personal.us.es/elisacamol Elisa Cañete Molero Curso 2011/12

Tamaño: px
Comenzar la demostración a partir de la página:

Download "personal.us.es/elisacamol Elisa Cañete Molero Curso 2011/12"

Transcripción

1 Teoría de conjuntos. Teoría de Conjuntos. personal.us.es/elisacamol Curso 2011/12 Teoría de Conjuntos.

2 Teoría de conjuntos. Noción intuitiva de conjunto. Propiedades. Un conjunto es la reunión en un todo de objetos bien definidos y diferenciables entre sí, que se llaman elementos del mismo. Un conjunto lo podemos definir por extensión, encerrando todos sus elementos entre llaves, por ejemplo, A = {2,4,6,8}, o por comprensión, es decir, caracterizando los elementos que forman dicho conjunto, por ejemplo, A = {números pares y positivos menores que 9}. Teoría de Conjuntos.

3 Teoría de conjuntos. Propiedades y Definiciones. Propiedades. Si a es un elemento del conjunto A se denota con la relación de pertenencia a A. En caso contrario, si a no es un elemento de A se denota a / A. Ejemplos:, el conjunto vacío, que carece de elementos. N, el conjunto de los números naturales. Z, el conjunto de los números enteros. Q, el conjunto de los números racionales. R, el conjunto de los números reales. C, el conjunto de los números complejos. Teoría de Conjuntos.

4 Teoría de conjuntos. Propiedades y Definiciones. Propiedades. Al número de elementos de un conjunto se le denomina cardinal del conjunto A y se denota por A. El cardinal del conjunto es el cero. Se dice que dos conjuntos A y B son iguales (o idénticos) si constan exactamente de los mismos elementos, en cuyo caso escribiremos A = B. Ejemplos: A = {2,4,6,8}, B = {2,8,4,6} y C = {2,2,4,4,6,8}. A = B = C. Teoría de Conjuntos.

5 Teoría de conjuntos. Propiedades y Definiciones. Propiedades. Se dice que un conjunto A es un subconjunto de B y se escribe A B si todo elemento de A es de B. Esta relación entre conjuntos se llama relación de inclusión. Si A B no excluye la posibilidad de que B A. A B y B A si y sólo si A = B. Teoría de Conjuntos.

6 Teoría de conjuntos. Propiedades. Unión. Dados dos conjuntos A y B, se define la unión de A y B, y se denota por A B, al conjunto de todos los elementos que pertenecen a A o a B. Intersección. Dados dos conjuntos A y B, se define la intersección de A y B, y se denota por A B, al conjunto de todos los elementos que pertenecen a A y a B. Teoría de Conjuntos.

7 Teoría de conjuntos. Propiedades de la unión. Propiedades. Propiedad asociativa: Propiedad conmutativa: Propiedad idempotente: (A B) C = A (B C) A B = B A A A = A Elemento ínfimo y elemento universal: Para cualquier conjunto A se verifica que A = A. Si todos los conjuntos considerados son partes de un conjunto U, se tiene que A U = U. Teoría de Conjuntos.

8 Teoría de conjuntos. Propiedades de la intersección. Propiedades. Propiedad asociativa: Propiedad conmutativa: Propiedad idempotente: (A B) C = A (B C) A B = B A A A = A Elemento ínfimo y elemento universal: Para cualquier conjunto A se verifica que A = A. Si todos los conjuntos considerados son partes de un conjunto U, se tiene que A U = A. Teoría de Conjuntos.

9 Teoría de conjuntos. Notas. Propiedades. Si A B = se dice que A y B son conjuntos disjuntos. Sea A 1,A 2,...,A n una colección finita de conjuntos, se define la unión de todos los conjuntos y se representa por n A i = A 1 A n, como el conjunto de todos los i=1 elementos que pertenecen por lo menos a uno de los conjuntos A i. Sea A 1,A 2,...,A n una colección finita de conjuntos, se define la intersección de todos los conjuntos y se representa n por A i = A 1 A n, como el conjunto de todos los i=1 elementos que pertenecen a cada uno de los conjuntos A i. Teoría de Conjuntos.

10 Teoría de conjuntos. Notas. Propiedades. Ambas operaciones entre conjuntos verifican las siguientes propiedades: Ley de simplificación: Propiedad distributiva: (A B) A = A (A B) A = A A (B C) = (A B) (A C) A (B C) = (A B) (A C) Teoría de Conjuntos.

11 Teoría de conjuntos. Conjunto Complementario. Propiedades. Si A X, se llama complementario de A con respecto a X, al conjunto de todos los elementos de X que no pertenecen a A, y se denota por A. Propiedades: El complementario verifica las siguientes propiedades: = X y X =. A = A. A B = A B. A B = A B. Si A B, entonces B A. A A = X y A A =. Teoría de Conjuntos.

12 Lenguaje formal. Teoría de conjuntos. Lógica proposicional. Tablas de Verdad Una proposición simple es una afirmación simple a la que se le pueda asignar un valor de verdad (V) o falsedad (F). Ejemplos: x+3 es un entero positivo NO ES UNA PROPOSICIÓN. 15 es un número entero SÍ ES UNA PROPOSICIÓN y tiene el valor V. 15 es un número par SÍ ES UNA PROPOSICIÓN y tiene el valor F. Las proposiciones las representamos con las letras p, q, r, etc... Asignamos p a la siguiente proposición hoy es lunes, por q la proposición el cielo está despejado por r hoy hay luna llena. 2 Teoría de Conjuntos.

13 Conectores lógicos. Teoría de conjuntos. Lógica proposicional. Tablas de Verdad Las proposiciones simples pueden combinarse mediante las llamadas conectores lógicos para formar proposiciones compuestas. Los conectores lógicos son: La negación. Por ejemplo, p significa que hoy no es lunes. La disyunción. También se le denomina o inclusivo. Por ejemplo, p q significa que pueden ser ciertas las dos proposiciones hoy puede serl lunes y/o el cielo puede estar despejado. En el lenguaje cotidiano el o es exclusivo. La conjunción. Corresponde al y de nuestro lenguaje cotidiano. Por ejemplo, p q significa que hoy es lunes y el cielo está despejado. Teoría de Conjuntos.

14 Conectores lógicos. Teoría de conjuntos. Lógica proposicional. Tablas de Verdad La implicación. También llamada condicional. Por ejemplo, p q significa que si hoy es lunes entonces el cielo está despejado. La equivalencia. Por ejemplo, p q significa que hoy es lunes si y sólo si el cielo está despejado. Otros elementos que suelen aparecer son los paréntesis. Por ejemplo, no es lo mismo esta proposición compuesta p (q r) que esta otra (p q) r Teoría de Conjuntos.

15 Tablas de Verdad. Teoría de conjuntos. Lógica proposicional. Tablas de Verdad p tomará el valor verdad (V) si p toma el valor falso (F) y tomará el valor falso (F) si p toma el valor verdad (V). p q tomará el valor verdad (V) si al menos uno de entre p y q toma el valor verdad (V) y tomará el valor falso (F) si tanto p como q toma el valor falso (F). p q tomará el valor verdad (V) si p y q toman el valor verdad (V) y tomará el valor falso (F) si uno de entre p y q toma el valor falso (F). Teoría de Conjuntos.

16 Tablas de Verdad. Teoría de conjuntos. Lógica proposicional. Tablas de Verdad p q tomará el valor verdad (V) si p y q toman el valor verdad (V) y tomará el valor falso (F) si uno de entre p y q toma el valor falso (F). p q tomará el valor verdad (V) si p y q toman el valor verdad (V) o si p toma el valor falso (F) independientemente del valor que toma q y tomará el valor falso (F) en los demás casos. p q tomará el valor verdad (V) si p y q toman el mismo valor y tomará el valor falso (F) en los demás casos. Teoría de Conjuntos.

17 Tablas de Verdad. Teoría de conjuntos. Lógica proposicional. Tablas de Verdad Una proposición se dice que es una tautología si toma el valor verdad independientemente de los valores de las proposiciones que la componen. Una proposición se dice que es una contradicción si toma el valor falso independientemente de los valores de las proposiciones que lo componen. Una proposición se dice que es una contingencia si no es ni una tautología ni una contradicción. Teoría de Conjuntos.

18 Teoría de conjuntos. Axiomas y Propiedades. El álgebra de Boole es un conjunto de elementos, B, dos operaciones binarias: +, denominada suma o adición y, llamada producto o multiplicación, que satisfacen los siguientes axiomas: Axioma 1: Las operaciones + y son conmutativas: a+b = b+a a b = b a Axioma 2: Las operaciones + y son asociativas: (a+b)+c = a+(b+c) (a b) c = a (b c) Teoría de Conjuntos.

19 Axiomas. Teoría de conjuntos. Axiomas y Propiedades. Axioma 3: Las operaciones + y son distributivas: a+(b c) = (a+b) (a+c) a (b+c) = (a b)+(a c) Axioma 4: Las operaciones + y tienen elemento identidad 0 y 1, respectivamente: a+0 = a a 1 = a Axioma 5: Cada elemento a B tiene un complementario que se denota por a : (Operación unitaria) a+a = 0 a a = 1 Teoría de Conjuntos.

20 Ejemplos. Teoría de conjuntos. Axiomas y Propiedades. Ejemplo 1: El álgebra de conjuntos es un álgebra de Boole. El conjunto de elementos, las dos operaciones binarias, la unión y la intersección, siendo sus elementos identidad el conjunto universal (el total X) y el conjunto vacío ( ). La operación unitaria el complementario: A = A, A X = A. A A = X = 1, A = = 0. Teoría de Conjuntos.

21 Ejemplos. Teoría de conjuntos. Axiomas y Propiedades. Ejemplo 2: Álgebra Proposicional. El conjunto B está formado por dos elementos V y F; las dos operaciones (disyunción) y (conjunción) cuyos elementos identidad son F y V respectivamente. La operación unitaria es la negación,. V F = V, F F = F, (suma) V V = V, F V = F, (producto) V V = V = 1, V V = F = 0, (complementario) Teoría de Conjuntos.

22 Ejemplos. Teoría de conjuntos. Axiomas y Propiedades. Ejemplo 3: Álgebra de conmutación. Este álgebra es importante en el análisis de circuitos. El conjunto de elementos, B = {0,1} las dos operaciones (+) y y la operación unitaria vienen dadas por: x x Aplicación inportante: Circuitos eléctricos Teoría de Conjuntos.

Ejemplos: Sean los conjuntos: A = { aves} B = { peces } C = { anfibios }

Ejemplos: Sean los conjuntos: A = { aves} B = { peces } C = { anfibios } La Teoría de Conjuntos es una teoría matemática, que estudia básicamente a un cierto tipo de objetos llamados conjuntos y algunas veces, a otros objetos denominados no conjuntos, así como a los problemas

Más detalles

Tema 1: Teoría de Conjuntos. Logica proposicional y Algebras de Boole.

Tema 1: Teoría de Conjuntos. Logica proposicional y Algebras de Boole. Tema 1: Teoría de Conjuntos. Logica proposicional y lgebras de oole. 1.1 Teoria de conjuntos Objetivo específico: Operar con conjuntos y aplicar sus propiedades para resolver problemas reales. Piensa Elabora

Más detalles

Para representar los conjuntos, los elementos y la relación de pertenencia, mediante símbolos, tendremos en cuenta las siguientes convenciones:

Para representar los conjuntos, los elementos y la relación de pertenencia, mediante símbolos, tendremos en cuenta las siguientes convenciones: 2. Conjuntos 2.1 Introducción El concepto de conjunto, de singular importancia en la ciencia matemática y objeto de estudio de una de sus disciplinas más recientes, está presente, aunque en forma informal,

Más detalles

Liceo Nº 35, "Instituto Dr. Alfredo Vázquez Acevedo". Nocturno. Matemática. 5º B1 - B2 y 5ª H3. Profesora. María del Rosario Quintans 1

Liceo Nº 35, Instituto Dr. Alfredo Vázquez Acevedo. Nocturno. Matemática. 5º B1 - B2 y 5ª H3. Profesora. María del Rosario Quintans 1 Liceo Nº 35, "Instituto Dr. Alfredo Vázquez Acevedo". Nocturno. Matemática. 5º B1 - B2 y 5ª H3. Profesora. María del Rosario Quintans 1 TEORÍA DE CONJUNTOS CONOCIMIENTOS BÁSICOS Cuando decimos: "un elemento

Más detalles

Números Reales. MathCon c 2007-2009

Números Reales. MathCon c 2007-2009 Números Reales z x y MathCon c 2007-2009 Contenido 1. Introducción 2 1.1. Propiedades básicas de los números naturales....................... 2 1.2. Propiedades básicas de los números enteros........................

Más detalles

Álgebras de Boole. Juan Medina Molina. 25 de noviembre de 2003

Álgebras de Boole. Juan Medina Molina. 25 de noviembre de 2003 Álgebras de Boole Juan Medina Molina 25 de noviembre de 2003 Introducción Abordamos en este tema el estudio de las álgebras de Boole. Este tema tiene una aplicación directa a la electrónica digital ya

Más detalles

{} representa al conjunto vacío, es decir, aquel que no contiene elementos. También se representa por.

{} representa al conjunto vacío, es decir, aquel que no contiene elementos. También se representa por. 2. Nociones sobre Teoría de Conjuntos y Lógica Para llevar a cabo nuestro propósito de especificar formalmente los problemas y demostrar rigurosamente la correctitud de nuestro programas, introduciremos

Más detalles

CONJUNTOS Y RELACIONES BINARIAS

CONJUNTOS Y RELACIONES BINARIAS UNIVERSIDAD CATÓLICA ANDRÉS BELLO FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA INFORMÁTICA CÁTEDRA DE LÓGICA COMPUTACIONAL CONJUNTOS Y RELACIONES BINARIAS INTRODUCCIÓN Intuitivamente, un conjunto es una

Más detalles

Tema 3 : Algebra de Boole

Tema 3 : Algebra de Boole Tema 3 : Algebra de Boole Objetivo: Introducción al Algebra de Boole 1 INTRODUCCIÓN George Boole creó el álgebra que lleva su nombre en el primer cuarto del siglo XIX. Pretendía explicar las leyes fundamentales

Más detalles

Introducción a la Matemática Discreta

Introducción a la Matemática Discreta Introducción a la Matemática Discreta Teoría de Conjuntos Luisa María Camacho Camacho Introd. a la Matemática Discreta 1 / 20 Introducción a la Matemática Discreta Temario Tema 1. Teoría de Conjuntos.

Más detalles

Lógica. Lógica Proposicional. Cuáles de las siguientes frases son proposiciones? Proposición

Lógica. Lógica Proposicional. Cuáles de las siguientes frases son proposiciones? Proposición Lógica Lógica Proposicional Escuela de Ingeniería Industrial Pontificia Universidad Católica de Valparaíso, Chile rgatica@ucv.cl Proposición Definición: Una proposición o enunciado es una frase que a la

Más detalles

Conjuntos Numéricos. Las dos operaciones en que se basan los axiomas son la Adición y la Multiplicación.

Conjuntos Numéricos. Las dos operaciones en que se basan los axiomas son la Adición y la Multiplicación. Conjuntos Numéricos Axiomas de los números La matemática se rige por ciertas bases, en la que descansa toda la matemática, estas bases se llaman axiomas. Cuántas operaciones numéricas conocen? La suma

Más detalles

Introducción. Lógica de proposiciones: introducción. Lógica de proposiciones. P (a) x. Conceptos

Introducción. Lógica de proposiciones: introducción. Lógica de proposiciones. P (a) x. Conceptos Introducción César Ignacio García Osorio Lógica y sistemas axiomáticos 1 La lógica ha sido históricamente uno de los primeros lenguajes utilizados para representar el conocimiento. Además es frecuente

Más detalles

UNIDAD I: LÓGICA PROPOSICIONAL

UNIDAD I: LÓGICA PROPOSICIONAL UNIDAD I: LÓGICA PROPOSICIONAL ASIGNATURA: INTRODUCCIÓN A LA COMPUTACIÓN CARRERAS: LICENCIATURA Y PROFESORADO EN CIENCIAS DE LA COMPUTACIÓN DEPARTAMENTO DE INFORMÁTICA FACULTAD DE CIENCIAS FÍSICO MATEMÁTICA

Más detalles

ESTRUCTURAS ALGEBRAICAS

ESTRUCTURAS ALGEBRAICAS ESTRUCTURAS ALGEBRAICAS Se ha trabajado con números complejos, polinomio y matrices y hemos efectuado con ellos ciertas operaciones: sin embargo no todas las operaciones se comportan de la misma manera,

Más detalles

Módulo 9 Sistema matemático y operaciones binarias

Módulo 9 Sistema matemático y operaciones binarias Módulo 9 Sistema matemático y operaciones binarias OBJETIVO: Identificar los conjuntos de números naturales, enteros, racionales e irracionales; resolver una operación binaria, representar un número racional

Más detalles

Lógica, conjuntos, relaciones y funciones

Lógica, conjuntos, relaciones y funciones Lógica, conjuntos, relaciones y funciones Álvaro Pérez Raposo Universidad Autónoma de San Luis Potosí Universidad Politécnica de Madrid Publicaciones Electrónicas Sociedad Matemática Mexicana A la memoria

Más detalles

NÚMERO REAL. 1. Axiomas de cuerpo y propiedades operatorias. Axioma 2 La suma es asociativa:

NÚMERO REAL. 1. Axiomas de cuerpo y propiedades operatorias. Axioma 2 La suma es asociativa: NÚMERO REAL El conjunto de los números racionales se nos hace insuficiente a la hora de representar con exactitud magnitudes tan reales como la diagonal de un cuadrado cuyo lado mida 1, por ejemplo, o

Más detalles

ESTRUCTURAS ALGEBRAICAS. Parte 1

ESTRUCTURAS ALGEBRAICAS. Parte 1 ESTRUCTURAS ALGEBRAICAS Parte 1 ESTRUCTURAS ALGEBRAICAS Una estructura algebraica es una n-tupla (a 1,a 2,...,a n ), donde a 1 es un conjunto dado no vacío, y {a 2,...,a n } un conjunto de operaciones

Más detalles

Sistemas de numeración, operaciones y códigos.

Sistemas de numeración, operaciones y códigos. Tema : Sistemas de numeración, operaciones y códigos. Para representar ideas, los seres humanos (al menos los occidentales) utilizamos cadenas de símbolos alfanuméricos de un alfabeto definido. En el mundo

Más detalles

TEMA II: CONJUNTOS Y RELACIONES DE ORDEN. Álgebra II García Muñoz, M.A.

TEMA II: CONJUNTOS Y RELACIONES DE ORDEN. Álgebra II García Muñoz, M.A. TEMA II: CONJUNTOS Y RELACIONES DE ORDEN OBJETIVOS GENERALES 1. Hacer que el alumno asimile el concepto de conjunto como la estructura algebraica más simple en la que se ambientarán el resto de las estructuras

Más detalles

INSTITUTO SUPERIOR TECNOLÓGICO NORBERT WIENER

INSTITUTO SUPERIOR TECNOLÓGICO NORBERT WIENER INSTITUTO SUPERIOR TECNOLÓGICO NORBERT WIENER Manual del Alumno ASIGNATURA: Matemática I PROGRAMA: S3C Lima-Perú SESION 1 SISTEMAS DE NUMERACION DEFINICION : Es un conjunto de reglas y principios que nos

Más detalles

UNIVERSIDAD POPULAR DEL CESAR DEPATAMENTO DE MATEMATICA Y ESTADISTICA ALGEBRA DE BOOLE

UNIVERSIDAD POPULAR DEL CESAR DEPATAMENTO DE MATEMATICA Y ESTADISTICA ALGEBRA DE BOOLE UNIVERSIDAD POPULAR DEL CESAR DEPATAMENTO DE MATEMATICA Y ESTADISTICA ALGEBRA DE BOOLE GERMAN ISAAC SOSA MONTENEGRO EJERCICIOS 3. Escriba en notación expandida los siguientes numerales : a) 2375 b) 110111

Más detalles

Estructuras algebraicas

Estructuras algebraicas Tema 2 Estructuras algebraicas básicas 2.1. Operación interna Definición 29. Dados tres conjuntos A, B y C, se llama ley de composición en los conjuntos A y B y resultado en el conjunto C, y se denota

Más detalles

Operaciones Booleanas y Compuertas Básicas

Operaciones Booleanas y Compuertas Básicas Álgebra de Boole El álgebra booleana es la teoría matemática que se aplica en la lógica combinatoria. Las variables booleanas son símbolos utilizados para representar magnitudes lógicas y pueden tener

Más detalles

Guía de conjuntos. 1ero A y B La importancia del lenguaje.

Guía de conjuntos. 1ero A y B La importancia del lenguaje. Guía de conjuntos. 1ero A y B La importancia del lenguaje. El lenguaje nos permite salir de nosotros mismos y comunicarnos con el mundo; a veces un gesto nos transmite un pensamiento o un sentimiento.

Más detalles

CONJUNTO, RELACIONES, FUNCIONES Y LÓGICA

CONJUNTO, RELACIONES, FUNCIONES Y LÓGICA CONJUNTO, RELACIONES, FUNCIONES Y LÓGICA Fundamentos de la Matemática 2010 Introducción Cuando decimos: un elemento pertenece a un conjunto, estamos utilizando nada menos que tres conceptos primitivos

Más detalles

NÚMEROS NATURALES Y NÚMEROS ENTEROS

NÚMEROS NATURALES Y NÚMEROS ENTEROS NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de un rebaño) y de

Más detalles

EJERCICIOS DEL CAPÍTULO I

EJERCICIOS DEL CAPÍTULO I EJERCICIOS DEL CAPÍTULO I 1. Un grupo es una tipo particular de Ω estructura cuando Ω es el tipo Ω = { } siendo una operación de aridad dos. Pero un grupo también es una Ω -estructura siendo Ω = {e, i,

Más detalles

Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos

Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 1 Conjuntos y Subconjuntos

Más detalles

ELEMENTOS DE LÓGICA Y TEORÍA DE CONJUNTOS. Dra. Patricia Kisbye Dr. Alejandro L. Tiraboschi

ELEMENTOS DE LÓGICA Y TEORÍA DE CONJUNTOS. Dra. Patricia Kisbye Dr. Alejandro L. Tiraboschi ELEMENTOS DE LÓGICA Y TEORÍA DE CONJUNTOS Dra. Patricia Kisbye Dr. Alejandro L. Tiraboschi 3 INTRODUCCIÓN Estas notas han sido elaboradas con el objetivo de ofrecer al ingresante a las carreras de la

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS.

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción 1 La lógica es

Más detalles

Haydee Jiménez Tafur Grupo de Algebra. Universidad Pedagógica Nacional Estudiante de maestría en Matemáticas. Universidad Nacional de Colombia.

Haydee Jiménez Tafur Grupo de Algebra. Universidad Pedagógica Nacional Estudiante de maestría en Matemáticas. Universidad Nacional de Colombia. "Otras Alternativas Para La Definición De Relación En Teoría De Conjuntos" Carlos Julio Luque Arias Profesor Universidad Pedagógica Nacional Grupo de Algebra. Universidad Pedagógica Nacional Haydee Jiménez

Más detalles

ESCUELA MILITAR DE INGENIERIA ALGEBRA I Misceláneas de problemas 2014 Tema: Estructuras Algebraicas.

ESCUELA MILITAR DE INGENIERIA ALGEBRA I Misceláneas de problemas 2014 Tema: Estructuras Algebraicas. ESCUELA MILITAR DE INGENIERIA ALGEBRA I Misceláneas de problemas 2014 Tema: Estructuras Algebraicas. Estructuras Algebraicas. Para cada operación binaria definida en el conjunto señalado dígase cuándo

Más detalles

Estructuras Algebraicas Una estructura algebraica es un objeto matemático consistente en un conjunto no vacío, con por lo menos una operación binaria.

Estructuras Algebraicas Una estructura algebraica es un objeto matemático consistente en un conjunto no vacío, con por lo menos una operación binaria. Estructuras Algebraicas Una estructura algebraica es un objeto matemático consistente en un conjunto no vacío, con por lo menos una operación binaria. Operación Binaria Se conoce una operación binaria

Más detalles

CURSO 2010-2011 TECNOLOGÍA TECNOLOGÍA 4º ESO TEMA 5: Lógica binaria. Tecnología 4º ESO Tema 5: Lógica binaria Página 1

CURSO 2010-2011 TECNOLOGÍA TECNOLOGÍA 4º ESO TEMA 5: Lógica binaria. Tecnología 4º ESO Tema 5: Lógica binaria Página 1 Tecnología 4º ESO Tema 5: Lógica binaria Página 1 4º ESO TEMA 5: Lógica binaria Tecnología 4º ESO Tema 5: Lógica binaria Página 2 Índice de contenido 1. Señales analógicas y digitales...3 2. Código binario,

Más detalles

5.2 Estructuras Algebraicas Introducción

5.2 Estructuras Algebraicas Introducción 5.2 Introducción * Los números naturales: N Al contar objetos se les asigna números: 1, 2, 3,, pasando de un número a su sucesor. La representación en el sistema decimal de números está hecha de tal forma

Más detalles

1. Teoría de Conjuntos

1. Teoría de Conjuntos 1. Teoría de Conjuntos 1.1. CONJUNTOS Considere las siguientes expresiones: 1. Los estudiantes de la Facultad de Matemática y Computación de la Universidad de La Habana del curso 2001-2002. 2. Los tomos

Más detalles

OR (+) AND( ). AND AND

OR (+) AND( ). AND AND Algebra de Boole 2.1.Introducción 2.1. Introducción El Algebra de Boole es un sistema matemático que utiliza variables y operadores lógicos. Las variables pueden valer 0 o 1. Y las operaciones básicas

Más detalles

SECRETARIA DE EDUCACIÓN PUBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DE BACHILLERATOS ESTATALES Y PREPARATORIA ABIERTA

SECRETARIA DE EDUCACIÓN PUBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DE BACHILLERATOS ESTATALES Y PREPARATORIA ABIERTA 1 SECRETARIA DE EDUCACIÓN PUBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DE BACHILLERATOS ESTATALES Y PREPARATORIA ABIERTA DEPARTAMENTO DE PREPARATORIA ABIERTA MATEMÁTICAS I GUIA DE ESTUDIO

Más detalles

RELACIÓN DE PROBLEMAS Nº 2 CONJUNTOS Y APLICACIONES

RELACIÓN DE PROBLEMAS Nº 2 CONJUNTOS Y APLICACIONES UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Dpto. de Matemáticas (Área de Álgebra) 1. Sean X e Y conjuntos. Demostrar: a) X = X Y Y X. b) X = X Y X Y. RELACIÓN DE PROBLEMAS Nº 2 CONJUNTOS Y APLICACIONES

Más detalles

LENGUAJES FORMALES Y AUTÓMATAS. álgebra computacional LENGUAJES FORMALES Y AUTÓMATAS. álgebra computacional LENGUAJES FORMALES Y AUTÓMATAS

LENGUAJES FORMALES Y AUTÓMATAS. álgebra computacional LENGUAJES FORMALES Y AUTÓMATAS. álgebra computacional LENGUAJES FORMALES Y AUTÓMATAS 6. bibliografía CONTENIDO Definición de [G8.1]. Estructuras algebraicas: monoides, semigrupos, grupos, [G8.1], anillos, cuerpos [H10.1]. Subgrupos, isomorfismo entre grupos [G8.1]. Álgebras concretas y

Más detalles

Al finalizar el estudio de Matemática del Ciclo de Nivelación usted deberá ser capaz de:

Al finalizar el estudio de Matemática del Ciclo de Nivelación usted deberá ser capaz de: 0 Objetivos Generales Al finalizar el estudio de Matemática del Ciclo de Nivelación usted deberá ser capaz de: 1. Utilizar una metodología adecuada para el estudio de la Matemática. 2. Alcanzar destreza

Más detalles

Preliminares: conjuntos, operaciones con conjuntos, aplicaciones, relaciones.

Preliminares: conjuntos, operaciones con conjuntos, aplicaciones, relaciones. Preliminares: conjuntos, operaciones con conjuntos, aplicaciones, relaciones. En este tema expondremos nociones y notaciones fundamentales que se emplearán cotidianamente en cualquier desarrollo matemático.

Más detalles

Introducción a la Matemática Discreta

Introducción a la Matemática Discreta Introducción a la Matemática Discreta Lógica proposicional y Álgebras de Boole Luisa María Camacho Camacho Introd. a la Matemática Discreta 1 / 25 Introducción a la Matemática Discreta Temario Tema 1.

Más detalles

Relaciones binarias. ( a, b) = ( c, d) si y solamente si a = c y b = d

Relaciones binarias. ( a, b) = ( c, d) si y solamente si a = c y b = d Relaciones binarias En esta sección estudiaremos formalmente las parejas de objetos que comparten algunas características o propiedades en común. La estructura matemática para agrupar estas parejas en

Más detalles

TEMA II: ÁLGEBRA DE CONMUTACIÓN

TEMA II: ÁLGEBRA DE CONMUTACIÓN TEMA II: ÁLGEBRA DE CONMUTACIÓN En este capítulo veremos los métodos matemáticos que se disponen para las operaciones relacionadas con los circuitos digitales, así como las funciones más básicas de la

Más detalles

Apuntes de Matemática Discreta 7. Relaciones de Orden

Apuntes de Matemática Discreta 7. Relaciones de Orden Apuntes de Matemática Discreta 7. Relaciones de Orden Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 7 Relaciones de Orden Contenido

Más detalles

Universidad Católica del Maule. Fundamentos de Computación Especificación de tipos de datos ESPECIFICACIÓN ALGEBRAICA DE TIPOS DE DATOS

Universidad Católica del Maule. Fundamentos de Computación Especificación de tipos de datos ESPECIFICACIÓN ALGEBRAICA DE TIPOS DE DATOS Especificación algebraica ESPECIFICACIÓN ALGEBRAICA DE TIPOS DE DATOS Un tipo abstracto de datos se determina por las operaciones asociadas, incluyendo constantes que se consideran como operaciones sin

Más detalles

Matemáticas Discretas

Matemáticas Discretas Matemáticas Discretas Conjuntos (11) Curso Propedéutico 2009 Maestría en Ciencias Computacionales, INAOE Conjuntos (2) Dr Luis Enrique Sucar Succar esucar@inaoep.mx Dra Angélica Muñoz Meléndez munoz@inaoep.mx

Más detalles

ESTRUCTURAS ALGEBRAICAS

ESTRUCTURAS ALGEBRAICAS ESTRUCTURAS ALGEBRAICAS 1.1. LEY DE COMPOSICIÓN INTERNA Definición 1.1.1. Sea E un conjunto, se llama ley de composición interna en E si y sólo si a b = c E, a, b E. Observación 1.1.1. 1. también se llama

Más detalles

Guía de estudio. Para la primera evaluación de álgebra octavo 2015

Guía de estudio. Para la primera evaluación de álgebra octavo 2015 Guía de estudio Para la primera evaluación de álgebra octavo 2015 Encontrará una serie de ejercicios que tienen como finalidad hacer un breve repaso sobre lo abordado durante este periodo en clase de álgebra,

Más detalles

MATEMÁTICA DISCRETA: Conjuntos, combinatoria y grafos. Roberto J. de la Fuente López. Versión 20110923. (corrección de erratas a versión 20100712)

MATEMÁTICA DISCRETA: Conjuntos, combinatoria y grafos. Roberto J. de la Fuente López. Versión 20110923. (corrección de erratas a versión 20100712) MATEMÁTICA DISCRETA: Conjuntos, combinatoria y grafos Roberto J. de la Fuente López Versión 20110923 (corrección de erratas a versión 20100712) Índice general PRESENTACIÓN... 5 AVISO DE DERECHOS DE AUTOR...

Más detalles

1. Se establecen los conceptos fundamentales (símbolos o términos no definidos).

1. Se establecen los conceptos fundamentales (símbolos o términos no definidos). 1. ÁLGEBRA DE BOOLE. El álgebra de Boole se llama así debido a George Boole, quien la desarrolló a mediados del siglo XIX. El álgebra de Boole denominada también álgebra de la lógica, permite prescindir

Más detalles

I. ALGEBRA DE BOOLE. c) Cada operación es distributiva con respecto a la otra: a. ( b + c) = a. b + a. c a + ( b. c ) = ( a + b ).

I. ALGEBRA DE BOOLE. c) Cada operación es distributiva con respecto a la otra: a. ( b + c) = a. b + a. c a + ( b. c ) = ( a + b ). I. I.1 DEFINICION. El Algebra de Boole es toda clase o conjunto de elementos que pueden tomar dos valores perfectamente diferenciados, que designaremos por 0 y 1 y que están relacionados por dos operaciones

Más detalles

LÓGICA MATEMÁTICA. Álgebra de Boole Guía de trabajo

LÓGICA MATEMÁTICA. Álgebra de Boole Guía de trabajo LÓGICA MATEMÁTICA Álgebra de Boole Guía de trabajo Favián Arenas A. y Amaury Camargo Universidad de Córdoba Facultad de Ciencias Básicas e Ingenierías Departamento de Matemáticas 4.15 Objetivos Lógica

Más detalles

Ejercicios de álgebra 1 Cuarto curso (2003/04)

Ejercicios de álgebra 1 Cuarto curso (2003/04) Departamento de Álgebra, Geometría y Toplogía. Universidad de Málaga Ejercicios de álgebra 1 Cuarto curso (2003/04) Relación 1. Ideales primos y maximales. Nilradical y radical de Jacobson Profesor de

Más detalles

Lógica Binaria. Contenidos. Objetivos. Antes de empezar 1.Introducción... pág. 2. En esta quincena aprenderás a:

Lógica Binaria. Contenidos. Objetivos. Antes de empezar 1.Introducción... pág. 2. En esta quincena aprenderás a: Contenidos Objetivos En esta quincena aprenderás a: Distinguir entre una señal analógica y una digital. Realizar conversiones entre el sistema binario y el decimal. Obtener la tabla de la verdad de un

Más detalles

Introducción a la Teoría de Probabilidad

Introducción a la Teoría de Probabilidad Capítulo 1 Introducción a la Teoría de Probabilidad Para la mayoría de la gente, probabilidad es un término vago utilizado en el lenguaje cotidiano para indicar la posibilidad de ocurrencia de un evento

Más detalles

Fundamentos algebraicos

Fundamentos algebraicos Fundamentos algebraicos 1. Grupos Sea S un conjunto. Se denota con S S el conjunto de los pares ordenados (s, t) con s, t en S. Un mapeo de S S en S se llama operación binaria en S. Esta definición requiere

Más detalles

Capítulo 1 Lenguajes formales 6

Capítulo 1 Lenguajes formales 6 Capítulo 1 Lenguajes formales 6 1.8. Operaciones entre lenguajes Puesto que los lenguajes sobre Σ son subconjuntos de Σ, las operaciones usuales entre conjuntos son también operaciones válidas entre lenguajes.

Más detalles

Tarea 4 Soluciones. la parte literal es x3 y 4

Tarea 4 Soluciones. la parte literal es x3 y 4 Tarea 4 Soluciones Extracto del libro Baldor. Definición. Término.-es una expresión algebraica que consta de un solo símbolo o de varios símbolos no separados entre sí por el signo + o -. Así, a, 3b, 2xy,

Más detalles

VII. Estructuras Algebraicas

VII. Estructuras Algebraicas VII. Estructuras Algebraicas Objetivo Se analizarán las operaciones binarias y sus propiedades dentro de una estructura algebraica. Definición de operación binaria Operaciones como la suma, resta, multiplicación

Más detalles

Capítulo 2 Conjuntos. 2.1 Introducción. 2.2 Determinación de conjuntos. Definición:

Capítulo 2 Conjuntos. 2.1 Introducción. 2.2 Determinación de conjuntos. Definición: Capítulo 2 Conjuntos 2.1 Introducción El concepto de conjunto, de singular importancia en la ciencia matemática y objeto de estudio de una de sus disciplinas más recientes, está presente, aunque en forma

Más detalles

ISSN 1988-6047 DEP. LEGAL: GR 2922/2007 Nº 15 FEBRERO DE 2009

ISSN 1988-6047 DEP. LEGAL: GR 2922/2007 Nº 15 FEBRERO DE 2009 LÓGICA PROPOSICIONAL AUTORÍA SILVIA BORREGO DEL PINO TEMÁTICA MATEMÁTICAS. LÓGICA ETAPA UNIVERSITARIA Resumen La lógica forma parte de la filosofía, en la que se distinguen dos dimensiones, la dimensión

Más detalles

Apuntes de Matemática Discreta 9. Funciones

Apuntes de Matemática Discreta 9. Funciones Apuntes de Matemática Discreta 9. Funciones Francisco José González Gutiérrez Cádiz, Octubre de 004 Universidad de Cádiz Departamento de Matemáticas ii Lección 9 Funciones Contenido 9.1 Definiciones y

Más detalles

1. Números Reales 1.1 Clasificación y propiedades

1. Números Reales 1.1 Clasificación y propiedades 1. Números Reales 1.1 Clasificación y propiedades 1.1.1 Definición Número real, cualquier número racional o irracional. Los números reales pueden expresarse en forma decimal mediante un número entero,

Más detalles

APLICACIONES DE LA MATEMATICA INTRODUCCION AL CALCULO AXIOMATICA DE LOS NUMEROS REALES

APLICACIONES DE LA MATEMATICA INTRODUCCION AL CALCULO AXIOMATICA DE LOS NUMEROS REALES APLICACIONES DE LA MATEMATICA INTRODUCCION AL CALCULO AXIOMATICA DE LOS NUMEROS REALES PROFESOR: CHRISTIAN CORTES D. I) LOS NUMEROS REALES. Designaremos por R, al conjunto de los números reales. En R existen

Más detalles

Conjuntos, Relaciones y Grupos. Problemas de examen.

Conjuntos, Relaciones y Grupos. Problemas de examen. Conjuntos, Relaciones y Grupos. Problemas de examen. Mayo 2006 1. La función f es definida por (a) Halle el recorrido exacto, A, de f. f : R R donde f(x) = e senx 1. (b) (i) Explique por qué f no es inyectiva.

Más detalles

Estructuras algebraicas

Estructuras algebraicas Tema 1 Estructuras algebraicas 1.1 Álgebras binarias Sea A un conjunto no vacío, una operación binaria (u operación interna) en A es una aplicación *: A A A (x, y) x * y es decir, una regla que a cada

Más detalles

03. Introducción a los circuitos lógicos

03. Introducción a los circuitos lógicos 03. Introducción a los circuitos lógicos 1. LÓGICA DE PROPOSICIONES...2 PROPOSICIÓN...2 CONECTORES U OPERADORES LÓGICOS...2 Tablas de...2 Tautología...2 Contradicción...2 2. ÁLGEBRA DE BOOLE...3 AXIOMAS

Más detalles

Maria José González/ Dep. Tecnología

Maria José González/ Dep. Tecnología Señal analógica es aquella que puede tomar infinitos valores para representar la información. Señal digital usa solo un número finito de valores. En los sistemas binarios, de uso generalizado en los circuitos

Más detalles

Universidad de Puerto Rico Departamento de Matemáticas MATE 3023 Repaso 2(Lógica)

Universidad de Puerto Rico Departamento de Matemáticas MATE 3023 Repaso 2(Lógica) Universidad de Puerto Rico Departamento de Matemáticas MATE 3023 Repaso 2(Lógica) Apellidos: No. Estudiante: Nombre: Sección: Conceptos Básicos de Lógica: Lógica es el estudio de como razonar correctamente.

Más detalles

Análisis de una variable real I. Tijani Pakhrou

Análisis de una variable real I. Tijani Pakhrou Análisis de una variable real I Tijani Pakhrou Índice general 1. Introducción axiomática de los números 1 1.1. Números naturales............................ 1 1.1.1. Axiomas de Peano........................

Más detalles

Conjuntos, Relaciones y Funciones

Conjuntos, Relaciones y Funciones Conjuntos, Relaciones y Funciones 0.1 Conjuntos El término conjunto y elemento de un conjunto son términos primitivos y no definidos. De un punto de vista intuitivo parece ser que cualquier colección de

Más detalles

A estas alturas de nuestros conocimientos vamos a establecer dos reglas muy prácticas de cómo sumar dos números reales:

A estas alturas de nuestros conocimientos vamos a establecer dos reglas muy prácticas de cómo sumar dos números reales: ADICIÓN Y RESTA DE NUMEROS REALES ADICIÓN L a adición o suma de números reales se representa mediante el símbolo más (+) y es considerada una operación binaria porque se aplica a una pareja de números,

Más detalles

TEORIA AXIOMATICA DE CONJUNTOS Versión Preliminar. Renato A. Lewin

TEORIA AXIOMATICA DE CONJUNTOS Versión Preliminar. Renato A. Lewin TEORIA AXIOMATICA DE CONJUNTOS Versión Preliminar Author address: Renato A. Lewin Pontificia Universidad Católica de Chile, Facultad de Matemáticas, Casilla 306 - Correo 22, Santiago CHILE. e-mail: rlewin@mat.puc.cl

Más detalles

Apuntes de Matemática Discreta 6. Relaciones

Apuntes de Matemática Discreta 6. Relaciones Apuntes de Matemática Discreta 6. Relaciones Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 6 Relaciones Contenido 6.1 Generalidades.....................................

Más detalles

Comenzaremos recordando algunas definiciones y propiedades estudiadas en el capítulo anterior.

Comenzaremos recordando algunas definiciones y propiedades estudiadas en el capítulo anterior. Capítulo 2 Matrices En el capítulo anterior hemos utilizado matrices para la resolución de sistemas de ecuaciones lineales y hemos visto que, para n, m N, el conjunto de las matrices de n filas y m columnas

Más detalles

INTRODUCCIÓN. Estructura de Datos Tipos Abstractos de Datos (TAD S) Profs. Lorna Figueroa M. Mauricio Solar F. UTFSM 1 / 2008

INTRODUCCIÓN. Estructura de Datos Tipos Abstractos de Datos (TAD S) Profs. Lorna Figueroa M. Mauricio Solar F. UTFSM 1 / 2008 INTRODUCCIÓN Estructura de Datos Tipos Abstractos de Datos (TAD S) Para poder obtener un programa que resuelva un problema dado, son necesarios varios pasos : La formulación y especificación del problema

Más detalles

((X A Y ) = A ) si y solo si X = Y, A = B, A X = X, (X A Y ) = X Y, (X A Y ) = X Y

((X A Y ) = A ) si y solo si X = Y, A = B, A X = X, (X A Y ) = X Y, (X A Y ) = X Y El examen de Lógica y fundamentos del 11-02-2005 resuelto por cortesía de Alberto Castellón 1) Sea A = P(B) el conjunto de los subconjuntos de un conjunto B. a) Pruébese que A es un modelo de la teoría

Más detalles

PARTE II LÓGICA COMPUTACIONAL

PARTE II LÓGICA COMPUTACIONAL PARTE II LÓGICA COMPUTACIONAL Lógica de proposiciones INTRODUCCION Teniendo en mente que queremos presentar los sistemas deductivos de la lógica como una herramienta práctica para los informáticos, vamos

Más detalles

INTRODUCCIÓN A LAS ESTRUCTURAS ALGEBRAICAS FINITAS

INTRODUCCIÓN A LAS ESTRUCTURAS ALGEBRAICAS FINITAS UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL CÓRDOBA Carrera de Ingeniería en Sistemas de Información INTRODUCCIÓN A LAS ESTRUCTURAS ALGEBRAICAS FINITAS Los temas del presente capítulo, corresponden

Más detalles

TEORÍA DE CONJUNTOS.

TEORÍA DE CONJUNTOS. TEORÍA DE CONJUNTOS. NOCIÓN DE CONJUNTO: Concepto no definido del cual se tiene una idea subjetiva y se le asocian ciertos sinónimos tales como colección, agrupación o reunión de objetos abstractos o concretos.

Más detalles

DE SISTEMAS: ANALÓGICOS:

DE SISTEMAS: ANALÓGICOS: Fundamentos de Electrónica 1 Sistema Digital Paso de mundo analógico a digital Tipos de Sistemas Digitales Representación de la información Sistemas de Numeración Cambios de Base Sistema Binario, hexadecimal

Más detalles

CAPÍTULO I 1. SISTEMAS DE NUMERACIÓN

CAPÍTULO I 1. SISTEMAS DE NUMERACIÓN CAPÍTULO I 1. SISTEMAS DE NUMERACIÓN Un sistema de numeración es el conjunto de símbolos y reglas que se utilizan para la representación de datos numéricos o cantidades. Un sistema de numeración se caracteriza

Más detalles

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices Estructura del tema. Conceptos básicos y ejemplos Operaciones básicas con matrices Método de Gauss Rango de una matriz Concepto de matriz regular y propiedades Determinante asociado a una

Más detalles

José de Jesús Ángel Ángel, c 2010. Factorización

José de Jesús Ángel Ángel, c 2010. Factorización José de Jesús Ángel Ángel, c 2010. Factorización Contenido 1. Introducción 2 1.1. Notación.................................. 2 2. Factor común 4 2.1. Ejercicios: factor común......................... 4

Más detalles

John Venn Matemático y filósofo británico creador de los diagramas de Venn

John Venn Matemático y filósofo británico creador de los diagramas de Venn Georg Cantor Matemático Alemán creador de la teoría de conjuntos John Venn Matemático y filósofo británico creador de los diagramas de Venn August De Morgan Matemático ingles creador de leyes que llevan

Más detalles

Grupos y Anillos - 3006993 Escuela de Matemáticas Universidad Nacional de Colombia, Sede Medellín. Problemas # 1

Grupos y Anillos - 3006993 Escuela de Matemáticas Universidad Nacional de Colombia, Sede Medellín. Problemas # 1 Grupos y Anillos - 3006993 Escuela de Matemáticas Universidad Nacional de Colombia, Sede Medellín Problemas # 1 1. Dé dos razones por las cuales el conjunto de los enteros impares no es un grupo con la

Más detalles

CIDEAD. 2º BACHILLERATO. Tecnología Industrial II. Tema 17.- Los circuitos digitales. Resumen

CIDEAD. 2º BACHILLERATO. Tecnología Industrial II. Tema 17.- Los circuitos digitales. Resumen Tema 7.- Los circuitos digitales. Resumen Desarrollo del tema.. Introducción al tema. 2. Los sistemas de numeración.. El sistema binario. 4. Códigos binarios. 5. El sistema octal y hexadecimal. 6. El Álgebra

Más detalles

MLM 1000 - Matemática Discreta

MLM 1000 - Matemática Discreta MLM 1000 - Matemática Discreta L. Dissett Clase 04 Resolución. Lógica de predicados c Luis Dissett V. P.U.C. Chile, 2003 Aspectos administrativos Sobre el tema vacantes: 26 personas solicitaron ingreso

Más detalles

Universidad de Antioquia

Universidad de Antioquia Índice general Prefacio II 0.1. Algunos conjuntos de números.................. 1 0.2. DEFINICIONES Y TEOREMAS................. 2 1. Lógica - Teoría de Conjuntos 5 1.1. Operación binaria.........................

Más detalles

Resumen de las clases teóricas del turno tarde a cargo de la Prof. Alcón.

Resumen de las clases teóricas del turno tarde a cargo de la Prof. Alcón. Resumen de las clases teóricas del turno tarde a cargo de la Prof. Alcón. 0.1. Definiciones básicas: subconjunto, conjunto vacío, complemento, conjunto de partes A lo largo de esta sección consideraremos

Más detalles

9.1 Primeras definiciones

9.1 Primeras definiciones Tema 9- Grupos Subgrupos Teorema de Lagrange Operaciones 91 Primeras definiciones Definición 911 Una operación binaria en un conjunto A es una aplicación α : A A A En un lenguaje más coloquial una operación

Más detalles

Matemática para informática I Código 50287

Matemática para informática I Código 50287 Francisco Mora Vicarioli Matemática para informática I Código 50287 Guía de estudio Revisión filológica Ginette Durán Carrillo Producción académica y asesoría metodológica Kay Guillén Díaz Diagramación

Más detalles

circuitos digitales Oliverio J. Santana Jaria Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007

circuitos digitales Oliverio J. Santana Jaria Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007 Oliverio J. Santana Jaria Sistemas Digitales 8. Análisis lógico l de los circuitos digitales Ingeniería Técnica en Informática de Sistemas Los Curso 26 27 El conjunto circuitos de puertas digitales lógicas

Más detalles

INTRODUCCION A LA LÓGICA DE ENUNCIADOS

INTRODUCCION A LA LÓGICA DE ENUNCIADOS INTRODUCCION A LA LÓGICA DE ENUNCIADOS Carlos S. Chinea 0. Enunciados: Lo fundamental en el lenguaje ordinario, la herramienta para manifestar las ideas, sentimientos, descripción de situaciones diversas,

Más detalles

Matemáticas Discretas LOGICA PROPOSICIONAL

Matemáticas Discretas LOGICA PROPOSICIONAL Matemáticas Discretas LOGICA PROPOSICIONAL Matemáticas Discretas Estudio de objetos discretos Habilidad para razonar y argumentar Base otras áreas en computación Bases de datos Lenguajes formales Inteligencia

Más detalles

El álgebra booleana (Algebra de los circuitos lógicos tiene muchas leyes o teoremas muy útiles tales como :

El álgebra booleana (Algebra de los circuitos lógicos tiene muchas leyes o teoremas muy útiles tales como : SIMPLIFICACION DE CIRCUITOS LOGICOS : Una vez que se obtiene la expresión booleana para un circuito lógico, podemos reducirla a una forma más simple que contenga menos términos, la nueva expresión puede

Más detalles