Optimización de Problemas de Producción

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Optimización de Problemas de Producción"

Transcripción

1 Optimización de Problemas de Producción Pedro Piñeyro - Luis Stábile Colaboran: Héctor Cancela - Antonio Mauttone - Carlos Testuri Depto. Investigación Operativa. Instituto de Computación. Facultad de Ingeniería, UdelaR / 29

2 Método Simplex Fundamentos del método Simplex: formulación, soluciones factibles, básicas y óptimas. Interpretación geométrica. Algoritmo del método Simplex. multiplicadores Simplex, precios sombra y nociones de dualidad / 29

3 Método Simplex Formulación estándar de un PL: min c T x Ax = b x 0 c y x vectores en R n. Matriz A en R m,n de rango m con m con m n. Formulaciones con desigualdades, / 29

4 Método Simplex Soluciones factibles: los x R n que cumplen las restricciones. Definen lo que se denomina región factible. Soluciones óptimas: Aquellas soluciones factibles x para las cuales c T x c T x, para cualquier x de la región factible. El conjunto de soluciones factibles forman un politopo convexo en R n (en R 3 es un poliedro) / 29

5 Método Simplex Teorema Fundamental de la Programación Lineal: Si un problema de PL tiene solución óptima finita, entonces existe una solución óptima que está en un vértice del politopo convexo. En el caso de que haya más de una solución óptima, entonces hay infinitas soluciones óptimas / 29

6 Método Simplex Los vértices de la región factible se corresponden con las llamadas soluciones básicas factibles (BFS por sus siglas en inglés). Las BFS son aquellas soluciones factibles x que se pueden representar como un conjunto de columnas de la matriz A linealmente independiente (restricciones activas). Llamaremos matriz básica B a [A,j R n tal que x j > 0] 1 l.i. 1 A,j es el vector columna j de la matriz A / 29

7 Método Simplex Formulación estándar de un PL para BFS: min z Bx B + Nx N = b c T B x B + c T N x N z = 0 x B 0, x N = 0 B es una matriz de R m,n con rango m y no singular (existe la matriz B 1 B = I) / 29

8 Método Simplex Formulación canónica min z Ix B + B 1 Nx N = B 1 b (c T N ct B B 1 N)x N z = x B 0, x N = 0 c T B B 1 b / 29

9 Método Simplex Tableau inicial con variables artificiales: x B x N y LD B N I b c T B c T N / 29

10 Método Simplex Tableau final con base B óptima: x B x N y LD I B 1 N B 1 B 1 b 0 c T N ct B B 1 N c T B B 1 c T B B 1 b / 29

11 Método Simplex Idea del algoritmo: comenzando en una BFS, recorrer las BFS adyacentes una a la vez, hasta que se cumpla una de las condiciones de finalización: se encontró una solución óptima o bien el problema es no acotado. Observación 1: Hay una cantidad finita de soluciones básicas factibles (vértices del politopo convexo que forma la región factible). Observación 2: El valor de la función objetivo en cada paso es mejor o igual que en el paso anterior / 29

12 Método Simplex Para cada matriz básica B, la solución básica factible correspondiente esta dada por: x B = B 1 b 0, x N = 0 Para la solución óptima se cumple que: c T B = 0, c T N = c T N pn = c T N c T BB 1 N 0 con c el vector de costos reducidos y p los multiplicadores del simplex o precios sombra / 29

13 Método Simplex Entra a la base alguna variable no básica x Nk para la que se cumple que: c Nk < 0 Sale la variable básica x Bi para la cual se cumple que: { } b i min, ā ik > 0 con Ā = B 1 N. i ā ik En nuevo valor objetivo se reduce en c Nk x Nk < 0. Si no existe un ā ik > 0 el problema es no acotado / 29

14 Algoritmo del Método Simplex 1 Determinar una BFS inicial (Fase 1) 2 2 Si todos los costos reducidos son no negativos: FIN. 3 Determinar variable no básica k que entra a la base. 4 Si no existe ā ik > 0, entonces el problema es no acotado: FIN. 5 Determinar variable básica que sale de la base. 6 Actualizar la tabla mediante pivoteo. 7 Volver a 2. 2 Considera el problema auxiliar de minimizar la suma de las variables de holgura. Si el valor óptimo es 0, se pasa a fase 2. En caso contrario, el problema no tiene solución factible / 29

15 Algoritmo del Método Simplex Empíricamente el algoritmo termina en promedio en una cantidad de pasos (pivoteos) que está entre m y 3m iteraciones, con m la cantidad de restricciones. El orden del algoritmo en el peor caso es no polinomial. Existen implementaciones más eficientes computacionalmente, como por ejemplo la de Simplex Revisado / 29

16 Método Simplex y Dualidad Para todo problema PL P se puede definir otro problema de PL D que se llama problema Dual. El original se denomina Primal. Teorema: Si P tiene solución óptima, entonces D tiene solución óptima y el valor óptimo de ambos coincide. El tableau final del Método Simplex aplicado al problema primal P nos da también la solución del problema dual D / 29

17 Método Simplex y Dualidad Primal: Dual: (P) (D) min c T x Ax = b x 0 max λ T b λ T A c T λ R n / 29

18 Método Simplex λ T = c T B B 1 es solución óptima del problema D, con B la matriz básica optimal del problema P. λ T A = [λ T B, λ T N] = [c T B, c T BB 1 N] [c T B, c T N] = c T λ T b = c T BB 1 b = c T Bx B p = c T B B 1 son los Multiplicadores Simplex que aparecen en la última fila del tableau final del algoritmo del Método Simplex / 29

19 Método Simplex: Ejemplo Una empresa produce 3 tipos de productos x, y, z para los cuales necesita 2 tipos de recursos b 1 y b 2 de acuerdo a la siguiente tabla: x y z Máx. b 1 1/ b Precio La empresa desea maximizar la venta de los productos cumpliendo con las restricciones de los recursos con los que dispone / 29

20 Método Simplex: Ejemplo (P) max sujeto a: 6x + 14y + 13z 1 2 x + 2y + z 24 x + 2y + 4z 60 x, y, z / 29

21 Método Simplex: Ejemplo (P ) min sujeto a: 6x 14y 13z 1 2 x + 2y + z + s 1 = 24 x + 2y + 4z + s 2 = 60 x, y, z, s 1, s / 29

22 Método Simplex: Ejemplo Tableau #1 sale x y z s 1 s 2 LD 1/ F II -3/ F I entra / 29

23 Método Simplex: Ejemplo Tableau #2 sale x y z s 1 s 2 LD 1/4 3/ /4 9 1/4 1/ / /4-15/ /4 195 F II -1/4-3/ /4-9 F I entra / 29

24 Método Simplex: Ejemplo Tableau #3 sale x y z s 1 s 2 LD 1/ /3-1/6 6 1/ /3 1/3 12-3/ F II F I entra / 29

25 Método Simplex: Ejemplo Tableau #4 x y z s 1 s 2 LD / /2 294 Todos los costos reducidos son no negativos: FIN / 29

26 Método Simplex: Ejemplo (D) min 24λ λ 2 sujeto a: 1 2 λ 1 + λ 2 6 2λ 1 + 2λ 2 14 λ 1 + 4λ 2 13 λ 1, λ / 29

27 Método Simplex: Ejemplo B = ( 1/ ) B 1 = ( /2 ) c T B = ( 6 13) p = c T BB 1 = (11 1/2) = λ T / 29

28 Método Simplex: Ejemplo Los Multiplicadores Simplex se pueden interpretar como el valor asignado a los recursos. Por eso se denominan también Precios Sombra. En el ejemplo anterior, el valor o costo marginal del recurso b 1 es de 11 unidades y el del recurso b 2 es de 0, 5 unidades. Los precios sombra son los precios máximos que la empresa debería pagar por esos recursos. Por cada nueva unidad de recurso, el valor óptimo mejora según los costos marginales de cada nueva unidad / 29

29 Método Simplex: Bibliografía "Linear Programming and Extensions", G.B. Dantzig, Princeton University Press, "Programación Lineal y No Lineal", David G. Luenberger, Addison-Wesley Ed., 2da edición. "Linear Programming", Katta G. Murty, Wiley Ed., 1era edición. "Applied Mathematical Programming", Bradley, Hax and Magnati, Addison-Wesley Ed., disponible en / 29

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex.

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex. El método simplex Forma estándar y cambios en el modelo. Definiciones. Puntos extremos y soluciones factibles básicas. 4 El método simplex. Definiciones y notación. Teoremas. Solución factible básica inicial.

Más detalles

Forma estándar de un programa lineal

Forma estándar de un programa lineal Forma estándar de un programa lineal Sin pérdida de generalidad, todo programa lineal se puede escribir como: min cx s.t Ax = b x 0 Objetivo: minimizar Todas las desigualdades como ecuaciones Todas las

Más detalles

Dualidad 1. 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. 5 Condiciones de holgura complementaria.

Dualidad 1. 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. 5 Condiciones de holgura complementaria. Dualidad 1 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. Condiciones de holgura complementaria. 6 Solución dual óptima en la tabla. 7 Interpretación

Más detalles

Tema 3: El Método Simplex. Algoritmo de las Dos Fases.

Tema 3: El Método Simplex. Algoritmo de las Dos Fases. Tema 3: El Método Simplex Algoritmo de las Dos Fases 31 Motivación Gráfica del método Simplex 32 El método Simplex 33 El método Simplex en Formato Tabla 34 Casos especiales en la aplicación del algoritmo

Más detalles

x 1, x 2 0 Maximizar 3x 1 + x 2 s.a 2x 1 + x 2 4 2x 1 + 3x 2 4 x 1 + 3x 2 3

x 1, x 2 0 Maximizar 3x 1 + x 2 s.a 2x 1 + x 2 4 2x 1 + 3x 2 4 x 1 + 3x 2 3 EJERCICIOS DE INVESTIGACIÓN OPERATIVA. Hoja. Dado el PL: Maximizar x + x x s.a x + x + x x x x x, x, x Calcula la solución del problema aplicando el algoritmo del Simplex. Existe más de una solución óptima?

Más detalles

Tema 3 Optimización lineal. Algoritmo del simplex

Tema 3 Optimización lineal. Algoritmo del simplex Tema 3 Optimización lineal. Algoritmo del simplex José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 3 Teorema fundamental de la programación lineal. Algoritmo

Más detalles

Repaso del algoritmo SIMPLEX

Repaso del algoritmo SIMPLEX Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial IN70K: Clase Auxiliar Repaso del algoritmo SIMPLEX Marcel Goic F. 1 1 Esta es una versión bastante

Más detalles

Dualidad. Dpto. Ingeniería Industrial, Universidad de Chile. 22 de abril de IN3701, Optimización

Dualidad. Dpto. Ingeniería Industrial, Universidad de Chile. 22 de abril de IN3701, Optimización Contenidos Motivación y Representación de Poliedros IN3701, Optimización 22 de abril de 2009 Contenidos Motivación y Representación de Poliedros Contenidos 1 Motivación 2 y Representación de Poliedros

Más detalles

84 Tema 3. Dualidad. todas las restricciones son del tipo, todas las variables son no negativas.

84 Tema 3. Dualidad. todas las restricciones son del tipo, todas las variables son no negativas. Tema 3 Dualidad En el desarrollo de la programación lineal la teoria de la dualidad es importante, tanto desde el punto de vista teórico como desde el punto de vista práctico. Para cada modelo lineal se

Más detalles

Optimización lineal. Diego A. Patino. 2 de septiembre de Pontificia Universidad Javeriana 1/ 29

Optimización lineal. Diego A. Patino. 2 de septiembre de Pontificia Universidad Javeriana 1/ 29 Optimización lineal Diego A. Patino Pontificia Universidad Javeriana 2 de septiembre de 2016 1/ 29 Introducción Formulación del problema Herramientes del análisis convexo Formas de las restricciones 2/

Más detalles

Formulación del problema de la ruta más corta en programación lineal

Formulación del problema de la ruta más corta en programación lineal Formulación del problema de la ruta más corta en programación lineal En esta sección se describen dos formulaciones de programación lineal para el problema de la ruta más corta. Las formulaciones son generales,

Más detalles

Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker

Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 5 Condiciones de Karush-Kuhn-Tucker (KKT). Problemas

Más detalles

Dualidad y postoptimización

Dualidad y postoptimización Dualidad y postoptimización José María Ferrer Caja Universidad Pontificia Comillas Definición A cada problema de optimización lineal le corresponde otro que se denomina problema dual En forma canónica

Más detalles

Algebra lineal y conjuntos convexos 1

Algebra lineal y conjuntos convexos 1 Algebra lineal y conjuntos convexos Solución de sistemas. Espacios vectoriales. 3 Conjuntos convexos. 4 Soluciones básicas puntos extremos. Rango de una matriz A R m n. Reducir A a una matriz escalonada

Más detalles

Un sistema de ecuaciones diferenciales son aquellas que tienen varias posibilidades para su solución. Estas son:

Un sistema de ecuaciones diferenciales son aquellas que tienen varias posibilidades para su solución. Estas son: Unidad X: Programación lineal (continuación) Objetivo específico: Entender ampliamente el fenómeno del comportamiento de los modelos matemáticos para la resolución de problemas enfocados a las ecuaciones

Más detalles

PROGRAMACIÓN MATEMÁTICA

PROGRAMACIÓN MATEMÁTICA PROGRAMACIÓN MATEMÁTICA TEMA 1. INTRODUCCIÓN A LA PROGRAMACIÓN MATEMÁTICA. CONJUNTOS CONVEXOS. CONVEXIDAD DE UNA FUNCIÓN. PLANTEAMIENTO FORMAL DEL PROBLEMA DE PROGRAMACION MATEMATICA. - Función Objetivo:

Más detalles

Soluciones básicas factibles y vértices Introducción al método símplex. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

Soluciones básicas factibles y vértices Introducción al método símplex. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Soluciones básicas factibles y vértices Introducción al método símplex Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema PLs en formato estándar Vértices y soluciones

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

Tema 1 Introducción. José R. Berrendero. Departamento de Matemáticas Universidad Autónoma de Madrid

Tema 1 Introducción. José R. Berrendero. Departamento de Matemáticas Universidad Autónoma de Madrid Tema 1 Introducción José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Información de contacto José Ramón Berrendero Díaz Correo electrónico: joser.berrendero@uam.es Teléfono:

Más detalles

Departamento de Matemáticas. ITAM Programación lineal (+ extensiones). Objetivos y panorama del c

Departamento de Matemáticas. ITAM Programación lineal (+ extensiones). Objetivos y panorama del c Programación lineal (+ extensiones). Objetivos y panorama del curso. Departamento de Matemáticas. ITAM. 2008. Introducción Programación lineal http://allman.rhon.itam.mx/ jmorales La programación lineal

Más detalles

UNIDAD 3 MÉTODO SIMPLEX. Fundamentos del método simplex

UNIDAD 3 MÉTODO SIMPLEX. Fundamentos del método simplex UNIDAD 3 MÉTODO SIMPLEX Fundamentos del método simplex Teoría Este método busca la solución, en cada paso, de forma mejorada hasta que no pueda seguir mejorando dicha solución. Al comienzo el vértice principal

Más detalles

Conjuntos y funciones convexas

Conjuntos y funciones convexas Conjuntos y funciones convexas Un conjunto X R n se dice convexo si para todo par de puntos x 1 y x 2 en X, λ x 1 + ( 1- λ) x 2 X, para todo λ [0,1] Qué significa esto geométricamente? Un punto λ x 1 +

Más detalles

Facultad de Ciencias Económicas, Jurídicas y Sociales - Métodos Cuantitativos para los Negocios

Facultad de Ciencias Económicas, Jurídicas y Sociales - Métodos Cuantitativos para los Negocios Ubicación dentro del Programa Unidad III UNIDAD II: PROGRAMACIÓN LINEAL 1. Característica. Formulación matemática de un problema de programación lineal. Planteo e interpretación de un sistema de inecuaciones.

Más detalles

Forma estándar de un PPL con m restricciones y n variables. (b 0)

Forma estándar de un PPL con m restricciones y n variables. (b 0) Forma estándar de un PPL con m restricciones y n variables Maximizar (minimizar) Z = c 1 x 1 + c 2 x 2 +... + c n x n a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 +a 22 x 2 +... + a 2n x n = b 2...

Más detalles

Jesús Getán y Eva Boj. Marzo de 2014

Jesús Getán y Eva Boj. Marzo de 2014 Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj 1 / 18 Jesús Getán y Eva Boj 2 / 18 Un Programa lineal consta de: Función objetivo. Modeliza

Más detalles

INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA

INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA Sesión 4 Objetivos: Aplicar el método simplex a la solución de problemas reales. Contenido: Introducción al método Simplex Requerimiento del método Simplex

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN LICENCIATURA EN MATEMÁTICAS APLICADAS Y COMPUTACIÓN

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN LICENCIATURA EN MATEMÁTICAS APLICADAS Y COMPUTACIÓN UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN LICENCIATURA EN MATEMÁTICAS APLICADAS Y COMPUTACIÓN ACATLÁN PROGRAMA DE ASIGNATURA CLAVE: 1409 SEMESTRE: 4 (CUARTO) MODALIDAD

Más detalles

MÉTODO SIMPLEX REVISADO O FORMA MATRICIAL

MÉTODO SIMPLEX REVISADO O FORMA MATRICIAL MÉTODO SIMPLEX REVISADO O FORMA MATRICIAL Algoritmo del método simplex que mejora la eficiencia de los cálculos, se realizan los mismos pasos del método simplex visto, sólo se diferencia en la manera de

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERÍA SEDE: UNI-NORTE PRIMER PARCIAL DE INVESTIGACIÓN DE OPERACIONES I (SOLUCIÓN)

UNIVERSIDAD NACIONAL DE INGENIERÍA SEDE: UNI-NORTE PRIMER PARCIAL DE INVESTIGACIÓN DE OPERACIONES I (SOLUCIÓN) UNIVERSIDAD NACIONAL DE INGENIERÍA SEDE: UNI-NORTE PRIMER PARCIAL DE INVESTIGACIÓN DE OPERACIONES I Prof.: MSc. Ing. Julio Rito Vargas Avilés (SOLUCIÓN) I. Representar gráficamente la región determinada

Más detalles

Degeneración y ciclaje. Método de las dos fases CO-3411 (S08) 30/03/

Degeneración y ciclaje. Método de las dos fases CO-3411 (S08) 30/03/ CO-3411 (S08 30/03/2008 98 Degeneración y ciclaje En el caso de problemas generales, una solución será degenerada cuando alguna de las variables básicas se encuentra en una de sus cotas (comparar con el

Más detalles

Tema 2: Optimización lineal. Ezequiel López Rubio Departamento de Lenguajes y Ciencias de la Computación Universidad de Málaga

Tema 2: Optimización lineal. Ezequiel López Rubio Departamento de Lenguajes y Ciencias de la Computación Universidad de Málaga Tema 2: Optimización lineal Ezequiel López Rubio Departamento de Lenguajes y Ciencias de la Computación Universidad de Málaga Sumario El modelo de programación lineal Formulación de modelos Método gráfico

Más detalles

EJERCICIO 1. Max Z = 6 x x 2 s.r. (1) 4 x x 2 12 (2) 2 x x 2 16 (3) 2 x 1 6 x 1, x 2 0

EJERCICIO 1. Max Z = 6 x x 2 s.r. (1) 4 x x 2 12 (2) 2 x x 2 16 (3) 2 x 1 6 x 1, x 2 0 Considere el Programa Lineal siguiente: EJERCICIO Max Z 6 x + 9 x 2 s.r. () 4 x + 6 x 2 2 (2) 2 x + 8 x 2 6 (3) 2 x 6 x, x 2 0 (.a) 3 2 0 2 3 4 5 6 7 8 El Problema tiene una Región Factible delimitada

Más detalles

Auxiliar 7: Dualidad

Auxiliar 7: Dualidad IN3701: Modelamiento y Optimización Profs: Richard Weber, Rodrigo Wolf Coordinador: M. Siebert Aux: V. Bucarey, N. Devia, P. Obrecht Auxiliar 7: Dualidad Lunes 5 de Diciembre de 2011 Pregunta 1: Dualidad

Más detalles

IN Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0

IN Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0 IN3701 - Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0 Acá va una pequeña guía con problemas resueltos de Geometría en Programación Lineal con problemas básicamente extraídos del

Más detalles

RESOLUCIÓN DE MODELOS DE PROGRAMACIÓN ENTERA MÉTODOS DE CORTE CORTES DE GOMORY

RESOLUCIÓN DE MODELOS DE PROGRAMACIÓN ENTERA MÉTODOS DE CORTE CORTES DE GOMORY 25 de Junio de 2012 RESOLUCIÓN DE MODELOS DE PROGRAMACIÓN ENTERA MÉTODOS DE CORTE CORTES DE GOMORY Postgrado de Investigación de Operaciones Facultad de Ingeniería Universidad Central de Venezuela Programación

Más detalles

Programación Lineal Continua

Programación Lineal Continua Elisenda Molina Universidad Carlos III de Madrid elisenda.molina@uc3m.es 8 de octubre de 2008 Esquema 1 Formulación y Ejemplos 2 3 Ejemplo: Producción de carbón Una empresa minera produce lignito y antracita.

Más detalles

Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones

Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Profesor: MSc. Julio Rito Vargas Avilés. Estudiantes: FAREM-Carazo Unidad III Metodologías para la Solución

Más detalles

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4 Ing. César Urquizú UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4 Ing. César Urquizú Teoría de la dualidad El desarrollo de esta teoría de la dualidad es debido al interés que existe en la interpretación económica

Más detalles

Pontificia Universidad Católica del Ecuador

Pontificia Universidad Católica del Ecuador 1. DATOS INFORMATIVOS: MATERIA O MÓDULO: INVESTIGACION DE OPERACIONES CÓDIGO: CARRERA: NIVEL: INGENIERÍA DE SISTEMAS Cuarto No. CRÉDITOS: 4 CRÉDITOS TEORÍA: CRÉDITOS PRÁCTICA: SEMESTRE / AÑO ACADÉMICO:

Más detalles

PROGRAMACIÓN LINEAL. Programación Lineal

PROGRAMACIÓN LINEAL. Programación Lineal PROGRAMACIÓN LINEAL Programación Lineal Programación Lineal (PL) máx c T x s.a. Ax b x 0 Un Modelo de Producción Un carpintero desea determinar la cantidad de sillas y mesas que debe producir la próxima

Más detalles

Programación lineal: Algoritmo del simplex

Programación lineal: Algoritmo del simplex Programación lineal: Algoritmo del simplex Se considera la formulación estándar de un problema de programación lineal siguiendo la notación utilizada en las clases teóricas: Minimizar c t x sa: Ax = b

Más detalles

7. PROGRAMACION LINEAL

7. PROGRAMACION LINEAL 7. PROGRAMACION LINEAL 7.1. INTRODUCCION A LA PROGRMACION LINEAL 7.2. FORMULACION DE UN PROBLEMA LINEAL 7.3. SOLUCION GRAFICA DE UN PROBLEMA LINEAL 7.4. CASOS ESPECIALES DE PROBLEMAS LINEALES 7.4.1. Problemas

Más detalles

Multiplicadores de Lagrange y dualidad

Multiplicadores de Lagrange y dualidad Multiplicadores de Lagrange y dualidad Problemas con solo restricciones de igualdad Sea x* un mínimo local y regular ( : son linealmente independientes), entonces existen tales que: Interpretación y ejemplos.

Más detalles

Ejercicios de Programación Lineal

Ejercicios de Programación Lineal Ejercicios de Programación Lineal Investigación Operativa Ingeniería Informática, UC3M Curso 08/09 1. Una compañía de transporte dispone de 10 camiones con capacidad de 40000 libras y de 5 camiones con

Más detalles

Universidad Autónoma del Estado de México Licenciatura en Matemáticas Programa de Estudios: Programación Lineal

Universidad Autónoma del Estado de México Licenciatura en Matemáticas Programa de Estudios: Programación Lineal Universidad Autónoma del Estado de México Licenciatura en Matemáticas 2003 Programa de Estudios: Programación Lineal I. Datos de identificación Licenciatura Matemáticas 2003 Unidad de aprendizaje Programación

Más detalles

Kg P1 Kg P Unidades Vitamina A

Kg P1 Kg P Unidades Vitamina A Dualidad El concepto de dualidad desempeña importantes papeles dentro de la programación lineal (también en la no lineal), tanto desde un punto de vista teórico como práctico. Todo programa lineal lleva

Más detalles

INVESTIGACION DE OPERACIONES:

INVESTIGACION DE OPERACIONES: METODO SIMPLEX El algoritmo símplex fue descubierto por el matemático norteamericano George Bernard Dantzig en 1947, es una técnica para dar soluciones numéricas a problema de programación lineal Un problema

Más detalles

Colección de Problemas II. mín Z = 8x 1 + 9x 2 + 7x 3 s. a: x 1 + x 2 + x x 1 + 3x 2 + x x 1 + x 2 x 3 30

Colección de Problemas II. mín Z = 8x 1 + 9x 2 + 7x 3 s. a: x 1 + x 2 + x x 1 + 3x 2 + x x 1 + x 2 x 3 30 1.- Dado el siguiente problema mín Z = 8x 1 + 9x + 7x 3 s. a: x 1 + x + x 3 40 x 1 + 3x + x 3 10 x 1 + x x 3 30 x 1 0, x 0, x 3 0 A) Plantear el problema dual y escribir las condiciones de la holgura complementaria

Más detalles

Control 2 IN mayo 2009

Control 2 IN mayo 2009 Profs: Auxs: Daniel Espinoza Gonzalo Romero Víctor Bucarey Nelson Devia Jocelyn González Daniel Lillo Fernando Solari Control 2 IN3701 28 mayo 2009 Pregunta 1 La empresa de pigmentos LILLO & Co. debe decidir

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN DIVISIÓN DE MATEMÁTICAS E INGENIERÍA LICENCIATURA EN ACTUARÍA

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN DIVISIÓN DE MATEMÁTICAS E INGENIERÍA LICENCIATURA EN ACTUARÍA UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN DIVISIÓN DE MATEMÁTICAS E INGENIERÍA LICENCIATURA EN ACTUARÍA ACATLÁN PROGRAMA DE ASIGNATURA CLAVE: SEMESTRE: 5 MODALIDAD

Más detalles

PROGRAMA DE CURSO. Nombre en Inglés. Horas de Trabajo Personal Horas de Cátedra

PROGRAMA DE CURSO. Nombre en Inglés. Horas de Trabajo Personal Horas de Cátedra Código MA3701 OPTIMIZACIÓN OPTIMIZATION SCT Unidades Docentes PROGRAMA DE CURSO Nombre Nombre en Inglés Horas de Cátedra Horas Docencia Auxiliar Horas de Trabajo Personal 6 10 3 2 5 Requisitos Carácter

Más detalles

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD CIENCIAS DE LA COMPUTACION

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD CIENCIAS DE LA COMPUTACION BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD CIENCIAS DE LA COMPUTACION PROGRAMA DE LA MATERIA CORRESPONDIENTE A LA LICENCIATURA EN CIENCIAS DE LA COMPUTACIÓN. Coordinación: NOMBRE DE LA MATERIA:

Más detalles

Optimización de Problemas de Producción

Optimización de Problemas de Producción Optimización de Problemas de Producción Pedro Piñeyro - Luis Stábile Colaboran: Héctor Cancela - Antonio Mauttone - Carlos Testuri Depto. Investigación Operativa. Instituto de Computación. Facultad de

Más detalles

CAPITULO 1: PERSPECTIVE GENERAL DE LA

CAPITULO 1: PERSPECTIVE GENERAL DE LA CONTENIDO CAPITULO 1: PERSPECTIVE GENERAL DE LA INVESTIGACION DE OPERACIONES 1 1.1 Modelos matemáticos de investigación de operaciones. 1 1.2 Técnicas de investigación de operaciones 3 1.3 Modelado de

Más detalles

Programación Entera. Nelson Devia C. IN Modelamiento y Optimización Departamento de Ingeniería Industrial Universidad de Chile

Programación Entera. Nelson Devia C. IN Modelamiento y Optimización Departamento de Ingeniería Industrial Universidad de Chile IN3701 - Modelamiento y Optimización Departamento de Ingeniería Industrial Universidad de Chile 2011 Basado en Bertsimas, D., Tsitsiklis, J. (1997) Introduction to Linear Optimization Capítulos 10 y 11

Más detalles

Programa Docente FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES MATEMÁTICAS II, 2ª PARTE 2º CURSO GRADO EN CIENCIAS ECONÓMICAS

Programa Docente FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES MATEMÁTICAS II, 2ª PARTE 2º CURSO GRADO EN CIENCIAS ECONÓMICAS Programa Docente MATEMÁTICAS II, 2ª PARTE 2º CURSO GRADO EN CIENCIAS ECONÓMICAS FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES 1.- PROGRAMA DE LA ASIGNATURA: PROGRAMA TEÓRICO: PROGRAMACIÓN MATEMÁTICA

Más detalles

PASO 1: Poner el problema en forma estandar.

PASO 1: Poner el problema en forma estandar. MÉTODO DEL SIMPLEX PASO Poner el problema en forma estandar: La función objetivo se minimiza y las restricciones son de igualdad PASO 2 Encontrar una solución básica factible SBF PASO 3 Testar la optimalidad

Más detalles

Sensibilidad y Dualidad

Sensibilidad y Dualidad Sensibilidad y Dualidad MLG521 Profesor: Cristóbal Rojas Departamento de Ciencias de de la Ingeniería Departamento de Ingeniería Matemática Universidad Andrés Bello Curso dictado en conjunto con Pamela

Más detalles

MÉTODOS DE OPTIMIZACIÓN EN LA GESTIÓN EMPRESARIAL

MÉTODOS DE OPTIMIZACIÓN EN LA GESTIÓN EMPRESARIAL UNIVERSIDAD DE ALCALÁ DE HENARES Departamento de Fundamentos de Economía e Historia Económica MÉTODOS DE OPTIMIZACIÓN EN LA GESTIÓN EMPRESARIAL (Obligatoria en Ciencias Actuariales, 3er curso, Optativa

Más detalles

MÉTODO DEL DUAL (TEORIA DE DUALIDAD)

MÉTODO DEL DUAL (TEORIA DE DUALIDAD) MÉTODO DEL DUAL (TEORIA DE DUALIDAD) Todo problema de programación lineal tiene asociado con él otro problema de programación lineal llamado DUAL. El problema inicial es llamado PRIMO y el problema asociado

Más detalles

PROGRAMA DE CURSO. Código Nombre MODELAMIENTO Y OPTIMIZACIÓN Nombre en Inglés MODELING AND OPTIMIZATION SCT

PROGRAMA DE CURSO. Código Nombre MODELAMIENTO Y OPTIMIZACIÓN Nombre en Inglés MODELING AND OPTIMIZATION SCT PROGRAMA DE CURSO Código Nombre IN 3701 MODELAMIENTO Y OPTIMIZACIÓN Nombre en Inglés MODELING AND OPTIMIZATION Unidades Horas de Horas Docencia Horas de Trabajo SCT Docentes Cátedra Auxiliar Personal 6

Más detalles

Integradora 3. Modelos de Programación Lineal

Integradora 3. Modelos de Programación Lineal Métodos Cuantitativos para la Toma de Decisiones Integradora 3. Modelos de Programación Lineal Objetivo Al finalizar la actividad integradora, serás capaz de: R l bl d PL di d l ét d Resolver problemas

Más detalles

Tema 7: Problemas clásicos de Programación Lineal

Tema 7: Problemas clásicos de Programación Lineal Tema 7: Problemas clásicos de Programación Lineal 1.- Características generales de un problema de transporte y asignación Surgen con frecuencia en diferentes contextos de la vida real. Requieren un número

Más detalles

Para poder elaborar el problema dual a partir del primal, este se debe presentar en su forma canónica de la siguiente forma:

Para poder elaborar el problema dual a partir del primal, este se debe presentar en su forma canónica de la siguiente forma: TEORIA DE LA DUALIDAD. Cada problema de programación lineal tiene un segundo problema asociado con él. Uno se denomina primal y el otro dual. Los 2 poseen propiedades muy relacionadas, de tal manera que

Más detalles

Tema V: Optimización Lineal

Tema V: Optimización Lineal Tema V: Optimización Lineal Omar J. Casas López Diciembre 2003 1 Algoritmo Simplex El objetivo del Algoritmo Simplex consiste en que partiendo de una Solución Factible Básica inicial, encontrar otra que

Más detalles

La Geometría de la Programación Lineal

La Geometría de la Programación Lineal La Geometría de la Programación Lineal Basado en Bertsimas Tsitsiklis Introduction to Linear Optimization Chap. IN7 Modelamiento y Optimización Nelson Devia C. Introducción Se dice que un conjunto S en

Más detalles

Modelos de Programación Lineal: Resolución gráfica y Teorema fundamental. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

Modelos de Programación Lineal: Resolución gráfica y Teorema fundamental. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Modelos de Programación Lineal: Resolución gráfica y Teorema fundamental Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema Resolución gráfica de problemas de

Más detalles

Investigación Operativa I. Programación Lineal. Informática de Gestión

Investigación Operativa I. Programación Lineal.  Informática de Gestión Investigación Operativa I Programación Lineal http://invop.alumnos.exa.unicen.edu.ar/ - 2013 Exposición Introducción: Programación Lineal Sistema de inecuaciones lineales Problemas de optimización de una

Más detalles

El Método Simplex. H. R. Alvarez A., Ph. D. 1

El Método Simplex. H. R. Alvarez A., Ph. D. 1 El Método Simplex H. R. Alvarez A., Ph. D. 1 El Método Simplex Desarrollado en 1947 por George Dantzig como parte de un proyecto para el Departamento de Defensa Se basa en la propiedad de la solución esquina

Más detalles

Análisis Post Optimal y Algoritmo de Ramificación y Acotamiento

Análisis Post Optimal y Algoritmo de Ramificación y Acotamiento Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial IN34A: Clase Auxiliar Análisis Post Optimal y Algoritmo de Ramificación y Acotamiento Marcel Goic F.

Más detalles

Práctica 2: Análisis de sensibilidad e Interpretación Gráfica

Práctica 2: Análisis de sensibilidad e Interpretación Gráfica Práctica 2: Análisis de sensibilidad e Interpretación Gráfica a) Ejercicios Resueltos Modelización y resolución del Ejercicio 5: (Del Conjunto de Problemas 4.5B del libro Investigación de Operaciones,

Más detalles

Universidad Autónoma de Sinaloa

Universidad Autónoma de Sinaloa Universidad Autónoma de Sinaloa Facultad de Ciencias Sociales Licenciatura en Economía Programa de estudios Asignatura: Investigación de operaciones. Clave: Eje de formación: Básica EFBCII Área de Conocimiento:

Más detalles

Definición de problemas de programación lineal. Método gráfico. Método del SIMPLEX. Método de las dos fases. Análisis de sensibilidad y problema dual

Definición de problemas de programación lineal. Método gráfico. Método del SIMPLEX. Método de las dos fases. Análisis de sensibilidad y problema dual 7. Programación lineal y SIMPLEX Definición de problemas de programación lineal. Método gráfico. Método del SIMPLEX. Método de las dos fases. Análisis de sensibilidad y problema dual Programación Lineal

Más detalles

La lección de hoy de febrero de Notación. Solución factible básica

La lección de hoy de febrero de Notación. Solución factible básica 1.3 1 de febrero de La lección de hoy Método simplex (continuación) Entregas: material de clase Nota: el diseño de esta presentación incluye animaciones que permiten verla en forma de diapositivas. Repaso

Más detalles

MÉTODOS MATEMÁTICOS DE LA ECONOMÍA

MÉTODOS MATEMÁTICOS DE LA ECONOMÍA Universidad de Valladolid Facultad de Ciencias Económicas y Empresariales Departamento de Economía Aplicada Subsección de Matemáticas Esquemas teóricos de la asignatura de las licenciaturas en Economía

Más detalles

Programación Lineal Pedro Sánchez

Programación Lineal Pedro Sánchez Pedro Sánchez Contents 1. Solución gráfica 2. Sensibilidades gráficas 3. Método Simplex 4. Metodología Simplex 5. Dualidad 6. Análisis de sensibilidad 7. Método simplex dual 2 1 Solución gráfica Sensibilidades

Más detalles

Optimización bajo Incertidumbre A. Sistema de modelado algebraico - GLPK

Optimización bajo Incertidumbre A. Sistema de modelado algebraico - GLPK Optimización bajo Incertidumbre A. Sistema de modelado algebraico - GLPK Carlos Testuri Germán Ferrari Depto. Investigación Operativa. Instituto de Computación. Facultad de Ingeniería, UdelaR 2003-17 Facultad

Más detalles

UNIVERSIDAD DE LOS LLANOS Facultad de Ciencias Básicas e Ingeniería Programa Ingeniería de Sistemas

UNIVERSIDAD DE LOS LLANOS Facultad de Ciencias Básicas e Ingeniería Programa Ingeniería de Sistemas CURSO: OPTIMIZACIÓN 1 SEMESTRE: VII 2 CODIGO: 602704 3 COMPONENTE: 4 CICLO: 5 AREA: Profesional 6 FECHA DE AROBACIÓN: 7 NATURALEZA: Teórica 8 CARÁCTER: Obligatorio 9 CREDITOS (RELACIÓN): 3 (1-1) 10 INTENSIDAD

Más detalles

Introducción a Programación Lineal

Introducción a Programación Lineal Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 18 Programación Lineal ICS 1102 Optimización Profesor : Claudio Seebach 4 de octubre de 2005

Más detalles

Enero Febrero Marzo Abril. D: uds D: uds D: uds D: uds

Enero Febrero Marzo Abril. D: uds D: uds D: uds D: uds PROBLEMA Una empresa dedicada a la fabricación de diferentes artículos, ante la inminente llegada de la estación invernal se plantea establecer su política de fabricación almacenae de estufas de gas para

Más detalles

CAPÍTULO II METODOLOGÍA DE SOLUCIÓN. Este capítulo es de suma importancia ya que en él se explica la metodología de solución

CAPÍTULO II METODOLOGÍA DE SOLUCIÓN. Este capítulo es de suma importancia ya que en él se explica la metodología de solución CAPÍTULO II METODOLOGÍA DE SOLUCIÓN Este capítulo es de suma importancia ya que en él se explica la metodología de solución utilizada en este trabajo para resolver de manera exacta el Problema de Localización

Más detalles

Figura 1: Esquema de las tablas simplex de inicio y general.

Figura 1: Esquema de las tablas simplex de inicio y general. RELACIONES PRIMAL-DUAL Los cambios que se hacen en el modelo original de programación lineal afectan a los elementos de la tabla óptima actual el que se tenga en el momento, que a su vez puede afectar

Más detalles

maximización (con restricciones de la forma menor igual que). asociado al modelo primal de minimización y viceversa.

maximización (con restricciones de la forma menor igual que). asociado al modelo primal de minimización y viceversa. UNIDAD 5 MÉTODO SÍMPLEX maximización (con restricciones de la forma menor igual que). asociado al modelo primal de minimización y viceversa. minimización (con restricciones de la forma mayor que). tenga

Más detalles

Tema 2 Conjuntos convexos

Tema 2 Conjuntos convexos Tema 2 Conjuntos convexos José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 2 Conjuntos convexos. Propiedades básicas y ejemplos. Cierre e interior de un

Más detalles

Con miras a conocer la metodología que se aplica en el Método SIMPLEX, tenemos a continiacion un ejemplo:

Con miras a conocer la metodología que se aplica en el Método SIMPLEX, tenemos a continiacion un ejemplo: Método Simplex. Este método fue creado en el año 1947 por el estadounidense George Bernard Dantzig y el ruso Leonid Vitalievich Kantorovich, con el objetivo de crear un algoritmo capaz de crear soluciones

Más detalles

(2.c) RESOLUCIÓN DE MODELOS LINEALES. ALGORITMO DEL SIMPLEX

(2.c) RESOLUCIÓN DE MODELOS LINEALES. ALGORITMO DEL SIMPLEX (2.c) RESOLUCIÓN DE MODELOS LINEALES. ALGORITMO DEL SIMPLEX FORMA CANÓNICA DE UN SISTEMA Ax = b Forma Standard y Base factible (repaso). Expresión de las v. básicas en función de las no básicas. Forma

Más detalles

Modelado en Programación Lineal y Entera en Modelado Cuantitativo para Problemas de Producción

Modelado en Programación Lineal y Entera en Modelado Cuantitativo para Problemas de Producción Modelado en Programación Lineal y Entera en Modelado Cuantitativo para Problemas de Producción Héctor Cancela - Antonio Mauttone Pedro Piñeyro - Luis Stábile - Carlos Testuri Depto. Investigación Operativa.

Más detalles

Formato para prácticas de laboratorio

Formato para prácticas de laboratorio Formato para prácticas de laboratorio CARRERA INGENIERIA INDUSTRIAL PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE 2007-1 9013 NOMBRE DE LA UNIDAD DE APRENDIZAJE METODOLOGIA PARA LA RESOLUCION DE PROBLEMAS

Más detalles

BASES MATEMÁTICAS DEL MÉTODO SIMPLEX (Parte 3)

BASES MATEMÁTICAS DEL MÉTODO SIMPLEX (Parte 3) 4 de Julio de 26 ASES MATEMÁTICAS DEL MÉTODO SIMPLEX (Parte 3) Postgrado de Investigación de Operaciones Facultad de Ingeniería Universidad Central de Venezuela 4 de Julio de 26 MÉTODO SIMPLEX REVISADO

Más detalles

Programación entera 1

Programación entera 1 Programación entera 1 1. El modelo de programación entera. 2. Aplicaciones de la programación entera. 3. Solución gráfica de problemas enteros. 4. El algoritmo de ramificación y acotación. 5. El algoritmo

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 3 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Algoritmos de Planos de Corte

Algoritmos de Planos de Corte Algoritmos de Planos de Corte Problema: max {cx / x X} con X = {x / Ax b, x Z n + } Proposición: conv (X) es un poliedro que puede entonces escribirse como conv (X) = {x / Ax b, x 0} Lo mismo ocurre para

Más detalles

CONTENIDO Prefacio CAPITULO 1: Qué es la investigación de operaciones? CAPITULO 2: Introducción a la programación lineal...

CONTENIDO Prefacio CAPITULO 1: Qué es la investigación de operaciones? CAPITULO 2: Introducción a la programación lineal... CONTENIDO Prefacio XV CAPITULO 1: Qué es la investigación de operaciones? 1 1.1 Modelos de investigación de operaciones 1 1.2 Solución del modelo de investigación de operaciones.. 4 1.3 Modelos de colas

Más detalles

Si el objetivo es maximizar, entonces se tiene la forma estándar de maximización y, si el objetivo es minimizar, la forma estándar de minimización.

Si el objetivo es maximizar, entonces se tiene la forma estándar de maximización y, si el objetivo es minimizar, la forma estándar de minimización. Tema El método simplex Los modelos lineales con dos o tres variables se pueden resolver gráficamente. En el Tema hemos visto la solución gráfica de modelos lineales de dos variables. Sin embargo, este

Más detalles

PROGRAMA ANALÍTICO DE ASIGNATURA

PROGRAMA ANALÍTICO DE ASIGNATURA UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO COORDINACIÓN DE DOCENCIA DIRECCIÓN DE PLANEACIÓN Y DESARROLLO EDUCATIVO PROGRAMA ANALÍTICO DE ASIGNATURA _ 1.- DATOS GENERALES 1.1 INSTITUTO: INSTITUTO DE CIENCIAS

Más detalles

Introducción a la programación lineal y entera Una simple presentación

Introducción a la programación lineal y entera Una simple presentación Introducción a la programación lineal y entera Una simple presentación Miguel Mata Pérez miguel.matapr@uanl.edu.mx Versión 0.1, 30 de septiembre de 2014 Resumen: Este trabajo es una presentación de la

Más detalles

UNIVERSIDAD NACIONAL DEL CALLAO

UNIVERSIDAD NACIONAL DEL CALLAO UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA QUÍMICA UNIDAD DE INVESTIGACIÓN DE LA FACULTAD DE INGENIERÍA QUÍMICA INFORME FINAL DEL PROYECTO DE INVESTIGACIÓN MÉTODO DE PUNTO INTERIOR BARRERA

Más detalles

FECHA: AGOSTO 2005 ELECTIVA II-PROGRAMACION LINEAL. 4 Créditos

FECHA: AGOSTO 2005 ELECTIVA II-PROGRAMACION LINEAL. 4 Créditos UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA FACULTAD DE CIENCIAS PROGRAMA DE MATEMÁTICAS PLAN DE ESTUDIOS FECHA: AGOSTO 2005 PROGRAMA ACADÉMICO SEMESTRE ASIGNATURA MATEMATICAS Sexto ELECTIVA II-PROGRAMACION

Más detalles

Tema No. 3 Métodos de Resolución de Modelos de Programación Lineal. El Método Gráfico y Método Simplex Autoevaluación y Ejercicios Propuestos

Tema No. 3 Métodos de Resolución de Modelos de Programación Lineal. El Método Gráfico y Método Simplex Autoevaluación y Ejercicios Propuestos UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA ÁREA DE TECNOLOGÍA DEPARTAMENTO DE GERENCIA INVESTIGACIÓN DE OPERACIONES PROFESOR: Dr. JUAN LUGO MARÍN Tema No. 3 Métodos de Resolución de Modelos

Más detalles

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I Tema # 10 El método de las M s como solución de problemas de programación lineal 1 Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Resolver modelos de programación lineal mediante

Más detalles