08 Losas delgadas Teoría de Kirchhoff. Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "08 Losas delgadas Teoría de Kirchhoff. Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales"

Transcripción

1 08 Losas delgadas Teoría de Kirchhoff Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 1

2 Introducción Elementos laminares delgados Losas o placas (son elementos planos) Láminas de superficie curva Losas: Losas delgadas: teoría de Kirchhoff Losas gruesas (y delgadas): teoría de ReissnerMindlin 2

3 Algunas definiciones Placa: sólido paralelepípedo en el que una de sus dimensiones (espesor t) es mucho más pequeña que las otras dos. Plano medio de la placa: superficie plana equidistante de las caras mayores de la placa 3

4 Teoría de Kirchhoff vs Teoría de Reissner-Mindlin La teoría de Kirchhoff asume que las secciones ortogonales y planas al plano medio de la placa se mantienen planas y ortogonales despues de la deformación de la placa. La teoría de RM asume que se mantienen planas pero NO ortogonales después de la deformación. 4

5 Hipótesis fundamentales de la teoría de Kirchhoff 1) Los puntos del plano medio solo se desplazan verticalmente u = v = 0 2) Todos los puntos contenidos en una normal al plano medio tienen el mismo desplazamiento vertical 3) El esfuerzo normal σz es despreciable 4) Las secciones ortogonales y planas al plano medio de la placa se mantienen planas y ortogonales despues de la deformación de la placa. 5

6 Convención de signos, ejes de coordenadas y desplazamientos 6

7 Campo de desplazamientos Vector de movimientos (contiene los desplazamientos y giros de un punto del plano medio de la placa). 7

8 Campos de deformaciones y esfuerzos 8

9 Ley de Hooke Matriz constitutiva para un elemento elástico isotropo 9

10 Vector de momentos (vector de esfuerzos generalizados) Recuerde que son momentos por unidad de longitud Matriz constitutiva de flexión generalizada El sub f quiere decir esfuerzos de flexión Vector de deformaciones generalizadas de flexión (o vector de curvaturas) 10

11 Principio de los trabajos virtuales Trabajo virtual interno 11

12 Principio de los trabajos virtuales En el integrando aparecen las segundas derivadas del desplazamiento vertical (flecha), lo que exige que tanto w como sus primeras derivadas sean funciones continuas (continuidad de clase C1) 12

13 Ecuaciones de equilibrio de la placa 13

14 Ecuación diferencial parcial que describe la flecha en una placa D rigidez a flexión de la placa (flexural stiffness). Sólo es válida para materiales elásticos e isótropos Esta ecuación diferencial parcial junto con sus condiciones de frontera es el punto de partida para resolver analíticamente problemas de placas isotrópas. 14

15 Fuerzas y esfuerzos cortantes Una vez se resuelve la ecuación diferencial se calculan los momentos por unidad de longitud y las fuerzas cortantes por unidad de longitud finalmente, los esfuerzos máximos se estiman como: 15

16 Formulación de elementos finitos El problema radica en la selección de términos del polinomio ya que cada alternativa genera un elemento diferente (y algunos de ellos no funcionan en la práctica). 16

17 Definiciones Se dice que un elemento finito es conforme cuando los desplazamientos y giros entre elementos son continuos. Se dice que un elemento cumple la condición de parcela cuando esto garantiza que la solución convergerá a la teorica al disminuir el tamaño de la malla. Se dice que el elemento tiene invarianza geométrica cuando el elemento (el polinomio) no tiene direcciones preferenciales. 17

18 Elemento rectangular de cuatro nodos MZC Este elemento finito fue propuesto en 1964 por Melosh, Zienkiewics, Cheung (MZC). 18

19 Esta selección del campo de desplazamientos garantiza la invarianza geométrica (el polinomio no tiene direcciones preferenciales). Observe que a lo largo de los lados x=const y y=const la flecha w varía de acuerdo con un polinomio de tercer grado. 19

20 Las constantes α1, α2,..., α12se calculan haciendo donde la matriz A está dada por: 20

21 21

22 Utilizando funciones de forma, se puede expresar el desplazamiento vertical w como: donde: 22

23 Funciones de forma asociadas al nodo 1 23

24 f donde: Para el cálculo de las derivadas anteriores utilizamos: 24

25 Reemplazando en el PTV Carga puntual y los dos momentos flectores que equilibran el nodo i 25

26 La matriz de rigidez está dada por: 26

27 El vector de fuerzas nodales equivalentes para una carga uniformemente repartida de magnitud q sobre el elemento es: f 27

28 Finalmente, los momentos flectores se calculan así: 28

29 El elemento MZK es no conforme Es posible demostrar que aunque el campo de desplazamientos definido por: establece la continuidad de w entre elementos, no garantiza, sin embargo, la continuidad de las primeras derivadas, excepto en los nodos donde, naturalmente, dichas derivadas toman un valor único. 29

30 Elemento finito triangular de Tocher (1962) Este elemento asume que el campo de desplazamientos está dado por: 1 x y x² xy y² x³ x²y xy² y³ 30

31 31

32 32

33 Reemplazando en el PTV Matriz constitutiva de flexión generalizada Carga puntual y los dos momentos flectores que 33 equilibran el nodo i

34 El elemento de Tocher es no conforme, es decir, no respeta la condición de continuidad de la derivada normal a lo largo de los lados comunes entre elementos (pero si conserva la continuidad de los desplazamientos) La matriz A del elemento de Tocher se vuelve singular cuando los lados del triángulo son paralelos a los ejes x e y. 34

08 Losas delgadas Teoría de Kirchhoff. Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales

08 Losas delgadas Teoría de Kirchhoff. Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 08 Losas delgadas Teoría de Kirchhoff Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 1 Introducción Elementos laminares delgados Losas o placas (son elementos

Más detalles

04 - Elementos de finitos de flexión de vigas. Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales

04 - Elementos de finitos de flexión de vigas. Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 04 - Elementos de finitos de flexión de vigas Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 1 Contenido Viga de Euler-Bernoulli Viga de Timoshenko Problema

Más detalles

I.PROGRAMA DE ESTUDIOS. Unidad 1. Conceptos básicos de la teoría de las estructuras

I.PROGRAMA DE ESTUDIOS. Unidad 1. Conceptos básicos de la teoría de las estructuras I.PROGRAMA DE ESTUDIOS Unidad 1 Conceptos básicos de la teoría de las estructuras 1.1.Equilibrio 1.2.Relación fuerza desplazamiento 1.3.Compatibilidad 1.4.Principio de superposición 1.5.Enfoque de solución

Más detalles

Flexión de placas planas

Flexión de placas planas Método de los Elementos Finitos para Análisis Estructural Fleión de placas planas Teoría clásica Definición Dominio continuo plano (XY), espesor pequeño h. Fuerzas (F z ) y deformaciones (w) perpendiculares

Más detalles

20 Dinámica + elementos finitos (caso lineal) Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales

20 Dinámica + elementos finitos (caso lineal) Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 20 Dinámica + elementos finitos (caso lineal) Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 1 Nota Una deducción teóricamente rigurosa de las ecuaciones

Más detalles

Curso de Elemento Finito con el software ALGOR

Curso de Elemento Finito con el software ALGOR Curso de Elemento Finito con el software ALGOR Facultad de Ingeniería, UNAM www.algor.com M. en I. Alejandro Farah Instituto de Astronomía, UNAM www.astroscu.unam.mx/~farah Contenido general: - La teoría

Más detalles

FEM para Mecánica 3D. Miguel Ángel Otaduy. Animación Avanzada 7 de Marzo de 2014

FEM para Mecánica 3D. Miguel Ángel Otaduy. Animación Avanzada 7 de Marzo de 2014 FEM para Mecánica 3D Miguel Ángel Otaduy Animación Avanzada 7 de Marzo de 2014 Índice Repaso Hoy Funciones de forma Formulación fuerte formulación débil Matriz de rigidez Ec. de elasticidad en 3D Deformación

Más detalles

05 Problemas de elasticidad bidimensional. Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales

05 Problemas de elasticidad bidimensional. Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 05 Problemas de elasticidad bidimensional Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 1 Convención para los esfuerzos positivos 2 Deformaciones 3 Ley de

Más detalles

ÍNDICE TOMO 1 DISEÑO Y CÁLCULO ELÁSTICO DE LOS SISTEMAS ESTRUCTURALES ÍNDICE GENERAL

ÍNDICE TOMO 1 DISEÑO Y CÁLCULO ELÁSTICO DE LOS SISTEMAS ESTRUCTURALES ÍNDICE GENERAL ÍNDICE TOMO 1 DISEÑO Y CÁLCULO ELÁSTICO DE LOS SISTEMAS ESTRUCTURALES ÍNDICE GENERAL INTRODUCCIÓN Tomo I CAPÍTULO 1. ESTUDIO TIPOLÓGICO DE LAS ESTRUCTURAS DE VECTOR ACTIVO O DE NUDOS ARTICULADOS. CAPÍTULO

Más detalles

EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO

EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO 1. Objetivo El objetivo de esta aplicación es ilustrar cómo se pueden integrar las ecuaciones diferenciales

Más detalles

CÁLCULO DE PLACAS A TRAVÉS DE DISTINTAS METODOLOGÍAS

CÁLCULO DE PLACAS A TRAVÉS DE DISTINTAS METODOLOGÍAS UNIVERSIDAD CARLOS III DE MADRID ESCUELA POLITÉCNICA SUPERIOR Departamento de Mecánica de Medios Continuos y Teoría de Estructuras Ingeniería Técnica Industrial Mecánica Proyecto Fin de Carrera CÁLCULO

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 5.- FLEXION. 4.1.- Viga. Una viga es una barra recta sometida a fuerzas que actúan perpendicularmente a su eje longitudinal.

Más detalles

III. Análisis de marcos

III. Análisis de marcos Objetivo: 1. Efectuar el análisis de estructuras de marcos. 1. Introducción. Aquellas estructuras constituidas de vigas unidimensionales conectadas en sus extremos de forma pivotada o rígida son conocidas

Más detalles

MÉTODO DE LOS ELEMENTOS FINITOS.

MÉTODO DE LOS ELEMENTOS FINITOS. de MÉTODO DE LOS ELEMENTOS FINITOS. Castillo Madrid, 23 de Noviembre de 26 Índice de 2 3 4 de de El de los Elementos Finitos (M.E.F.) es un procedimiento numérico para resolver ecuaciones diferenciales

Más detalles

ν= 0.3; E=1.8e10; t= 0.05; q=-0.5;

ν= 0.3; E=1.8e10; t= 0.05; q=-0.5; Analisis de placas y lamina 56 7.- COMPARACIÓN DE MÉTODOS MEDIANTE EJEMPLOS NUMÉRICOS DE CÁLCULO DE PLACAS A continuación se va ha hacer un análisis comparativo de los resultados obtenidos, para el cálculo

Más detalles

Primer examen parcial del curso Física II, M

Primer examen parcial del curso Física II, M Primer examen parcial del curso Física II, 106015M Prof. Beatriz Londoño 11 de octubre de 2013 Tenga en cuenta: Escriba en todas las hojas adicionales su nombre! Hojas sin nombre no serán corregidas El

Más detalles

Deflexión DE vigas. Universidad de Oriente Núcleo de Bolívar Unidad de Estudios Básicos Área de Matemáticas Asignatura: Matemáticas IV

Deflexión DE vigas. Universidad de Oriente Núcleo de Bolívar Unidad de Estudios Básicos Área de Matemáticas Asignatura: Matemáticas IV Universidad de Oriente Núcleo de Bolívar Unidad de Estudios Básicos Área de Matemáticas Asignatura: Matemáticas IV Deflexión DE vigas Profesor: Cristian Castillo Realizado por: Barrios, Yasnahir Campos,

Más detalles

CIV302 A y B 5 II-2013 G. Elias Belmonte C. 05/08/ /12/ /07/2013. Tema Objetivo Actividades de Enseñanza Recursos Didácticos

CIV302 A y B 5 II-2013 G. Elias Belmonte C. 05/08/ /12/ /07/2013. Tema Objetivo Actividades de Enseñanza Recursos Didácticos CARTA DESCRIPTIVA (PLANIFICACION DIDACTICA) Materia Grupo Nivel Semestre Docente Fecha de Inicio del calendario acad. Fecha de conclusión calendario acad. Fecha de Elaboración de la carta CIV302 A y B

Más detalles

f x = 0 f y = 6 kp=cm 3 f z = 17 kp=cm 3

f x = 0 f y = 6 kp=cm 3 f z = 17 kp=cm 3 Relación de problemas: Elasticidad lineal 1. Una barra de sección rectangular con anchura 100 mm, fondo 50 mm y longitud 2 m se somete a una tracción de 50 Tm; la barra sufre un alargamiento de 1 mm y

Más detalles

CONCLUSIONES 5. CONCLUSIONES.

CONCLUSIONES 5. CONCLUSIONES. 5. CONCLUSIONES. Entre los sistemas de referencia empleados para el cálculo de las fuerzas elásticas, para un elemento finito de dos nodos que utiliza la teoría de Euler- Bernoulli [11], basándose en las

Más detalles

1.1 Introducción Las ecuaciones diferenciales como modelos matemáticos

1.1 Introducción Las ecuaciones diferenciales como modelos matemáticos 1.1.. Las ecuaciones diferenciales como modelos matemáticos Los modelos matemáticos surgen en todos los campos de la ciencia. Aunque la relación entre modelos y fenómenos físicos en otras ciencias no es

Más detalles

D1 Diseño utilizando elementos finitos. Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales

D1 Diseño utilizando elementos finitos. Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales D1 Diseño utilizando elementos finitos Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 1 Tabla de contenido Observaciones generales Interpretación de gráficos

Más detalles

PLAN DE ESTUDIOS 1996

PLAN DE ESTUDIOS 1996 Ríos Rosas, 21 28003 MADRID. UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE MINAS ------- DEPARTAMENTO DE INGENIERÍA DE MATERIALES PROGRAMA DE LA ASIGNATURA TEORÍA DE ESTRUCTURAS

Más detalles

20 Dinámica + elementos finitos (caso lineal) Diego Andrés Alvarez Marín Profesor Asociado Universidad Nacional de Colombia Sede Manizales

20 Dinámica + elementos finitos (caso lineal) Diego Andrés Alvarez Marín Profesor Asociado Universidad Nacional de Colombia Sede Manizales 20 Dinámica + elementos finitos (caso lineal) Diego Andrés Alvarez Marín Profesor Asociado Universidad Nacional de Colombia Sede Manizales 1 Ecuaciones de la elástodinámica Las ecuaciones diferenciales

Más detalles

Interp r o p la l c a ió i n seccio i nal a l (S ( pl p i l n i e) Val a o l re r s pr p e r scri r t i os N (x)

Interp r o p la l c a ió i n seccio i nal a l (S ( pl p i l n i e) Val a o l re r s pr p e r scri r t i os N (x) Introducción al método de los elementos finitos Métodos Numéricos 2 Laboratori de Càlcul Numèric (LaCàN) Dep. de Matemàtica Aplicada III Universitat Politècnica de Catalunya www-lacan.upc.es Ventajas del

Más detalles

ASIGNATURA: EL MÉTODO DE LOS ELEMENTOS FINITOS EN INGENIERÍA. Código: Titulación: INGENIERO INDUSTRIAL Curso: 4

ASIGNATURA: EL MÉTODO DE LOS ELEMENTOS FINITOS EN INGENIERÍA. Código: Titulación: INGENIERO INDUSTRIAL Curso: 4 ASIGNATURA: EL MÉTODO DE LOS ELEMENTOS FINITOS EN INGENIERÍA Código: 141214001 Titulación: INGENIERO INDUSTRIAL Curso: 4 Profesor(es) responsable(s): PEDRO JESÚS MARTÍNEZ CASTEJÓN Departamento: ESTRUCTURAS

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL Vectores y escalares. REPÚBLICA BOLIVARIANA DE VENEZUELA APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL Las magnitudes escalares son aquellas magnitudes físicas que

Más detalles

Vigas Hiperestáticas

Vigas Hiperestáticas Vigas Hiperestáticas A.J.M.Checa November 11, 7 En el tipo de vigas que vamos a analizar en esta sección, el número de incógnitas es mayor que el número de ecuaciones. Por tanto, hemos

Más detalles

Matemáticas. Si un error simple ha llevado a un problema más sencillo se disminuirá la puntuación.

Matemáticas. Si un error simple ha llevado a un problema más sencillo se disminuirá la puntuación. UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE LOS MAYORES DE 25 AÑOS CONVOCATORIA 2014 CRITERIOS DE EVALUACIÓN Matemáticas GENERALES: El examen constará de dos opciones (dos

Más detalles

Asignatura: TEORÍA DE ESTRUCTURAS

Asignatura: TEORÍA DE ESTRUCTURAS Asignatura: TEORÍA DE ESTRUCTURAS Titulación: INGENIERO TÉCNICO EN OBRAS PÚBLICAS Curso (Cuatrimestre): 2º Primer Cuatrimestre Profesor(es) responsable(s): Dr. Luis Sánchez Ricart Ubicación despacho: Despacho

Más detalles

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE INGENIERIA Programa de Asignatura

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE INGENIERIA Programa de Asignatura UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE INGENIERIA Programa de Asignatura INGENIERIA CIVIL, TOPOGRAFICA Y GEODESICA División ESTRUCTURAS Departamento Fecha de aprobación * Consejo Técnico de

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

DESARROLLO EN MATLAB DE SOFTWARE DE CÁLCULO DE PLACAS POR MEF

DESARROLLO EN MATLAB DE SOFTWARE DE CÁLCULO DE PLACAS POR MEF TESINA DE ESPECIALIDAD Título DESARROLLO EN MATLAB DE SOFTWARE DE CÁLCULO DE PLACAS POR MEF Autor/a JOAN MORATÓ GUARDIA Tutor/a LUIS MIGUEL CERVERA RUIZ y JOAN BAIGES AZNAR Departamento 737 Resistencia

Más detalles

ERM2M - Elasticidad y Resistencia de Materiales II

ERM2M - Elasticidad y Resistencia de Materiales II Unidad responsable: 820 - EUETIB - Escuela Universitaria de Ingeniería Técnica Industrial de Barcelona Unidad que imparte: 737 - RMEE - Departamento de Resistencia de Materiales y Estructuras en la Ingeniería

Más detalles

Planteamiento del problema elástico lineal

Planteamiento del problema elástico lineal Capítulo 3 Planteamiento del problema elástico lineal Para la simulación o representación de un proceso o un fenómeno físico, una de las partes fundamentales es su planteamiento matemático, que en su forma

Más detalles

CI 32B ANALISIS DE ESTRUCTURAS ISOSTATICAS 10 U.D. REQUISITOS: FI 21A, MA 22A DH:(3,0-2,0-,5,0) Obligatorio de la Licenciatura en Ingeniería Civil

CI 32B ANALISIS DE ESTRUCTURAS ISOSTATICAS 10 U.D. REQUISITOS: FI 21A, MA 22A DH:(3,0-2,0-,5,0) Obligatorio de la Licenciatura en Ingeniería Civil 1 CI 32B ANALISIS DE ESTRUCTURAS ISOSTATICAS 10 U.D. REQUISITOS: FI 21A, MA 22A DH:(3,0-2,0-,5,0) CARACTER: OBJETIVOS: CONTENIDOS Obligatorio de la Licenciatura en Ingeniería Civil Capacitar al alumno

Más detalles

Teoría General del Método de los Elementos Finitos

Teoría General del Método de los Elementos Finitos Teoría General del Método de los Elementos Finitos MASTER'S DEGREE IN SAFETY, DURABILITY AND REPARATION OF CONCRETE STRUCTURES UNIVERSIDAD INTERNACIONAL MENÉNDEZ PELAYO This document can be used as reference

Más detalles

Geometría del plano y el espacio

Geometría del plano y el espacio Geometría del plano y el espacio AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Geometría del plano y el espacio 1 / 21 Objetivos Al final de este tema tendréis que Conocer

Más detalles

Formulación del problema de la ruta más corta en programación lineal

Formulación del problema de la ruta más corta en programación lineal Formulación del problema de la ruta más corta en programación lineal En esta sección se describen dos formulaciones de programación lineal para el problema de la ruta más corta. Las formulaciones son generales,

Más detalles

Energía debida al esfuerzo cortante. J. T. Celigüeta

Energía debida al esfuerzo cortante. J. T. Celigüeta Energía debida al esfuerzo cortante J. T. Celigüeta Energía debida al esfuerzo cortante Tensión y deformación de cortante: Energía acumulada: τ QA τ QA = γ = = Ib G GIb b Q * QA QA Q A A Ucort = τγdv =

Más detalles

UNIDAD II Ecuaciones diferenciales con variables separables

UNIDAD II Ecuaciones diferenciales con variables separables UNIDAD II Ecuaciones diferenciales con variables separables UNIDAD ECUACIONES DIFERENCIALES CON VARIABLES SEPARABLES Ecuaciones diferenciales de primer orden y de primer grado. Una ecuación diferencial

Más detalles

RESISTENCIA DE MATERIALES

RESISTENCIA DE MATERIALES UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL RESISTENCIA DE MATERIALES CARÁCTER: Obligatoria PROGRAMA: Ingeniería Civil DEPARTAMENTO: Ingeniería Estructural CODIGO SEMESTRE

Más detalles

ESTRUCTURAS III Para alumnos de la carrera de Ingeniería Aeronáutica y Mecánica de la UNLP

ESTRUCTURAS III Para alumnos de la carrera de Ingeniería Aeronáutica y Mecánica de la UNLP Facultad de Ingeniería Universidad Nacional de La Plata ESTRUCTURAS III Para alumnos de la carrera de Ingeniería Aeronáutica y Mecánica de la UNLP Introducción a la Teoría de Elementos Finitos (Tratamiento

Más detalles

Capítulo 3 El Método de los Elementos de Contorno y la Formulación Hipersingular.

Capítulo 3 El Método de los Elementos de Contorno y la Formulación Hipersingular. Capítulo 3 El Método de los Elementos de Contorno y la Formulación Hipersingular. 3.1. Introducción El Método de los Elementos de Contorno (MEC) se ha implantado firmemente en numerosos campos de la ingeniería

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

3. Método de cálculo.

3. Método de cálculo. Método de cálculo 7. Método de cálculo. Como método de cálculo vamos a seguir el método de los desplazamientos, en el que las incógnitas son los desplazamientos de los nudos de la estructura. Y para estudiar

Más detalles

GUIA 1 La culpa la tiene Galileo!!! Cuáles son los conceptos asociados a movimiento?

GUIA 1 La culpa la tiene Galileo!!! Cuáles son los conceptos asociados a movimiento? GUIA 1 La culpa la tiene Galileo!!! Definitivamente Galileo es culpable, es fue el primero que analizó detenidamente ciertos fenómenos, fue el que aplicó integralmente el método experimental, que empleó

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago Guía de vectores. Vectores En matemática, un vector es una herramienta geométrica utilizada para representar una magnitud física definida en un sistema de referencia que se caracteriza por tener módulo

Más detalles

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra.

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra. Integral definida Integral definida Dada una función f(x) y un intervalo [a,b], la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y las rectas verticales x =

Más detalles

CAPITULO 1 INTRODUCCION AL ANALISIS DE TENSIONES Y DEFORMACIONES DE UNA ESTRUCTURA

CAPITULO 1 INTRODUCCION AL ANALISIS DE TENSIONES Y DEFORMACIONES DE UNA ESTRUCTURA CAPITULO 1 INTRODUCCION AL ANALISIS DE TENSIONES Y DEFORMACIONES DE UNA ESTRUCTURA Con el propósito de seleccionar los materiales y establecer las dimensiones de los elementos que forman una estructura

Más detalles

Movimiento curvilíneo. Magnitudes cinemáticas

Movimiento curvilíneo. Magnitudes cinemáticas Movimiento curvilíneo. Magnitudes cinemáticas Movimiento curvilíneo Supongamos que el movimiento tiene lugar en el plano XY, Situamos un origen, y unos ejes, y representamos la trayectoria del móvil, es

Más detalles

O.C. Zienkiewicz, R.L. Taylor. El Método de los Elementos Finitos. Vols 1 y 2. CIMNE-Mc Graw Hill, 1994.

O.C. Zienkiewicz, R.L. Taylor. El Método de los Elementos Finitos. Vols 1 y 2. CIMNE-Mc Graw Hill, 1994. Índice de la teoría 1. Presentación. Estas lecciones sólo pretenden ser una introducción que sirva para orientar sobre los conceptos, para un estudio más amplio se recomienda leer alguna publicación especializada,

Más detalles

Introducción al método de los Elementos Finitos en 2D

Introducción al método de los Elementos Finitos en 2D Introducción al método de los Elementos Finitos en D Lección Variantes para la aproimación en elementos finitos D Adaptado por Jaime PuigPe UC de:. Zabaras. Curso FE Analsis for Mech&Aerospace Design.

Más detalles

1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones:

1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones: APLICACIONES DE DERIVADAS 1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones: a. 6 9 b. c. 2 d. 2 e. f. 1 2. Estudia los intervalos de crecimiento y decrecimiento de las siguientes

Más detalles

PRACTICAS DE LABORATORIO.RESISTENCIA DE MATERIALES. 1/6 ANALISIS DE DEFORMACIONES EN FLEXIÓN SIMPLE

PRACTICAS DE LABORATORIO.RESISTENCIA DE MATERIALES. 1/6 ANALISIS DE DEFORMACIONES EN FLEXIÓN SIMPLE PRACTICAS DE LABORATORIO.RESISTENCIA DE MATERIALES. 1/6 ANALISIS DE DEFORMACIONES EN FLEXIÓN SIMPLE 0. OBJETIVO DE LA PRÁCTICA La realización de esta práctica tiene como objetivos que el alumno compruebe

Más detalles

Análisis Comparativo de Métodos Tradicionales con el Método de los Elementos Finitos en Placas Rectangulares.

Análisis Comparativo de Métodos Tradicionales con el Método de los Elementos Finitos en Placas Rectangulares. Análisis Comparativo de Métodos Tradicionales con el Método de los Elementos Finitos en Placas Rectangulares. Análisis Comparativo de Métodos Tradicionales con el Método de los Elementos Finitos en Placas

Más detalles

Para establecer la relación entre coordenadas cartesianas y polares es suficiente proyectar r sobre los ejes x e y. De la gráfica se sigue que:

Para establecer la relación entre coordenadas cartesianas y polares es suficiente proyectar r sobre los ejes x e y. De la gráfica se sigue que: COORDENADAS POLARES. Algunas veces conviene representar un punto P en el plano por medio de coordenadas polares planas (r, ), donde r se mide desde el origen y es el ángulo entre r y el eje x (ver figura).

Más detalles

E 1.3. LA LEY DE GAUSS

E 1.3. LA LEY DE GAUSS E 1.3. LA LEY DE GAUSS E 1.3.1. Calcule el flujo del campo eléctrico producido por un disco circular de radio R [m], uniformemente cargado con una densidad σ [C/m 2 ], a través de la superficie de una

Más detalles

Ecuaciones diferenciales de Equilibrio

Ecuaciones diferenciales de Equilibrio Ecuaciones diferenciales de Equilibrio 28 de marzo de 2006 1. Elasticidad en una dimensión 1.1. Esfuerzo σ y carga lineal b(x) Para examinar un cuerpo desde el contínuo, que es la primera hipótesis (a),

Más detalles

ME Capítulo 4. Alejandro Ortiz Bernardin. Universidad de Chile

ME Capítulo 4. Alejandro Ortiz Bernardin.  Universidad de Chile Diseño de Elementos Mecánicos ME-5600 Capítulo 4 Alejandro Ortiz Bernardin www.cec.uchile.cl/~aortizb Departamento de Ingeniería Mecánica Universidad de Chile Contenidos del Capítulo Constantes de Resorte

Más detalles

Sistema Estructural de Masa Activa

Sistema Estructural de Masa Activa Sistema Estructural de Masa Activa DEFINICIÓN DE SISTEMAS ESTRUCTURALES Son sistemas compuestos de uno o varios elementos, dispuestos de tal forma, que tanto la estructura total como cada uno de sus componentes,

Más detalles

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo.

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo. GEOMETRÍA 1. (Junio, 1994) Sin resolver el sistema, determina si la recta x +3y +1= 0 es exterior, secante o tangente a la circunferencia (x 1) +(y ) =1. Razónalo.. (Junio, 1994) Dadas las ecuaciones de

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................

Más detalles

Problemas de exámenes de Geometría

Problemas de exámenes de Geometría 1 Problemas de exámenes de Geometría 1. Consideramos los planos π 1 : X = P+λ 1 u 1 +λ 2 u 2 y π 2 : X = Q+µ 1 v 1 +µ 2 v 2. Cuál de las siguientes afirmaciones es incorrecta? a) Si π 1 π 2 Ø, entonces

Más detalles

Ecuaciones Diferenciales: Teoría Unidimensional

Ecuaciones Diferenciales: Teoría Unidimensional Ecuaciones Diferenciales: Teoría Unidimensional M. Fernández Universidad de Extremadura 1 / 49 Campo de pendientes El problema de valor inicial Una ecuación diferencial (abreviadamente ED) es una ecuación

Más detalles

Ejercicio de ejemplo - Diagramas de solicitaciones. Se plantea el problema de hallar los diagramas de solicitaciones de la siguiente ménsula:

Ejercicio de ejemplo - Diagramas de solicitaciones. Se plantea el problema de hallar los diagramas de solicitaciones de la siguiente ménsula: Ejercicio de ejemplo - Diagramas de solicitaciones Se plantea el problema de hallar los diagramas de solicitaciones de la siguiente ménsula: 1- Reacciones: En primer lugar determinamos el valor de las

Más detalles

Unidad 5: Geometría analítica del plano.

Unidad 5: Geometría analítica del plano. Geometría analítica del plano 1 Unidad 5: Geometría analítica del plano. 1.- Vectores. Operaciones con vectores. Un vector fijo es un segmento entre dos puntos, A y B del plano, al que se le da una orientación

Más detalles

Capítulo 4. FLEXIÓN PURA Y FLEXIÓN SIMPLE

Capítulo 4. FLEXIÓN PURA Y FLEXIÓN SIMPLE Roberto Imaz Gutiérrez. Este capítulo se publica bajo Licencia Creative Commons BY NC SA 3.0 Capítulo 4. FLEXIÓN PURA Y FLEXIÓN SIMPLE 4.1 GENERALIDADES Se dice que una pieza está sometida a flexión pura

Más detalles

Examen de TEORIA DE MAQUINAS Diciembre 12 Nombre...

Examen de TEORIA DE MAQUINAS Diciembre 12 Nombre... Examen de TEORIA DE MAQUINAS Diciembre 12 Nombre... El mecanismo de la figura es un cuadrilátero articulado manivela-balancín. La distancia entre los puntos fijos A y D es 4L/ 3. En la mitad del balancín

Más detalles

TEMA XII ESTÁTICA DE LOS CUERPOS FUNICULARES

TEMA XII ESTÁTICA DE LOS CUERPOS FUNICULARES J.A DÁVILA BAZ - J. PAJÓN PERMUY ESTÁTICA 79 UNIDAD DIDÁCTICA II: ESTÁTICA. 12.1.- Introducción. TEMA XII ESTÁTICA DE LOS CUERPOS FUNICULARES Llamaremos cuerpos funiculares a los que, teniendo una longitud

Más detalles

CLASIFICACIÓN AFÍN DE CÓNICAS

CLASIFICACIÓN AFÍN DE CÓNICAS Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS CLASIFICACIÓN AFÍN DE CÓNICAS Sea E un R-espacio vectorial de dimensión. Sean E = e 1, e un plano vectorial de E y e 0 un

Más detalles

CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO

CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO MATEMÁTICAS AVANZADAS PARA LA INGENIERÍA EN SISTEMAS CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO 1 1. SISTEMAS LINEALES DISCRETOS Y CONTINUOS 1.1. Modelos matemáticos 1.2. Sistemas 1.3. Entrada

Más detalles

Capítulo 3. TRACCIÓN Y COMPRESIÓN SIMPLE

Capítulo 3. TRACCIÓN Y COMPRESIÓN SIMPLE Roberto Imaz Gutiérrez. Este capítulo se publica bajo Licencia Creative Commons BY NC SA 3.0 Capítulo 3. TRACCIÓN Y COMPRESIÓN SIMPLE 3.1 BARRA PRISMÁTICA SOMETIDA A UN ESFUERZO NORMAL CONSTANTE Consideremos

Más detalles

2 Análisis de estructuras laminares

2 Análisis de estructuras laminares Contenidos 1. INTRODUCCIÓN 7 1.1. Conceptos básicos........................ 7 1.. Sobre las teorías de estructuras de pared delgada....... 9 1..1. De acuerdo al espesor relativo de la lámina...... 10 1...

Más detalles

José Humberto Serrano Devia Página 1

José Humberto Serrano Devia Página 1 Similitudes entre el espacio y las series de Fourier Funciones Ortogonales En esta sección se muestra la forma en que los conceptos vectoriales de producto interno, o producto escalar, y el de ortogonalidad

Más detalles

Este trabajo debe realizarce después de haber trabajado el taller virtual

Este trabajo debe realizarce después de haber trabajado el taller virtual Este trabajo debe realizarce después de haber trabajado el taller virtual qué se encuentra en la http://ceciba.escuelaing.edu.co/mre página bajo la pestaña de Talleres Virtuales.. Para las guientes funciones:

Más detalles

GUÍA DE LA UNIDAD FUNCIONES : DERIVADAS

GUÍA DE LA UNIDAD FUNCIONES : DERIVADAS Funciones Límites Derivadas Aplicaciones Gráficas C ontenidos Idea de Función. Elementos notables de la gráfica de una función. Funciones lineales. Función definida por intervalos. Función Valor Absoluto.

Más detalles

ANEXO C: ALGORITMOS DE INTERSECCIÓN

ANEXO C: ALGORITMOS DE INTERSECCIÓN ANEXO C: ALGORITMOS DE INTERSECCIÓN El corazón de cualquier modelo de trazado de rayos es el de los algoritmos de la intersección entre los rayos y los objetos del ambiente. En un proceso general de trazado

Más detalles

Matrices. Operaciones con matrices.

Matrices. Operaciones con matrices. Matrices. Operaciones con matrices. Ejercicio. Dadas las matrices ( ) ( ) 4 A = B = ( ) C = D = 4 5 ( ) 4 E = F = seleccione las que se pueden sumar y súmelas. Ejercicio. Dadas las matrices ( ) ( ) A =

Más detalles

Translaciones, giros, simetrías.

Translaciones, giros, simetrías. Translaciones, giros, simetrías. Transformaciones geométricas Transformación geométrica es una aplicación del plano en el plano tal que a cada punto de un plano le hace corresponder otro punto del mismo

Más detalles

Campo Eléctrico en el vacío

Campo Eléctrico en el vacío Campo Eléctrico en el vacío Electrostática: Interacción entre partículas cargadas q1 q2 Ley de Coulomb En el vacío: K = 8.99 109 N m2/c2 0 = 8.85 10 12 C2/N m2 Balanza de torsión Electrostática: Interacción

Más detalles

ESTRUCTURAS SIMETRICAS

ESTRUCTURAS SIMETRICAS ESTRUCTURAS SIMETRICAS Las estructuras reales presentan con mucha frecuencia diseños que tienen la característica de ser simétricas con relación a algún plano, como por ejemplo las estructuras de muchos

Más detalles

2 t, y t = 2 sin 2t, z t = 3e 3t. ( 2 sin 2t) + z. t = 0. = f u (2, 3)u s (1, 0) + f v (2, 3)v s (1, 0) = ( 1)( 2) + (10)(5) = 52

2 t, y t = 2 sin 2t, z t = 3e 3t. ( 2 sin 2t) + z. t = 0. = f u (2, 3)u s (1, 0) + f v (2, 3)v s (1, 0) = ( 1)( 2) + (10)(5) = 52 TALLER : Regla de la cadena, derivadas direccionales y vector gradiente Cálculo en varias variables Universidad Nacional de Colombia - Sede Medellín Escuela de matemáticas 1. Use la regla de la cadena

Más detalles

INDICE Capitulo 1. Números Capitulo 2. Secuencias Capitulo 3. Funciones, Límites y Continuidad

INDICE Capitulo 1. Números Capitulo 2. Secuencias Capitulo 3. Funciones, Límites y Continuidad INDICE Capitulo 1. Números 1 Conjuntos 1 Números reales 1 Representación decimal de los números reales 2 Representación geométrica de los números reales 2 Operación con los números reales 2 Desigualdades

Más detalles

**********************************************************************

********************************************************************** 13.1.- Representar las leyes de variación del momento flector, el esfuerzo cortante y el esfuerzo normal en la viga de la figura, acotando los valores más característicos. Hallar además la epresión analítica

Más detalles

INTRODUCCIÓN AL CÁLCULO VECTORIAL

INTRODUCCIÓN AL CÁLCULO VECTORIAL 1. INTRODUCCIÓN INTRODUCCIÓN AL CÁLCULO VECTORIAL Este capítulo es una revisión condensada de los principales conceptos del cálculo vectorial a modo de repaso de un tema que se supone más o menos conocido

Más detalles

El Método de Elementos Finitos

El Método de Elementos Finitos Programa de: Hoja1de5 El Método de Elementos Finitos Código: Curso Introductorio UNIVERSIDAD NACIONAL DE CORDOBA FAC. DE CIENCIAS EXACTAS FISICAS Y NATURALES REPUBLICA ARGENTINA Carrera: Maestría en Ciencias

Más detalles

Elementos Uniaxiales Sometidos a Carga Axial Pura

Elementos Uniaxiales Sometidos a Carga Axial Pura Elementos Uniaiales Sometidos a Carga ial ura Definición: La Tensión representa la intensidad de las fuerzas internas por unidad de área en diferentes puntos de una sección del sólido aislada (Fig. 1a).

Más detalles

Sistema óptico: sistema a través del cual puede pasar la luz y que separa dos medios de distinto índice de refracción Sistemas centrados

Sistema óptico: sistema a través del cual puede pasar la luz y que separa dos medios de distinto índice de refracción Sistemas centrados Óptica geométrica. Formación de imágenes en espejos y lentes. La longitud de onda de la luz suele ser muy peueña en comparación con el tamaño de obstáculos o aberturas ue se encuentra a su paso. Esto permite

Más detalles

Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander. Monday, November 5, 2007 at 8:44 am (FA07.

Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander. Monday, November 5, 2007 at 8:44 am (FA07. Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander Monday, November 5, 2007 at 8:44 am (FA07.01,02) Para uso exclusivo en el salón de clase. 2007 c Julio C. Carrillo

Más detalles

Máster Universitario en Ingeniería de las Estructuras, Cimentaciones y Materiales UNIVERSIDAD POLITÉCNICA DE MADRID ANÁLISIS DINÁMICO DE ESTRUCTURAS

Máster Universitario en Ingeniería de las Estructuras, Cimentaciones y Materiales UNIVERSIDAD POLITÉCNICA DE MADRID ANÁLISIS DINÁMICO DE ESTRUCTURAS ALBERTO RUIZ-CABELLO LÓPEZ EJERCICIO 4 1. Matriz de masas concentradas del sistema. La matriz de masas concentradas para un edificio a cortante es una matriz diagonal en la que cada componente no nula

Más detalles

Materia: Matemática de 5to Tema: Vectores en el Espacio. Marco Teórico

Materia: Matemática de 5to Tema: Vectores en el Espacio. Marco Teórico Materia: Matemática de 5to Tema: Vectores en el Espacio Marco Teórico El sistema de coordenadas rectangular (o cartesiano) se utiliza para describir un plano dividido en cuatro cuadrantes, como se muestra

Más detalles

CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA

CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA Este documento enuncia de forma más detallada la formulación matemática que permite el estudio de campos eléctricos debido a distribuciones

Más detalles

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Instrumentación Industrial Mecánica Laboratorio de Instrumentación Mecatrónica 2

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Instrumentación Industrial Mecánica Laboratorio de Instrumentación Mecatrónica 2 1. Tema: Determinación de la posición de las galgas extensiométricas en una barra de torsión. 2. Objetivos: a. Simular el comportamiento estático de una barra de torsión, mediante el uso de un paquete

Más detalles

02. Resolver sistemas de ecuaciones lineales por el método de Gauss.

02. Resolver sistemas de ecuaciones lineales por el método de Gauss. 3.6 Criterios específicos de evaluación. 01. Conocer lo que significa que un sistema sea incompatible o compatible, determinado o indeterminado, y aplicar este conocimiento para formar un sistema de un

Más detalles

Estéreo dinámico. Estéreo dinámico

Estéreo dinámico. Estéreo dinámico Estéreo dinámico 1 Vectores locales de desplazamiento Dada una secuencia de imagenes Tomadas a intervalos Movimiento absoluto: movimiento independiente de la cámara Movimiento relativo: movimiento debido

Más detalles

Diferencias finitas aplicadas a ecuaciones en derivadas parciales

Diferencias finitas aplicadas a ecuaciones en derivadas parciales Diferencias finitas aplicadas a ecuaciones en derivadas parciales Segundo curso Grado en Física Índice Introducción Aproximación de FD de la ecuación de Laplace. Métodos iterativos. Aproximación de FD

Más detalles

Unidad III: Curvas en R2 y ecuaciones paramétricas

Unidad III: Curvas en R2 y ecuaciones paramétricas Unidad III: Curvas en R2 y ecuaciones paramétricas 2.1 Ecuación paramétrica de la línea recta. La recta constituye una parte fundamental de las matemáticas. Existen numerosas formas de representar una

Más detalles

DERIVADAS PARCIALES Y APLICACIONES

DERIVADAS PARCIALES Y APLICACIONES CAPITULO IV CALCULO II 4.1 DEFINICIÓN DERIVADAS PARCIALES Y APLICACIONES En cálculo una derivada parcial de una función de diversas variables es su derivada respecto a una de esas variables con las otras

Más detalles

ÍNDICE Capítulo 2 La transformada de Laplace 1 Capítulo 2 Series de Fourier 49 Capítulo 3 La integral de Fourier y las transformadas de Fourier 103

ÍNDICE Capítulo 2 La transformada de Laplace 1 Capítulo 2 Series de Fourier 49 Capítulo 3 La integral de Fourier y las transformadas de Fourier 103 ÍNDICE Capítulo 2 La transformada de Laplace... 1 1.1 Definición y propiedades básicas... 1 1.2 Solución de problemas con valores iniciales usando la transformada de Laplace... 10 1.3 Teoremas de corrimiento

Más detalles