadas Parciales (parte 2) Ejercicio: Si donde y. Determinar Solución: Consideraremos ahora la situación en la que, pero cada una de las variables e es función de dos variables y. En este caso tiene

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Máximos y mínimos. Mínimo global Máximo global máximo relativo mínimo relativo

Máximos y mínimos. Mínimo global Máximo global máximo relativo mínimo relativo Máximos y mínimos. Anteriormente estudiamos métodos para obtener los extremos de funciones de una variable. Extenderemos esas técnicas a funciones de dos variables. Sea una función de dos variables, definida

Más detalles

5.- Problemas de programación no lineal.

5.- Problemas de programación no lineal. Programación Matemática para Economistas 7 5.- Problemas de programación no lineal..- Resolver el problema Min ( ) + ( y ) s.a 9 5 y 5 Solución: En general en la resolución de un problema de programación

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector EJERCICIOS DE GEOMETRÍA PLANA Hallar las ecuaciones paramétricas de la recta r que pasa por el punto (, ) tiene como vector director el vector v i j A y x a + vt La ecuación paramétrica de una recta es

Más detalles

UNIDAD 6.- PROGRAMACIÓN LINEAL

UNIDAD 6.- PROGRAMACIÓN LINEAL UNIDAD 6.- PROGRAMACIÓN LINEAL 1. INECUACIONES LINEALES CON DOS INCÓGNITAS Una inecuación de primer grado con dos incógnitas es una inecuación que en forma reducida se puede expresar de la siguiente forma:

Más detalles

INTERACCIÓN RUEDA - CARRIL

INTERACCIÓN RUEDA - CARRIL 5 - INTERACCIÓN RUEDA - CARRIL CAPÍTULO 5 INTERACCIÓN RUEDA - CARRIL 5.1. INTRODUCCIÓN El fenómeno de contacto es probablemente el que más caracteriza la investigación en dinámica ferroviaria pues posee

Más detalles

EJERCICIOS ADICIONALES.

EJERCICIOS ADICIONALES. UNIVERSIDAD SIMON BOLIVAR PREPARADURIA DE MATEMATICAS MATEMATICAS 4 (MA-5) Miguel Guzmán (magt_3@hotmail.com) Tema: SUCESIONES EJERCICIOS ADICIONALES..- Considere la sucesión establecida por la relación

Más detalles

ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3

ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3 ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2. Transformaciones ortogonales (Curso 2010 2011) 1. Se considera el espacio vectorial euclídeo IR referido a una base ortonormal. Obtener la expresión

Más detalles

Ejercicios Resueltos

Ejercicios Resueltos Ejercicios Resueltos Ejercicio 1 La función de transferencia de un sistema de control tiene como expresión: Determinar, aplicando el método de Routh, si el sistema es estable. Para comprobar la estabilidad

Más detalles

En primer lugar voy a trasladar el enunciado a lenguaje matemático. Me fijo en lo que me preguntan: a una variable la llamo x y a otra y.

En primer lugar voy a trasladar el enunciado a lenguaje matemático. Me fijo en lo que me preguntan: a una variable la llamo x y a otra y. PROGRAMACIÓN LINEAL EJERCICIO TIPO Una confitería se elaboran tartas de nata y de manzana. Cada tarta de nata requiere medio kilo de azúcar y 8 huevos; y una de manzana, 1 kg de azúcar y 6 huevos. En la

Más detalles

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Sobrantes de 011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 4 del 011 [ 5 puntos] Queremos hacer junto a la carretera un cercado rectangular

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0.

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0. ÁLULO Primer curso de ngeniero de Telecomunicación Examen Final. 6 de Junio de 8 Primera parte Ejercicio. onsideremos los rectángulos de lados paralelos a los ejes que pueden inscribirse en la elipse x

Más detalles

Guía de Matemática Tercero Medio

Guía de Matemática Tercero Medio Guía de Matemática Tercero Medio Aprendizaje Esperado: 1. Plantean y resuelven problemas que involucran ecuaciones de segundo grado; explicitan sus procedimientos de solución y analizan la existencia y

Más detalles

Santiago, julio 6 del Tercera Solemne Cálculo Varias Variables. Nombre:

Santiago, julio 6 del Tercera Solemne Cálculo Varias Variables. Nombre: Nombre: Santiago, julio 6 del 26. Tercera Solemne Cálculo Varias Variables. 1. La temperatura en un punto (x, y) sobre una placa metalica es T (x, y) 4x 2 4xy + y 2. Una hormiga camina sobre la placa alrededor

Más detalles

IES Fco Ayala de Granada Sobrantes del 2010 (Modelo 6) Soluciones Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Sobrantes del 2010 (Modelo 6) Soluciones Germán-Jesús Rubio Luna. Opción A Opción A Ejercicio 1 opción A, modelo 6 del 010 [ 5 puntos] Dada la función f : R R definida como f(x)= a.sen(x)+ bx + cx + d, determina los valores de las constantes a, b, c y d sabiendo que la gráfica

Más detalles

ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 5 - Verano 2009

ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 5 - Verano 2009 ANÁLISIS I MATEMÁTICA ANÁLISIS II (Computación) Práctica 5 - Verano 2009 Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Derivadas de orden superior. Calcular las derivadas

Más detalles

1. (diciembre , 2.5 puntos) Estudiar la continuidad y la derivabilidad en xx = 0 de la

1. (diciembre , 2.5 puntos) Estudiar la continuidad y la derivabilidad en xx = 0 de la . (diciembre 3-4,.5 puntos) Estudiar la continuidad y la derivabilidad en xx = de la función ff(xx) para los diferentes valores de nn N y del parámetro real AA >. ff(xx) = xx eett4 ff(xx) = AAAA si xx.

Más detalles

Tema 1 El objeto de análisis de la economía

Tema 1 El objeto de análisis de la economía Ejercicios resueltos de Introducción a la Teoría Económica Carmen Dolores Álvarez Albelo Miguel Becerra Domínguez Rosa María Cáceres Alvarado María del Pilar Osorno del Rosal Olga María Rodríguez Rodríguez

Más detalles

OPERACIÓN ÓPTIMA EN ECOSIMPRO DE ESTACIONES DE REGULACIÓN Y MEDIDA DE LA RED DE GAS NATURAL

OPERACIÓN ÓPTIMA EN ECOSIMPRO DE ESTACIONES DE REGULACIÓN Y MEDIDA DE LA RED DE GAS NATURAL ISBN 978-84-15914-12-9 2015 Comité Español de Automática de la IFAC (CEA-IFAC) 583 OPERACIÓN ÓPTIMA EN ECOSIMPRO DE ESTACIONES DE REGULACIÓN Y MEDIDA DE LA RED DE GAS NATURAL Mayko Rannany S. Sousa Departamento

Más detalles

5. ANÁLISIS DE FUNCIONES DE VARIAS VARIABLES.

5. ANÁLISIS DE FUNCIONES DE VARIAS VARIABLES. Análisis de funciones de varias variables 61 5. ANÁLISIS DE FUNCIONES DE VARIAS VARIABLES. En este apartado trabajaremos con funciones de dos variables, aunque los cálculos analíticos se pueden efectuar

Más detalles

Base y Dimensión de un Espacio Vectorial

Base y Dimensión de un Espacio Vectorial Base y Dimensión de un Espacio Vectorial 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Qué es un sistema generador?... 4 2 Base de un espacio vectorial... 4 3 Dimensión de un

Más detalles

MATEMÁTICAS 1º BACHILLERATO Curso EJERCICIOS RESUELTOS DE INECUACIONES

MATEMÁTICAS 1º BACHILLERATO Curso EJERCICIOS RESUELTOS DE INECUACIONES MATEMÁTICAS 1º BACHILLERATO Curso 9-1 EJERCICIOS RESUELTOS DE INECUACIONES EJERCICIOS RESUELTOS DE INECUACIONES A. Inecuaciones lineales con una incógnita x x1 x3 > 1 3 4 x x1 x3 4( x ) 3( x1) 6( x3) 1

Más detalles

VALORES EXTREMOS Y PUNTOS DE SILLA.

VALORES EXTREMOS Y PUNTOS DE SILLA. 1 VALORES EXTREMOS Y PUNTOS DE SILLA. DEFINICION: Sea ( x, y ) una unción deinida sobre una región R que contiene el punto ( a, b ),entonces: a) (a, b ) es un máximo local de si ( a, b ) (x, y ) para todos

Más detalles

PROGRAMACIÓN LINEAL MÉTODO GRÁFICO

PROGRAMACIÓN LINEAL MÉTODO GRÁFICO 1 PROGRAMACIÓN LINEAL MÉTODO GRÁFICO Dado un problema de programación lineal se debe: 1. Graficar cada una de las restricciones. 2. Encontrar el Polígono de factibilidad, que es la intersección de los

Más detalles

Matemáticas I Grado de Administración y Dirección de Empresas Examen de Febrero Curso 2011/ ?

Matemáticas I Grado de Administración y Dirección de Empresas Examen de Febrero Curso 2011/ ? Matemáticas I Grado de Administración y Dirección de Empresas Examen de Febrero Curso 011/1 1) (1 punto) Dado el subespacio vectorial,,,,,,,,,,, a) Obtener la dimensión, unas ecuaciones implícitas, unas

Más detalles

1 Funciones de Varias Variables

1 Funciones de Varias Variables EJECICIOS DE FUNDAMENTOS MATEMÁTICOS (DISEO) Funciones de Varias Variables. Dada f(x, y) ln ( x + ln(y) ). a) Calcular la derivada direccional en el punto (x, y) (, e 2 ) en la dirección del vector v (3,

Más detalles

Ecuaciones de la tangente y la normal

Ecuaciones de la tangente y la normal Ecuaciones de la tangente la normal Ahora que sabemos cómo calcular la pendiente de una recta tangente a una curva dada su ecuación, independientemente de que ésta sea una función o no lo sea, podemos

Más detalles

Ecuaciones de la recta en el espacio

Ecuaciones de la recta en el espacio Ecuaciones de la recta en el espacio Ecuación vectorial de la recta Sea P(x 1, y 1 ) es un punto de la recta r y uu su vector director, el vector PPXX tiene igual dirección que uu, luego es igual a uu

Más detalles

Clase 10: Extremos condicionados y multiplicadores de Lagrange

Clase 10: Extremos condicionados y multiplicadores de Lagrange Clase 10: Extremos condicionados y multiplicadores de Lagrange C.J. Vanegas 7 de abril de 008 1. Extremos condicionados y multiplicadores de Lagrange Estamos interesados en maximizar o minimizar una función

Más detalles

MATEMÁTICAS III (Carrera de Economía) MÁXIMOS Y MÍNIMOS DE UNA FUNCIÓN DE DOS VARIABLES INDEPENDIENTES

MATEMÁTICAS III (Carrera de Economía) MÁXIMOS Y MÍNIMOS DE UNA FUNCIÓN DE DOS VARIABLES INDEPENDIENTES MATEMÁTICAS III (Carrera de Economía) MÁXIMOS Y MÍNIMOS DE UNA FUNCIÓN DE DOS VARIABLES INDEPENDIENTES ( http://www.geocities.com/ajlasa ) (El contenido de esta nota ha sido, en lo esencial, tomado de:

Más detalles

Introducción a Ecuaciones Lineales.

Introducción a Ecuaciones Lineales. Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica. Unidad Culhuacán. Introducción a Ecuaciones Lineales. Autor: Ing. Jonathan Alejandro Cortés Montes de Oca. Introducción.

Más detalles

Algebra Lineal Tarea No 22: Valores y vectores propios Solución a algunos problemas de la tarea (al 29 de junio de 2014)

Algebra Lineal Tarea No 22: Valores y vectores propios Solución a algunos problemas de la tarea (al 29 de junio de 2014) Algebra Lineal Tarea No : Valores y vectores propios a algunos problemas de la tarea (al 9 de junio de 04. Para la matriz A A Indique cuáles vectores son vectores propios: ( ( ( v, v, v 3 3 Recordemos

Más detalles

EXAMEN DE SEPTIEMBRE, MATEMÁTICAS I. 1. (2.5 ptos) Sean f y g funciones con derivadas primeras y segundas continuas de las que se sabe que

EXAMEN DE SEPTIEMBRE, MATEMÁTICAS I. 1. (2.5 ptos) Sean f y g funciones con derivadas primeras y segundas continuas de las que se sabe que EXAMEN DE SEPTIEMBRE, MATEMÁTICAS I DEBE CONTESTAR ÚNICAMENTE A 4 DE LOS SIGUIENTES 5 EJERCICIOS 1. (.5 ptos) Sean f y g funciones con derivadas primeras y segundas continuas de las que se sabe que Sea

Más detalles

M.C. José Eduardo Frias Chimal Dr. Sergio Alonso Romero M.C. Miguel Ángel Corzo Velázquez M.I. Raúl Lesso Arroyo

M.C. José Eduardo Frias Chimal Dr. Sergio Alonso Romero M.C. Miguel Ángel Corzo Velázquez M.I. Raúl Lesso Arroyo Rediseño Geométrico y Validación Numérica de la Optimización de la Transferencia de Calor en Campañas de Cocción de Ladrillo Rojo en el Estado de Guanajuato M.C. José Eduardo Frias Chimal Dr. Sergio Alonso

Más detalles

Máximos y mínimos usando la segunda derivada

Máximos y mínimos usando la segunda derivada Máimos mínimos usando la segunda derivada Ahora que sabemos que la segunda derivada nos da información acerca de la primera derivada, vamos a utilizarla para calcular los máimos mínimos de funciones. Ya

Más detalles

(Tecla Shift pequeña) ó (Tecla Shift grande) Estas teclas, también tienen la función de poner la letra en Mayúsculas.

(Tecla Shift pequeña) ó (Tecla Shift grande) Estas teclas, también tienen la función de poner la letra en Mayúsculas. EL TECLADO Un teclado es un periférico de entrada que consiste en un sistema de teclas, como las de una máquina de escribir, que te permite introducir datos al ordenador. Cuando se presiona un carácter,

Más detalles

Fundamentos Matemáticos de la Ingeniería. Tema 4: Diagonalización de matrices. Curso

Fundamentos Matemáticos de la Ingeniería. Tema 4: Diagonalización de matrices. Curso Fundamentos Matemáticos de la Ingeniería Tema 4 Hoja Escuela Técnica Superior de Ingeniería Civil e Industrial Esp en Hidrología Fundamentos Matemáticos de la Ingeniería Tema 4: Diagonaliación de matrices

Más detalles

1 0 4/ 5 13/

1 0 4/ 5 13/ 1 1 1 7 1 0 4/ 5 13/ 5 R1 R 1+1/5R3 0 0 0 2 R2 R3 0 5 9 22 0 5 9 22 0 0 0 2 Como la matriz tiene un renglón (0, 0, 0, 2) indica que el sistema no tiene solución ya que no existe un número que sea 2 y al

Más detalles

Laboratorio Nº 4 Ecuaciones diferenciales de orden n. Ecuación lineal homogénea. Soluciones linealmente independientes

Laboratorio Nº 4 Ecuaciones diferenciales de orden n. Ecuación lineal homogénea. Soluciones linealmente independientes Universidad Diego Portales Segundo Semestre 2007 Facultad de Ingeniería Instituto de Ciencias Básicas Asignatura: Ecuaciones Diferenciales Laboratorio Nº 4 Ecuaciones diferenciales de orden n. Ecuación

Más detalles

Método de Sustitución

Método de Sustitución Método de Sustitución El nombre de este método nos indica qué es lo que vamos a hacer: para resolver el S.E.L. de dos ecuaciones con dos incógnitas vamos a «despejar» una de las incógnitas de una de las

Más detalles

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 01 - Problemas 8, 9

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 01 - Problemas 8, 9 Asignatura: Matemáticas II ºBachillerato página 1/8 Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 01 - Problemas 8, 9 Hoja 1. Problema 9 Resuelto por José Antonio Álvarez

Más detalles

Se distinguen tres métodos algebraicos de resolución de sistemas:

Se distinguen tres métodos algebraicos de resolución de sistemas: MÉTODOS DE RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES Se distinguen tres métodos algebraicos de resolución de sistemas: Sustitución Igualación Reducción Notas: 1) Es importante insistir en que la solución

Más detalles

PROGRAMACIÓN DE ASIGNATURAS

PROGRAMACIÓN DE ASIGNATURAS PROGRAMACIÓN DE ASIGNATURAS Asignatura: MA2119 Análisis Matemático Profesor/a: D. José Miguel Serradilla Curso: 2003 / 2004. Cuatrimestre: Primero. Departamento: Ingeniería Informática. Grupos: 2IT1, 2IT2.

Más detalles

Derivadas Parciales. Aplicaciones.

Derivadas Parciales. Aplicaciones. RELACIÓN DE PROBLEMAS FUNDAMENTOS MATEMÁTICOS DE LA INGENIERÍA Curso 2004/2005 Escuela Universitaria de Ingeniería Técnica Agrícola Departamento de Matemática Aplicada I Tema 3. Derivadas Parciales. Aplicaciones.

Más detalles

1 Ecuaciones diferenciales

1 Ecuaciones diferenciales 1 Ecuaciones diferenciales La solución a una ecuación algebraica es un número, o un conjunto de números que satisfacen la ecuación. Por ejemplo las soluciónes de x 2 4x + 3 = 0 son x 0 = 1 y x 1 = 3. Las

Más detalles

Elementos de Cálculo en Varias Variables

Elementos de Cálculo en Varias Variables Elementos de Cálculo en Varias Variables Departamento de Matemáticas, CSI/ITESM 5 de octubre de 009 Índice Introducción Derivada parcial El Jacobiano de una Función 5 Derivadas Superiores 5 5 Derivada

Más detalles

SISTEMA DE 2 ECUACIONES LINEALES CON 2 INCÓGNITAS

SISTEMA DE 2 ECUACIONES LINEALES CON 2 INCÓGNITAS SISTEMA DE ECUACIONES LINEALES CON INCÓGNITAS Debemos tener, al menos, tantas ecuaciones como incógnitas para poder hallar éstas. Cuando al resolver un problema nos encontramos con dos incógnitas relacionadas

Más detalles

La recta se define como el lugar geométrico de todos los puntos de un plano que al tomarse de dos en dos se obtiene la misma pendiente.

La recta se define como el lugar geométrico de todos los puntos de un plano que al tomarse de dos en dos se obtiene la misma pendiente. Formas de la ecuación de una recta. Hasta el momento, se han dado algunas características de la recta tales como la distancia entre dos puntos, su pendiente, su ángulo de inclinación, relación entre ellas,

Más detalles

Ecuaciones Lineales en Dos Variables

Ecuaciones Lineales en Dos Variables Ecuaciones Lineales en Dos Variables Una ecuación lineal en dos variables tiene la forma general a + b + c = 0; donde a, b, c representan números reales las tres no pueden ser iguales a cero a la misma

Más detalles

Aplicaciones de problemas de Máximos y Mínimos.

Aplicaciones de problemas de Máximos y Mínimos. Aplicaciones de problemas de Máximos y Mínimos. En la resolución de problemas de máximos y mínimos el mayor desafío consiste generalmente en obtener, a partir del enunciado, la función que se necesita

Más detalles

Ecuaciones Cuadráticas Las ecuaciones cuadráticas se pueden resolver por el método de factorización o utilizando la fórmula cuadrática.

Ecuaciones Cuadráticas Las ecuaciones cuadráticas se pueden resolver por el método de factorización o utilizando la fórmula cuadrática. Ejemplos de Ecuaciones Cuadráticas e Inecuaciones Cuadráticas Ecuaciones Cuadráticas Las ecuaciones cuadráticas se pueden resolver por el método de factorización o utilizando la fórmula cuadrática. El

Más detalles

TEMA 4: SISTEMAS DE ECUACIONES LINEALES SISTEMA DE ECUACIONES LINEALES

TEMA 4: SISTEMAS DE ECUACIONES LINEALES SISTEMA DE ECUACIONES LINEALES SISTEMA DE ECUACIONES LINEALES 1 SISTEMAS DE ECUACIONES LINEALES Luis compró 5 cuadernos y 4 plumones y gastó en total $ 84.00. Si la diferencia en el costo del cuaderno y del plumón es de $ 6.00. Cuánto

Más detalles

Colegio Universitario Boston

Colegio Universitario Boston Función Lineal. Si f función polinomial de la forma o, donde y son constantes reales se considera una función lineal, en esta nos la pendiente o sea la inclinación que tendrá la gráfica de la función,

Más detalles

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS CC SOCIALES CAPÍTULO 2 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Solución: Para calcular la pendiente, despejamos la y: La ordenada en el origen es n. 3 Puntos de corte con los ejes: 1 Eje Y 0, 3

Solución: Para calcular la pendiente, despejamos la y: La ordenada en el origen es n. 3 Puntos de corte con los ejes: 1 Eje Y 0, 3 EJERCICIO. Halla la pendiente, la ordenada en el origen y los puntos de corte con los ejes de coordenadas de la recta 6y 0. Represéntala gráficamente. Para calcular la pendiente, despejamos la y: 6y 0

Más detalles

Funciones de varias variables: problemas resueltos

Funciones de varias variables: problemas resueltos Funciones de varias variables: problemas resueltos BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL MARRERO RODRÍGUEZ

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamen Global Análisis Matemáticas II Curso 010-011 I E S ATENEA SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL PRIMERA EVALUACIÓN ANÁLISIS Curso 010-011 1-I-011 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 4 Optimización no Lineal

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 4 Optimización no Lineal OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA Tema 4 Optimización no Lineal ORGANIZACIÓN DEL TEMA Sesiones: El caso sin restricciones: formulación, ejemplos Condiciones de optimalidad, métodos Caso con restricciones:

Más detalles

5 Continuidad y derivabilidad de funciones reales de varias variables reales.

5 Continuidad y derivabilidad de funciones reales de varias variables reales. 5 Continuidad y derivabilidad de funciones reales de varias variables reales. 5.1 Funciones reales de varias variables reales. Curvas de nivel. Continuidad. 5.1.1 Introducción al Análisis Matemático. El

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios

Más detalles

SISTEMA DE ECUACIONES LINEALES. Ecuación lineal con dos incógnitas Una ecuación de primer grado se denomina ecuación lineal.

SISTEMA DE ECUACIONES LINEALES. Ecuación lineal con dos incógnitas Una ecuación de primer grado se denomina ecuación lineal. Liceo A 10 Manuel Barros Borgoño Departamento de Matemática SISTEMA DE ECUACIONES LINEALES Ecuación lineal con dos incógnitas Una ecuación de primer grado se denomina ecuación lineal. Una ecuación lineal

Más detalles

Esquema conceptual: Unidad IV

Esquema conceptual: Unidad IV Unidad IV Álgebra Esquema conceptual: Unidad IV Ecuaciones dependientes Ecuaciones independientes Ecuaciones incompletas 1. Sistemas de ecuaciones lineales 2. Solución de sistemas de dos ecuaciones lineales

Más detalles

ELIPSE. Muchos cometas tienen órbitas extremadamente excéntricas. Por ejemplo, el cometa Halley, tiene una excentricidad orbital de casi 0.97!

ELIPSE. Muchos cometas tienen órbitas extremadamente excéntricas. Por ejemplo, el cometa Halley, tiene una excentricidad orbital de casi 0.97! ELIPSE Las órbitas de los planetas son elípticas. La excentricidad de la órbita de la Tierra es muy pequeña (menor de 0.2), de manera que la órbita es casi circular. La órbita de Plutón es la más excéntrica

Más detalles

Conjuntos, relaciones y funciones Susana Puddu

Conjuntos, relaciones y funciones Susana Puddu Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también

Más detalles

Aplicaciones en ciencias naturales, económico-administrativas y sociales

Aplicaciones en ciencias naturales, económico-administrativas y sociales Aplicaciones en ciencias naturales, económico-administrativas y sociales Ya hemos resuelto algunos problemas aplicados a las ciencias naturales, así que aquí nos enfocaremos más a problemas de economía,

Más detalles

División Departamento Licenciatura. Asignatura: Horas/semana: Horas/semestre: Obligatoria X Teóricas 4.0 Teóricas 64.0

División Departamento Licenciatura. Asignatura: Horas/semana: Horas/semestre: Obligatoria X Teóricas 4.0 Teóricas 64.0 UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO CÁLCULO VECTORIAL CIENCIAS BÁSICAS 3 8 Asignatura Clave Semestre Créditos COORDINACIÓN DE MATEMÁTICAS INGENIERÍA CIVIL

Más detalles

Profr. Efraín Soto Apolinar. Lugares geométricos

Profr. Efraín Soto Apolinar. Lugares geométricos Lugares geométricos En esta sección estudiaremos el concepto de lugar geométrico, concepto clave para el desarrollo del estudio de los conceptos de este semestre. Lugar geométrico El conjunto de todos

Más detalles

Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad.

Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad. LUGARES GEOMÉTRICOS. CÓNICAS. 9.1 LUGARES GEOMÉTRICOS Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad. Llamando X(,) a las coordenadas del punto genérico aplicando analíticamente

Más detalles

Parciales Matemática CBC Parciales Resueltos - Exapuni.

Parciales Matemática CBC Parciales Resueltos - Exapuni. Parciales Matemática CBC 2012 Parciales Resueltos - Exapuni www.exapuni.com.ar Compilado de primeros parciales del 2012 Parcial 1 1) Sea. Hallar todos los puntos de la forma, tales que la distancia entre

Más detalles

S.E.L.: 3 ecuaciones con 3 incógnitas

S.E.L.: 3 ecuaciones con 3 incógnitas 1 S.E.L.: 3 ecuaciones con 3 incógnitas Ahora vamos a generalizar el procedimiento que hemos utilizado para resolver sistemas de una ecuación con una incógnita y de 2 ecuaciones con dos incógnitas. Para

Más detalles

JUNIO Encuentra, si existen, matrices cuadradas A, de orden 2, distintas de la matriz identidad, tales que: A

JUNIO Encuentra, si existen, matrices cuadradas A, de orden 2, distintas de la matriz identidad, tales que: A Bloque A JUNIO 2003 1.- Encuentra, si existen, matrices cuadradas A, de orden 2, distintas de la matriz identidad, tales que: 1 0 A = 1 0 A Cuántas matrices A existen con esa condición? Razona tu respuesta.

Más detalles

Desarrollo de Taylor y extremos en varias variables

Desarrollo de Taylor y extremos en varias variables resumen01 1 Desarrollo de Taylor y extremos en varias variables El polinomio de Taylor en varias variables Recordemos que para una función f de una variable, el polinomio de Taylor de orden n en a viene

Más detalles

Diferenciabilidad en un intervalo

Diferenciabilidad en un intervalo Diferenciabilidad en un intervalo Ahora que conocemos cómo calcular la derivada de una función en un punto conviene hacer la pregunta más general: «Cómo podemos saber si una derivada se puede derivar en

Más detalles

Universidad Nacional de Ingeniería Facultad de Ciencias. Física Computacional CC063. Algebra Lineal. Prof: J. Solano 2012-I

Universidad Nacional de Ingeniería Facultad de Ciencias. Física Computacional CC063. Algebra Lineal. Prof: J. Solano 2012-I Universidad Nacional de Ingeniería Facultad de Ciencias Física Computacional CC063 Algebra Lineal Prof: J. Solano 2012-I Introduccion Aqui trabjaremos con operaciones basicas con matrices, tales como solucion

Más detalles

GUÍAS DE ESTUDIO. Programa de alfabetización, educación básica y media para jóvenes y adultos

GUÍAS DE ESTUDIO. Programa de alfabetización, educación básica y media para jóvenes y adultos GUÍAS DE ESTUDIO Código PGA-02-R02 1 INSTITUCIÓN EDUCATIVA CASD Programa de alfabetización, educación básica y media para jóvenes y adultos UNIDAD DE TRABAJO Nº 1 PERIODO 1 1. ÁREA INTEGRADA: MATEMÁTICAS

Más detalles

b) Con sus máquinas actuales tiene una producción anual máxima de 500 unidades.

b) Con sus máquinas actuales tiene una producción anual máxima de 500 unidades. Aplicaciones de máimos y mínimos. Criterio de la segunda Derivada: Sea f una función tal que f eiste en un intervalo ]a, b[, que contiene al número crítico c. a) Si f (c) > 0, entonces la función tiene

Más detalles

Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación

Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación EJERCICIOS RESUELTOS DE ECUACIONES NO LINEALES Profesor: Jaime Álvarez Maldonado Ayudante: Rodrigo

Más detalles

5 Sistemas de ecuaciones

5 Sistemas de ecuaciones Sistemas de ecuaciones INTRODUCCIÓN La resolución de problemas es uno de los fundamentos de las Matemáticas. A la hora de resolver muchos problemas reales se hace patente la necesidad de los sistemas de

Más detalles

Sistemas de ecuaciones lineales dependientes de un parámetro

Sistemas de ecuaciones lineales dependientes de un parámetro Vamos a hacer uso del Teorema de Rouché-Frobenius para resolver sistemas de ecuaciones lineales de primer grado. En particular, dedicaremos este artículo a resolver sistemas de ecuaciones lineales que

Más detalles

Razón de Cambio Promedio:

Razón de Cambio Promedio: NOTA: En este PDF encontrará los siguientes temas que debe estudiar para la clase: Aplicaciones de la Derivada a Funciones Económicas, Razón de Cambio Promedio, Razón de Cambio Instantánea, Razones Relacionadas,

Más detalles

Límite de una función

Límite de una función Límite de una función El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es decir el valor al que tienden

Más detalles

INTERVALOS Y SEMIRRECTAS.

INTERVALOS Y SEMIRRECTAS. el blog de mate de aida CSI: Inecuaciones pág 1 INTERVALOS Y SEMIRRECTAS La ordenación de números permite definir algunos conjuntos de números que tienen una representación geométrica en la recta real

Más detalles

TEMA 7. ESTÁTICA Y ELASTICIDAD OBJETIVOS

TEMA 7. ESTÁTICA Y ELASTICIDAD OBJETIVOS OBJETIVOS Comprender el concepto de equilibrio estático de un sólido rígido. Expresar adecuadamente las condiciones de equilibrio estático de un sólido rígido. Determinar las características de las ligaduras

Más detalles

MATEMÁTICAS 1º BACH. C. N. Y S. 25 de enero de 2010 Geometría y Logaritmos

MATEMÁTICAS 1º BACH. C. N. Y S. 25 de enero de 2010 Geometría y Logaritmos MATEMÁTICAS 1º BACH. C. N. Y S. 5 de enero de 010 Geometría y Logaritmos x yz 1) Tomar logaritmos, y desarrollar, en la siguiente expresión: A 4 ab log x log b 4log a log y ) Quitar logaritmos: log A )

Más detalles

Tema 2.- Formas Cuadráticas.

Tema 2.- Formas Cuadráticas. Álgebra. 004 005. Ingenieros Industriales. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema.- Formas Cuadráticas. Definición y representación matricial. Clasificación de las formas

Más detalles

EXAMEN DEPARTAMENTAL DE CÁLCULO DIFERENCIAL MUESTRA FIN TECATE UABC

EXAMEN DEPARTAMENTAL DE CÁLCULO DIFERENCIAL MUESTRA FIN TECATE UABC EXAMEN DEPARTAMENTAL DE CÁLCULO DIFERENCIAL MUESTRA FIN TECATE UABC 1. REACTIVO MUESTRA Sea el número A qué conjunto pertenece? a) trascendente b) irracionales c) Naturales d) Enteros 2. REACTIVO MUESTRA

Más detalles

Vectores y rectas. 4º curso de E.S.O., opción B. Modelo de examen (ficticio)

Vectores y rectas. 4º curso de E.S.O., opción B. Modelo de examen (ficticio) demattematicaswordpresscom Vectores y rectas º curso de ESO, opción B Modelo de examen (ficticio) Sean los vectores u = (,5) y v = (, ) a) Analiza si tienen la misma dirección No tienen la misma dirección

Más detalles

LINEAMIENTOS PARA EL USO DE MARCA MINTIC

LINEAMIENTOS PARA EL USO DE MARCA MINTIC LINEAMIENTOS PARA EL USO DE MARCA MINTIC Libertad y Orden El objetivo de este documento más que entregar un lineamiento estricto y rígido - y el buen desarrollo de estas, enmarcado en los nuevos parámetros

Más detalles

ECUACIONES. Ecuaciones. Indicadores. Contenido ECUACIÓN

ECUACIONES. Ecuaciones. Indicadores. Contenido ECUACIÓN Indicadores ECUACIONES Determina el conjunto solución de una ecuación. Resuelve ecuaciones de primer y segundo grado, así como sistemas de ecuaciones Contenido Ecuaciones De primer grado Sistemas de ecuaciones

Más detalles