Plantel Aztahuacan 011 Módulo: operación de circuitos electrónicos digitales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Plantel Aztahuacan 011 Módulo: operación de circuitos electrónicos digitales"

Transcripción

1 Plantel Aztahuacan Nombre Fecha Grupo Tema.. Mapas de Karnaugh Docente: Alfredo Alonso Quintana Correo institucional: Unidad de aprendizaje : Operación de circuitos lógicos combinatorios. Resultado de aprendizaje: Simplifica funciones de circuitos lógicos combinatorios, empleando mapas de Karnaugh. Actividad A: Realización de ejercicios acerca de circuitos de lógica combinatoria mediante la simplificación de funciones lógicas aplicando el método o mapa de Karnaugh. (NOTA: SE ENCUENTRAN EN LA ÚLTIMA HOJA) Sugerencias para la solución y revisión de los problemas:. Estudiar y realizar un resumen sobre el método de mapas de karnaugh para simplicación de funciones booleanas. Desarrollar los ejercicios en hojas blancas o en formato digital. Si hay dudas enviarlas al correo institucional 4. La revisión y evaluación de los ejercicios sera cuando se reinicien las clases o por correo en formato digital Mapa de Karnaugh La complejidad de las compuertas de lógica digital que implementan una función booleana está relacionada directamente con la complejidad de la expresión algebraica a partir de la cual se implementa la función. Aunque la representación de una función como tabla de verdad es única, hay muchas formas de expresarla algebraicamente. Las expresiones booleanas se simplifican algebraicamente como se explicó anteriormente pero este procedimiento de minimización resulta poco práctico porque carece de reglas específicas que predigan cada paso sucesivo del proceso de manipulación. El método del mapa ofrece un procedimiento sencillo y directo para minimizar las funciones booleanas. Este método podría considerarse como una versión pictórica de la tabla de verdad. El método del mapa también se conoce como mapa de Karnaugh o mapa K. El mapa es un diagrama hecho de cuadrados, cada uno de los cuales representa un minitérmino de la función. Puesto que cualquier función booleana se puede expresar como una suma de minitérminos, toda función booleana se reconocerá gráficamente en el mapa por el área delimitada por los cuadrados cuyos minitérminos están incluidos en la función. De hecho, el mapa presenta un diagrama visual de todas las maneras en que una función se puede expresar en forma estándar. Al reconocer diversos patrones, el usuario puede deducir expresiones algebraicas alternas para la misma función, y luego escoger la más simple. Las expresiones simplificadas generadas por el mapa siempre están en una de las dos formas estándar: suma de productos o producto de sumas. Supondremos que la expresión algebraica más simple es la que tiene menos términos y el mínimo posible de literales en cada término. Esto produce un diagrama de circuito con el mínimo de compuertas y el mínimo de entradas a cada compuerta. Más adelante se verá que la expresión más simple no es única. Hay ocasiones en que es posible encontrar dos o más expresiones que satisfagan los criterios de minimización. En esos casos, cualquiera de las soluciones es satisfactoria. En un mapa de Karnaugh se adopta un área igual, de forma cuadrada, para cada mintérmino; y además, estos cuadrados se disponen de tal forma que reflejen las adyacencias. Se ha superpuesto el -cubo, con un mapa de dos variables. La identificación de los cuadros con el número del mintérmino, depende de la elección del orden de las variables que se haya elegido para la representación decimal equivalente. Por ejemplo, para dos variables A y B: A B A B f(a,b) f(b,a)

2 Plantel Aztahuacan La representación de funciones mediante mapas, se logra marcando los mintérminos presentes con un ""; los ceros suelen omitirse. Por ejemplo, las funciones AND y OR, de dos variables, se representan en mapas según: A B A B f(a,b)=a B f(a,b)=a + B Mapa para tres variables. Para tres variables A, B y C, se ilustran los mintérminos en un diagrama de Venn y en un -cubo: A C B B C A La siguiente figura muestra un desarrollo de un -cubo. Nótese que al abrir las caras del cubo, los mintérminos que están a distancia uno, quedan adyacentes (exceptuando los de la cara que no se representa en el plano). Los códigos de los mintérminos quedan ordenados según código Gray. El -cubo muestra también la propiedad del código Gray de ser reflejado. B 4 C f(a, B, C) 6 7 A C = C = A = B = 6 7 f(a, B, C) A = 4

3 Plantel Aztahuacan El siguiente diagrama muestra el desarrollo de un -cubo sobre el mapa de Karnaugh de tres variables: C Nótese que m es adyacente a m, m y m 4. Entonces, en un mapa de Karnaugh se considera que los bordes son coincidentes, lo cual también refleja que la propiedad del código Gray de ser cíclico. Formas de Mapas f(a, B, C) A continuación se ilustran mapas, para, 4 y variables. Los valores de columnas y renglones se ordenan empleando código Gray, para reflejar mejor las adyacencias. El orden de las variables, para la representación decimal equivalente del mintérmino, figura en la base del mapa. C f(a, B, C) CD f(a, B, C, D) DE C f(a, B, C, D, E)

4 Plantel Aztahuacan Sin embargo esta forma de generar mapas, no refleja bien las adyacencias. Otra forma es una representación en el espacio A= A= 7 9 C DE f(a, B, C, D, E) Los siguientes conceptos son útiles en la manipulación de mapas: Un mapa de n variables tiene n cuadros. Cada bloque o casillero de un mapa de n variables, tiene n bloques adyacentes; es decir, los códigos binarios de los mintérminos están a distancia uno. Un bloque está asociado a un producto que contiene las n variables, pudiendo éstas estar o no complementadas. Agrupando dos bloques adyacentes, se logra una expresión tipo producto de (n-) variables. Empleando: a ab ab esto, considerando que dos bloques adyacentes difieren en sólo una variable, ya que están a distancia. Los bloques pueden agruparse en un número que es una potencia de dos; es decir:, 4, 8, 6... Agrupando k bloques, que forman un k-cubo, la expresión booleana asociada es la que resulta de eliminar k variables de las n correspondientes a un mintérmino.

5 Plantel Aztahuacan Ejemplo: Los siguientes mapas ilustran el concepto de agrupaciones. CD 4 8 CD f(a, B, C, D)=A f(a, B, C, D)= CD 4 8 CD f(a, B, C, D)=C f(a, B, C, D)=CD

6 Plantel Aztahuacan Grupo de dos mintérminos Donde x es la salida y A,B,C,D son las entrada. En el inciso a, b, c son mapas de dos entradas y en el (d) de cuatro entradas Grupo de cuatro mintérminos

7 Plantel Aztahuacan Grupo de ocho mintérminos Uso de mapas y ejemplos La obtención del mapa, a partir de una forma canónica es asunto trivial, si los casilleros han sido rotulados con los números decimales de los mintérminos. Ejemplo : obtener el mapa de Karnaugh y la función booleana de la siguiente tabla de verdad: Se tiene: C Entradas Salida Decimal A B C F(A,B,C) f(a, B, C)= (,)

8 Plantel Aztahuacan Mediante la aplicación del método de suma de productos se deben de agrupar los Unos lógicos de las salidas (en grupos adyacentes de,, 4, 8,6...). A) Primer grupo del siguiente minitérmino = A B C B) Segundo grupo del siguiente minitérmino = A B C C) La función lógica de salida es la suma de productos anterioresf(a, B, C) = A B C + A B C de forma simplificada Ejemplo : obtener el mapa de Karnaugh y la función simplificada de la siguiente tabla de verdad: El mapa de Karnaugh que da de la siguiente forma, donde la f es la salida Mediante la aplicación del método de suma de productos se deben de agrupar los Unos lógicos de las salidas (en grupos adyacentes de,, 4, 8,6...), como se muestra en la figura A) Primer grupo del siguiente minitérmino en la posesión del cuadro : X B Z B) Segundo grupo de unos en la posición del cuadro y : Z Y C) Tercer grupo de unos en la posición del cuadro y 7: X Z D) La función lógica de salida es la suma de productos anteriores F(X, Y, Z) = X B Z + Z Y + X Z Ejemplo : obtener el circuito de lógica combinacional del siguiente mapa:

9 Plantel Aztahuacan Solución: A) Primer grupo de unos es de cuatro cuadros el,,4,y por lo tanto Y B) Segundo grupo de unos es de dos cuadros 4 y 6: X Z C) La función lógica de salida es la suma de productos anteriores F(X, Y, Z) = Y + X Z Ejemplo 4: obtener el circuito de lógica combinacional del siguiente mapa:

10 Plantel Aztahuacan Ejemplo : verdad: obtener el mapa de Karnaugh, el circuito de lógica combinacional y la función booleana de la siguiente tabla de Entradas Salida Decimal w X Y Z F(W,X,Y,Z)

11 Plantel Aztahuacan Solución mapa de Karnaugh: Grupos adyacentes de unos: Circuito lógico combinacional:

12 Plantel Aztahuacan EJERCICIOS DE SIMPLIFICACIÓN DE FUNCIONES DE CIRCUITOS LÓGICA COMBINATORIA, EMPLEANDO MAPAS DE KARNAUGH. Obtener la función booleana, mapa de karnaugh y el circuito combinacional dependiendo de cada ejerccicio propuesto:.. Entradas Salida Decimal A B C F(A,B,C)

13 Plantel Aztahuacan 4. Entradas Salida Decimal A B C D F(A,B,C,D)

Simplificación de funciones lógicas utilizando Karnaugh

Simplificación de funciones lógicas utilizando Karnaugh Simplificación de funciones lógicas utilizando Página Objetivos de la simplificación Objetivo: minimizar el costo de la función lógica Medición del costo y otras consideraciones Número de compuertas Número

Más detalles

Análisis y síntesis de sistemas digitales combinacionales

Análisis y síntesis de sistemas digitales combinacionales Análisis Algoritmo de análisis, para un circuito lógico combinacional Síntesis. Conceptos Circuitos combinacionales bien construidos Circuitos combinacionales mal construidos Criterios de optimización

Más detalles

Álgebra Booleana y Simplificación Lógica

Álgebra Booleana y Simplificación Lógica Álgebra Booleana y Simplificación Lógica M. en C. Erika Vilches Parte 2 Simplificación utilizando Álgebra Booleana Simplificar la expresión AB + A(B + C) + B(B + C) 1. Aplicar la ley distributiva al segundo

Más detalles

SIMPLIFICACIÓN DE FUNCIONES LÓGICAS

SIMPLIFICACIÓN DE FUNCIONES LÓGICAS LABORATORIO # 4 Realización: SIMPLIFICACIÓN DE FUNCIONES LÓGICAS 1. OBJETIVOS Los objetivos de este laboratorio es que Usted, aprenda a: Simplificar funciones utilizando mapas de Karnaugh Utilizar compuertas

Más detalles

Operación de circuitos lógicos combinatorios.

Operación de circuitos lógicos combinatorios. Operación de circuitos lógicos combinatorios. 1.1 Analiza circuitos lógicos combinatorios, empleando sistemas y códigos numéricos. A. Identificación de las características de la electrónica digital. Orígenes

Más detalles

ESTRUCTURA Y TECNOLOGÍA DE LOS COMPUTADORES I. TEMA 4 Algebra booleana y puertas lógicas

ESTRUCTURA Y TECNOLOGÍA DE LOS COMPUTADORES I. TEMA 4 Algebra booleana y puertas lógicas ESTRUCTURA Y TECNOLOGÍA DE LOS COMPUTADORES I TEMA 4 Algebra booleana y puertas lógicas TEMA 4. Algebra booleana y puertas lógicas 4.1 Definición de álgebra de Boole 4.2 Teoremas del álgebra de Boole 4.3

Más detalles

13/10/2013. Clase 05: Mapas de Karnaugh. Sistemas Digitales y Arquitectura de Computadoras. Ing. Christian Lezama Cuellar.

13/10/2013. Clase 05: Mapas de Karnaugh. Sistemas Digitales y Arquitectura de Computadoras. Ing. Christian Lezama Cuellar. Clase 05: Mapas de Karnaugh Ing. Christian Lezama Cuellar Semestre 2013-I Sistemas Digitales y Arquitectura de Computadoras 1 MAPAS DE KARNAUGH Método de simplificación gráfico basado en los teoremas booleanos.

Más detalles

ELO211: Sistemas Digitales. Tomás Arredondo Vidal 1er Semestre 2011

ELO211: Sistemas Digitales. Tomás Arredondo Vidal 1er Semestre 2011 ELO211: Sistemas Digitales Tomás rredondo Vidal 1er Semestre 2011 Este material está basado en: textos y material de apoyo: Contemporary Logic Design 1 st / 2 nd edition. Gaetano Borriello and Randy Katz.

Más detalles

Tema 2. Funciones Lógicas. Algebra de Conmutación. Minimización de funciones Lógicas. Introducción al VHDL.

Tema 2. Funciones Lógicas. Algebra de Conmutación. Minimización de funciones Lógicas. Introducción al VHDL. Tema 2. Funciones Lógicas Algebra de Conmutación. Minimización de funciones Lógicas. Introducción al VHDL. Minimización de Funciones Lógicas Minimización en dos niveles. Mapas de Karnaugh de 3 y 4 variables.

Más detalles

GUIA 4: ALGEBRA DE BOOLE

GUIA 4: ALGEBRA DE BOOLE GUIA 4: ALGEBRA DE BOOLE En 1854 George Boole introdujo una notación simbólica para el tratamiento de variables cuyo valor podría ser verdadero o falso (variables binarias) Así el álgebra de Boole nos

Más detalles

5.3. Álgebras de Boole y de conmutación. Funciones lógicas

5.3. Álgebras de Boole y de conmutación. Funciones lógicas 5.3. Álgebras de Boole y de conmutación. Funciones lógicas 5.3.1. Algebra de conmutación o algebra booleana 5.3.1.1. Axiomas [ Wakerly 4.1.1 pág. 195] 5.3.1.2. Teoremas de una sola variable [ Wakerly 4.1.2

Más detalles

Álgebra de Boole. Valparaíso, 1 er Semestre Prof. Rodrigo Araya E.

Álgebra de Boole. Valparaíso, 1 er Semestre Prof. Rodrigo Araya E. Prof. Rodrigo Araya E. raraya@inf.utfsm.cl Universidad Técnica Federico Santa María Departamento de Informática Valparaíso, 1 er Semestre 2006 1 2 3 4 Contenido En 1815 George Boole propuso una herramienta

Más detalles

Algebra de Boole. » a + a = 1» a a = 0

Algebra de Boole. » a + a = 1» a a = 0 Algebra de Boole Dos elementos: 0 y 1 Tres operaciones básicas: producto ( ) suma ( + ) y negación ( ` ) Propiedades. Siendo a, b, c números booleanos, se cumple: Conmutativa de la suma: a + b = b + a

Más detalles

Algebra de Boole: Teoremas

Algebra de Boole: Teoremas Teorema 1: A + A = A Teorema 2: A A = A Teorema 3: A + 0 = A Teorema 4: A 1 = A Teorema 5: A 0 = 0 Teorema 6: A + 1 = 1 Teorema 7: (A + B) = A B Teorema 8: (A B) = A + B Teorema 9: A + A B = A Teorema

Más detalles

PROBLEMAS TECNOLOGÍA INDUSTRIAL II. CONTROL DIGITAL

PROBLEMAS TECNOLOGÍA INDUSTRIAL II. CONTROL DIGITAL PROBLEMAS TECNOLOGÍA INDUSTRIAL II. CONTROL DIGITAL 1. 2. 3. 4. 5. 6. a) Convierta el número (5B3) 16 al sistema decimal b) Convierta el número (3EA) 16 al sistema binario c) Convierta el número (235)

Más detalles

TEMA 3 ÁLGEBRA DE CONMUTACIÓN

TEMA 3 ÁLGEBRA DE CONMUTACIÓN TEMA 3 ÁLGEBRA DE CONMUTACIÓN TEMA 3: Álgebra de Boole ÍNDICE. POSTULADOS DEL ÁLGEBRA DE CONMUTACIÓN 2. ÁLGEBRA DE BOOLE BIVALENTE O ÁLGEBRA DE CONMUTACIÓN 2. Teoremas del álgebra de conmutación 3. VARIABLES

Más detalles

Tema 1: Circuitos Combinacionales

Tema 1: Circuitos Combinacionales Tema : Circuitos Combinacionales Contenidos. Introducción. Aritmética. Álgebra de Boole Señales Sistemas. Introducción Entrada Ecitación Sistema Salida Respuesta Un sistema es un conjunto de partes o elementos

Más detalles

ELECTRÓNICA DIGITAL 1. INTRODUCCIÓN. SEÑALES ANALÓGICAS Y DIGITALES.

ELECTRÓNICA DIGITAL 1. INTRODUCCIÓN. SEÑALES ANALÓGICAS Y DIGITALES. 1 ELECTRÓNICA DIGITAL 1. INTRODUCCIÓN. SEÑALES ANALÓGICAS Y DIGITALES. Podemos dividir la electrónica en dos grandes campos: la electrónica analógica y la electrónica digital, según el tipo de señales

Más detalles

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta Centro Asociado Palma de Mallorca Arquitectura de Ordenadores Tutor: Antonio Rivero Cuesta Unidad Didáctica 1 Representación de la Información y Funciones Lógicas Tema 3 Algebra Booleana y Puertas Lógicas

Más detalles

DISEÑO DE CIRCUITOS LOGICOS COMBINATORIOS

DISEÑO DE CIRCUITOS LOGICOS COMBINATORIOS DISEÑO DE CIRCUITOS LOGICOS COMBINATORIOS Circuitos Combinacionales Un circuito combinacional es un circuito digital cuyas salidas, en un instante determinado son función, exclusivamente, de la combinación

Más detalles

LECCIÓN Nº 01 SISTEMAS COMBINACIONALES

LECCIÓN Nº 01 SISTEMAS COMBINACIONALES LECCIÓN Nº 01 SISTEMAS COMBINACIONALES 1. GENERALIDADES PUERTAS LOGICAS Una puerta lógica es un elemento que recibe varias entradas binarias (variables) y, dependiendo del estado de las entradas, su salida

Más detalles

Álgebra de BOOLE. Tema 4

Álgebra de BOOLE. Tema 4 Álgebra de BOOLE Tema 4 1. Definición formal del álgebra de Boole. 2. Leyes y reglas del álgebra de Boole. 3. Operaciones y expresiones booleanas. 4. Formas canónicas de las expresiones booleanas. 5. Expresiones

Más detalles

Circuitos lógicos combinacionales. Tema 6

Circuitos lógicos combinacionales. Tema 6 Circuitos lógicos combinacionales Tema 6 Qué sabrás al final del capítulo? Implementar funciones con dos niveles de puertas lógicas AND/OR OR/AND NAND NOR Analizar sistemas combinacionales, obteniendo

Más detalles

CIRCUITOS LÓGICOS. Lógica FCE 1. ALGEBRA DE BOOLE

CIRCUITOS LÓGICOS. Lógica FCE 1. ALGEBRA DE BOOLE Lógica FE IRUITOS LÓGIOS 1. LGER DE OOLE 1.1 Introducción Tanto la teoría de conjuntos como la lógica de enunciados tienen propiedades similares. Tales propiedades se utilizan para definir una estructura

Más detalles

plicación de los circuitos SUMADOR DIBITAL S C

plicación de los circuitos SUMADOR DIBITAL S C plicación de los circuitos ógicos A B SUMADOR DIBITAL S C Aplicaciones de los circuitos lógicos Algunas aplicaciones elementales como los circuitos aritméticos digitales y los codificadores y decodificadores,

Más detalles

EL LENGUAJE DE LAS COMPUTADORAS

EL LENGUAJE DE LAS COMPUTADORAS EL LENGUAJE DE LAS COMPUTADORAS AUTORÍA ANGEL MANUEL RUBIO ORTEGA TEMÁTICA ELECTRICIDAD, ELECTRÓNICA ETAPA ESO, BACHILLERATO Resumen Actualmente nos encontramos rodeados dispositivos digitales. Por ello

Más detalles

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA INGENIERIA EN COMUNICACIONES Y ELECTRÓNICA ACADEMIA DE COMPUTACIÓN

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA INGENIERIA EN COMUNICACIONES Y ELECTRÓNICA ACADEMIA DE COMPUTACIÓN I. P. N. ESIME Unidad Culhuacan INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN INGENIERIA EN COMUNICACIONES Y ELECTRÓNICA ACADEMIA DE COMPUTACIÓN LABORATORIO

Más detalles

Circuitos combinacionales. Funciones integradas

Circuitos combinacionales. Funciones integradas Circuitos combinacionales. Funciones integradas Salvador Marcos González salvador.marcos@uah.es Funciones integradas Introducción La introducción en el diseño de sistemas digitales de circuitos MSI (media

Más detalles

UNIDAD 4. Algebra de Boole

UNIDAD 4. Algebra de Boole UNIDAD 4 Algebra de Boole Introducción a la unidad La tecnología nos permite construir compuertas digitales a través de transistores y mediante las compuertas diseñamos los circuitos digitales empleados

Más detalles

EJERCICIOS. a. Se les pide: b. Escriba la tabla de verdad c. Exprese la función en minterminos d. Exprese la función en maxterminos

EJERCICIOS. a. Se les pide: b. Escriba la tabla de verdad c. Exprese la función en minterminos d. Exprese la función en maxterminos Instituto Tecnológico de osta Rica Escuela de Ingeniería Electrónica urso: EL-3307 Diseño Lógico I Semestre 2007 Pro. Ing. José lberto Díaz García 24 de Febrero 2007 EJERIIOS I PRTE Simpliicación de unciones

Más detalles

Operaciones Booleanas y Compuertas Básicas

Operaciones Booleanas y Compuertas Básicas Álgebra de Boole El álgebra booleana es la teoría matemática que se aplica en la lógica combinatoria. Las variables booleanas son símbolos utilizados para representar magnitudes lógicas y pueden tener

Más detalles

Algebra de Boole y puertas lógicas

Algebra de Boole y puertas lógicas Algebra de Boole y puertas lógicas Luis Entrena, Celia López, Mario García, Enrique San Millán Universidad Carlos III de Madrid 1 Índice Postulados y propiedades fundamentales del Álgebra de Boole Funciones

Más detalles

Álgebra Booleana. Suma Booleana. El término suma es 1 si al menos uno de sus literales son 1. El término suma es 0 solamente si cada literal es 0.

Álgebra Booleana. Suma Booleana. El término suma es 1 si al menos uno de sus literales son 1. El término suma es 0 solamente si cada literal es 0. Álgebra Booleana El álgebra de Boole son las matemáticas de los sistemas digitales. En el nivel de lógica digital de una computadora, lo que comúnmente se llama hardware y que está formado por los componentes

Más detalles

DEPARTAMENTO ACADEMICO ELECTROCIDAD Y ELETRONICA

DEPARTAMENTO ACADEMICO ELECTROCIDAD Y ELETRONICA UNIVERSIDAD NACIONAL SAN LUIS GONZAGA DE ICA FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA ELECTRÓNICA DEPARTAMENTO ACADEMICO ELECTROCIDAD Y ELETRONICA TEMA: CIRCUITOS

Más detalles

ÁLGEBRA DE BOOLE. 1.- Postulados de HUNTINGTON

ÁLGEBRA DE BOOLE. 1.- Postulados de HUNTINGTON ÁLGEBRA DE BOOLE El Algebra de Boole es importante pues permite representar matemáticamente el funcionamiento de los circuitos digitales. Los circuitos digitales son capaces de permanecer en 2 estados,

Más detalles

NOT. Ejemplo: Circuito C1

NOT. Ejemplo: Circuito C1 Métodos de diseño de circuitos digitales Sistemas combinacionales En un circuito combinacional los valores de las salidas dependen únicamente de los valores que tienen las entradas en el presente. Se construen

Más detalles

Tema 3. 2 Sistemas Combinacionales

Tema 3. 2 Sistemas Combinacionales Tema 3. 2 Sistemas Combinacionales Índice Circuitos combinacionales: concepto, análisis y síntesis. Métodos de simplificación de funciones lógicas. Estructuras combinacionales básicas Multiplexores Demultiplexores

Más detalles

GUIA DE CIRCUITOS LOGICOS COMBINATORIOS

GUIA DE CIRCUITOS LOGICOS COMBINATORIOS GUIA DE CIRCUITOS LOGICOS COMBINATORIOS 1. Defina Sistema Numérico. 2. Escriba la Ecuación General de un Sistema Numérico. 3. Explique Por qué se utilizan distintas numeraciones en la Electrónica Digital?

Más detalles

Electrónica Digital. Fco. Javier Expósito, Manuel Arbelo, Pedro A. Hernández Dpto. de Física Fundamental y Experimental, Electrónica y Sistemas

Electrónica Digital. Fco. Javier Expósito, Manuel Arbelo, Pedro A. Hernández Dpto. de Física Fundamental y Experimental, Electrónica y Sistemas Electrónica Digital Fco. Javier Expósito, Manuel Arbelo, Pedro A. Hernández 2001 Dpto. de Física Fundamental y Experimental, Electrónica y Sistemas UNIVERSIDAD DE LA LAGUNA ii ÍNDICE Lección 0. Introducción...1

Más detalles

ARQUITECTURAS ESPECIALES

ARQUITECTURAS ESPECIALES ARQUITECTURAS ESPECIALES EL - 337 Página Qué es un Multiplexor? EL - 337 Un multiplexor o MUX es un switch digital (interruptor digital) que conecta una de las entradas con su única salida. Desde el punto

Más detalles

PROBLEMAS TECNOLOGÍA INDUSTRIAL II. CONTROL DIGITAL

PROBLEMAS TECNOLOGÍA INDUSTRIAL II. CONTROL DIGITAL PROBLEMAS TECNOLOGÍA INDUSTRIAL II. CONTROL DIGITAL 1. 2. 3. 4. 5. 6. a) Convierta el número (5B3) 16 al sistema decimal b) Convierta el número (3EA) 16 al sistema binario c) Convierta el número (235)

Más detalles

Algebra de Boole y simplificación de funciones lógicas. Capítulo 4

Algebra de Boole y simplificación de funciones lógicas. Capítulo 4 Algebra de Boole y simplificación de funciones lógicas Capítulo 4 Contenido 1. Expresiones y operaciones Booleanas 2. Propiedades y Reglas del Algebra de Boole 3. Teoremas de DeMorgan 4. Análisis booleano

Más detalles

Sistemas informáticos industriales. Algebra de Boole

Sistemas informáticos industriales. Algebra de Boole Sistemas informáticos industriales 2016 lgebra de oole lgebra oole Se denomina así en honor a George oole (1815-1864). El algebra de oole se emplea en sistema de control digitales, desde los sistemas de

Más detalles

Conceptos previos. Revisión de Sistemas Lógicos Formatos Numéricos. Dpto. Ingeniería Electrónica y Comunicaciones

Conceptos previos. Revisión de Sistemas Lógicos Formatos Numéricos. Dpto. Ingeniería Electrónica y Comunicaciones Conceptos previos Revisión de Sistemas Lógicos Formatos Numéricos Revisión de Sistemas Lógicos Álgebra de Boole Base matemática de la Electrónica Digital Consta de dos elementos: 0 lógico y 1 lógico Tecnología

Más detalles

TEMA 4. Diseño de Sistemas Combinacionales SSI.

TEMA 4. Diseño de Sistemas Combinacionales SSI. Fundamentos de los Computadores. Sistemas Combinacionales T4-1 TEMA 4. Diseño de Sistemas Combinacionales SSI. INDICE: SISTEMAS COMBINACIONALES METODOLOGÍA DE DISEÑO MÉTODOS DE SIMPLIFICACIÓN o MAPAS DE

Más detalles

CURSO: ELECTRÓNICA DIGITAL UNIDAD 1: COMPUERTAS LÓGICAS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA

CURSO: ELECTRÓNICA DIGITAL UNIDAD 1: COMPUERTAS LÓGICAS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA CURSO: ELECTRÓNICA DIGITAL UNIDAD 1: COMPUERTAS LÓGICAS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA Las compuertas lógicas son bloques que realizan las operaciones básicas de la aritmética binaria del álgebra

Más detalles

FUNDAMENTOS DE COMPUTADORES EJERCICIOS U1: Álgebra de Boole y Diseño Lógico

FUNDAMENTOS DE COMPUTADORES EJERCICIOS U1: Álgebra de Boole y Diseño Lógico U1_1. Realizar las siguientes operaciones (verificar las respuestas en decimal) a) onvertir a binario natural los números decimales 321, 1462, 205, 1023, 1024, 135, 45 y 967 b) onvertir a decimal los números

Más detalles

BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS

BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS Bloque V. Control y programación de sistemas automáticos pág. 1 Bloque V. Control y programación de sistemas automáticos pág. 2 BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS 1. LA INFORMACIÓN

Más detalles

ELO211: Sistemas Digitales. Tomás Arredondo Vidal 1er Semestre 2009

ELO211: Sistemas Digitales. Tomás Arredondo Vidal 1er Semestre 2009 ELO211: Sistemas Digitales Tomás Arredondo Vidal 1er Semestre 2009 Este material está basado en: textos y material de apoyo: Contemporary Logic Design 1 st / 2 nd edition. Gaetano Borriello and Randy Katz.

Más detalles

Capítulo 5. Álgebra booleana. Continuar

Capítulo 5. Álgebra booleana. Continuar Capítulo 5. Álgebra booleana Continuar Introducción El álgebra booleana fue desarrollada por George Boole a partir del análisis intuición y deducción. En su libro An investigation of the laws of Thought,

Más detalles

FACULTAD DE INGENIERÍA

FACULTAD DE INGENIERÍA FACULTAD DE INGENIERÍA Diseño de Sistemas Digitales M.I. Norma Elva Chávez Rodríguez OBJETIVO El alumno comprenderá la importancia de los sistemas digitales, por lo que al terminar la it introducción ió

Más detalles

Funciones Lógicas Y Métodos De Minimización

Funciones Lógicas Y Métodos De Minimización Circuitos Digitales I Tema III Funciones Lógicas Y Métodos De Minimización Luis Tarazona, UNEXPO Barquisimeto EL-3213 Circuitos Digitales I - 2004 75 Funciones lógicas Circuito combinacional: Un circuito

Más detalles

Suma Resta Multiplica. División Alg. Boole Tbla Verdad Circuitos Karnaugh

Suma Resta Multiplica. División Alg. Boole Tbla Verdad Circuitos Karnaugh Sistemas de Numeración Operaciones Aritméticas Con SIGNO 2007-0808 Sistemas de Numeración 1 Suma SUMA: Cuatro posibles casos: AyBsonpositivos => >A+B> >= 0 A y B son negativos => A+B < 0 A positivo y B

Más detalles

Álgebra de Boole A p u n te N 3

Álgebra de Boole A p u n te N 3 Álgebra de Boole Apunte N 3 G e o r g e B o o l e y C l a u d e S h a n n o n La finalidad de la Electrónica Digital es procesar la información. Para ello utiliza las operaciones definidas por George Boole

Más detalles

Diseño de circuitos combinacionales

Diseño de circuitos combinacionales Diseño de circuitos combinacionales Mario Medina C. mariomedina@udec.cl Diseño de circuitos combinacionales Métodos de minimización vistos permiten obtener funciones de dos niveles Tópicos en diseño de

Más detalles

TEMA PUERTAS LÓGICAS. TÉCNICAS DE DISEÑO Y SIMPLIFICACIÓN DE FUNCIONES LÓGICAS.

TEMA PUERTAS LÓGICAS. TÉCNICAS DE DISEÑO Y SIMPLIFICACIÓN DE FUNCIONES LÓGICAS. PUERTAS LÓGICAS. TÉCNICAS DE DISEÑO Y SIMPLIFICACIÓN DE FUNCIONES LÓGICAS. ÍNDICE.- INTRODUCCIÓN... 2.- ELECTRÓNICA DIGITAL... 3.. SISTEMAS DE NUMERACIÓN... 3.2. SEÑAL DIGITAL BINARIA... 3.3. SISTEMAS

Más detalles

3. Prácticas: Simplificación de funciones

3. Prácticas: Simplificación de funciones 3. Prácticas: Simplificación de funciones I. Ejercicios teóricos 1. Representar en un mapa de Karnaugh la siguiente función 2. Representar en un mapa de Karnaugh la siguiente función 3. Representar en

Más detalles

Álgebra Booleana circuitos lógicos

Álgebra Booleana circuitos lógicos Álgebra Booleana y circuitos lógicos OBJETIVO GENERAL Teniendo en cuenta que los circuitos digitales o lógicos operan de forma binaria, emplear el álgebra booleana como fundamento teórico para el análisis,

Más detalles

1. MÉTODO DE REDUCCIÓN DE MAPAS DE KARNAUGH.

1. MÉTODO DE REDUCCIÓN DE MAPAS DE KARNAUGH. . INTRODUCCIÓN A LOS CIRCUITOS LÓGICOS.2 MÉTODO DE REDUCCIÓN DE MAPAS DE KARNAUGH. MÉTODO DE REDUCCIÓN DE MAPAS DE KARNAUGH. En el capítulo anterior se resolvieron problemas que dependiendo del número

Más detalles

En lo particular, esta materia permitirá al alumno aplicar las herramientas básicas de matemáticas discretas en:

En lo particular, esta materia permitirá al alumno aplicar las herramientas básicas de matemáticas discretas en: Nombre de la asignatura: Matemáticas Discretas Créditos: 3 2-5 Aportación al perfil En lo particular, esta materia permitirá al alumno aplicar las herramientas básicas de matemáticas discretas en: El análisis

Más detalles

Práctica 1 Introducción al Transistor BJT Región de Corte Saturación Aplicaciones

Práctica 1 Introducción al Transistor BJT Región de Corte Saturación Aplicaciones Práctica 1 Introducción al Transistor BJT Región de Corte Saturación Aplicaciones Universidad de San Carlos de Guatemala, Facultad de Ingeniería, Escuela de Mecánica Eléctrica, Laboratorio de Electrónica

Más detalles

Práctica 1 Transistor BJT Región de Corte Saturación Aplicaciones

Práctica 1 Transistor BJT Región de Corte Saturación Aplicaciones Práctica 1 Transistor BJT Región de Corte Saturación Aplicaciones Universidad de San Carlos de Guatemala, Facultad de Ingeniería, Escuela de Mecánica Eléctrica, Laboratorio de Electrónica 1, Segundo Semestre

Más detalles

Diseño combinacional (Parte #2) Mapas de Karnaugh

Diseño combinacional (Parte #2) Mapas de Karnaugh Departamento de Electrónica Electrónica Digital Diseño combinacional (Parte #2) Mapas de Karnaugh Facultad de Ingeniería Bioingeniería Universidad Nacional de Entre Ríos Procedimiento de diseño de un circuito

Más detalles

HOJA DE PROBLEMAS 6: MÓDULOS COMBINACIONALES BÁSICOS

HOJA DE PROBLEMAS 6: MÓDULOS COMBINACIONALES BÁSICOS f Universidad Rey Juan Carlos Grado en Ingeniería Informática Fundamentos de Computadores HOJA DE PROBLEMAS 6: MÓDULOS COMBINACIONALES BÁSICOS. Dado el módulo combinacional de la figura se pide dibujar

Más detalles

Existen distintas formas de representar una función lógica, entre las que podemos destacar las siguientes:

Existen distintas formas de representar una función lógica, entre las que podemos destacar las siguientes: Función booleana Se denomina función lógica o booleana a aquella función matemática cuyas variables son binarias y están unidas mediante los operadores del álgebra de Boole suma lógica (+), producto lógico

Más detalles

CICLO ESCOLAR JULIO DICIEMBRE

CICLO ESCOLAR JULIO DICIEMBRE CATEDRÁTICO Lic. Rafael Gamas Gutiérrez CICLO ESCOLAR JULIO DICIEMBRE 2013-1 MATERIA Arquitectura de hardware HORARIO (Día(s) y Hora) Sábado 13:30 15:30 TEMA OBJETIVO(s) DE ACTIVIDADES DE ENSEÑANZA - 1.

Más detalles

ALGEBRA BOOLEANA (ALGEBRA LOGICA)

ALGEBRA BOOLEANA (ALGEBRA LOGICA) ALGEBRA BOOLEANA Un sistema axiomático es una colección de conocimientos ordenados jerárquica-mente mediante reglas o leyes lógicas aplicadas a un número limitado de conceptos o principios básicos. Un

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD DE JUNIO DE 2005 MATERIA: TECNOLOGÍA INDUSTRIAL II

PRUEBAS DE ACCESO A LA UNIVERSIDAD DE JUNIO DE 2005 MATERIA: TECNOLOGÍA INDUSTRIAL II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE JUNIO DE 2005 MATERIA: TECNOLOGÍA INDUSTRIAL II P1) Dado el sistema neumático mostrado en la figura: a) Identifica los elementos -y su funcionamiento- cuya sección

Más detalles

Unidad 3: Circuitos digitales.

Unidad 3: Circuitos digitales. A-1 Appendix A - Digital Logic Unidad 3: Circuitos digitales. Diapositivas traducidas del libro Principles of Computer Architecture Miles Murdocca and Vincent Heuring Appendix A: Digital Logic A-2 Appendix

Más detalles

Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole

Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole Índice Algebra de Boole. Definición. Operaciones lógicas: OR, AND, XOR y NOT Puertas lógicas Algebra de Boole Postulados Teoremas

Más detalles

Montaje y evaluación de sistemas digitales combinacionales.

Montaje y evaluación de sistemas digitales combinacionales. PRÁCTICA 3 Montaje y evaluación de sistemas digitales combinacionales. 1. Objetivos El objetivo de la siguiente práctica es familiarizar al alumno con el manejo de sistemas combinacionales, además de:

Más detalles

INDICE Control de dispositivos específicos Diseño asistido por computadora Simulación Cálculos científicos

INDICE Control de dispositivos específicos Diseño asistido por computadora Simulación Cálculos científicos INDICE Parte I. La computadora digital: organización, operaciones, periféricos, lenguajes y sistemas operativos 1 Capitulo 1. La computadora digital 1.1. Introducción 3 1.2. Aplicaciones de las computadoras

Más detalles

ASIGNATURA: ARQUITECTURA DE COMPUTADORAS PROFRA. ING. ROCÍO ROJAS MUÑOZ

ASIGNATURA: ARQUITECTURA DE COMPUTADORAS PROFRA. ING. ROCÍO ROJAS MUÑOZ ASIGNATURA: ARQUITECTURA DE COMPUTADORAS PROFRA. ING. ROCÍO ROJAS MUÑOZ Sistemas Numéricos 1.-Sistema Numérico. a) Definición: Llamaremos sistema numéricos base M el conjunto de M símbolos que nos sirven

Más detalles

Electrónica Digital: Sistemas Numéricos y Algebra de Boole

Electrónica Digital: Sistemas Numéricos y Algebra de Boole Electrónica Digital: Sistemas Numéricos y Algebra de Boole Profesor: Ing. Andrés Felipe Suárez Sánchez Grupo de Investigación en Percepción y Sistemas Inteligentes. Email: andres.suarez@correounivalle.edu.co

Más detalles

D.I.I.C.C Arquitectura de Sistemas Computacionales

D.I.I.C.C Arquitectura de Sistemas Computacionales CAPITULO 6.- ÁLGEBRA DE BOOLE INTRODUCCIÓN. En 1854 George Boole introdujo una notación simbólica para el tratamiento de variables cuyo valor podría ser verdadero o falso (variables binarias) Así el álgebra

Más detalles

Tema 9. SISTEMAS COMBINACIONALES PROGRAMABLES SISTEMAS COMBINACIONALES PROGRAMABLES NO UNIVERSALES

Tema 9. SISTEMAS COMBINACIONALES PROGRAMABLES SISTEMAS COMBINACIONALES PROGRAMABLES NO UNIVERSALES Fundamentos de Computadores. Sistemas Combinacionales Programables. T9-1 Tema 9. SISTEMAS COMBINACIONALES PROGRAMABLES INDICE: INTRODUCCIÓN CLASIFICACION DE LOS SCP SISTEMAS COMBINACIONALES PROGRAMABLES

Más detalles

PRIMERA ACTIVIDAD EVALUABLE

PRIMERA ACTIVIDAD EVALUABLE PRIMERA ACTIVIDAD EVALUABLE Asignatura: FUNDAMENTOS de SISTEMAS DIGITALES Título de la Actividad: Diseño, Implementación, Simulación y Validación de un Circuito en Lógica Combinacional Datos personales:

Más detalles

Álgebra de Boole. Retículos.

Álgebra de Boole. Retículos. CAPÍTULO 4. Álgebra de Boole. Retículos. Este capítulo introduce dos estructuras algebraicas muy importantes : la estructura de álgebra de Boole y la de retículo. Estas estructuras constituyen una parte

Más detalles

George Boole. Álgebra Booleana. Álgebra de Conmutación. Circuitos Digitales EC1723

George Boole. Álgebra Booleana. Álgebra de Conmutación. Circuitos Digitales EC1723 George oole Circuitos Digitales EC723 Matemático británico (85-864). utodidacta y sin título universitario, en 849 fue nombrado Profesor de Matemáticas en el Queen's College en Irlanda. En su libro Laws

Más detalles

Unidad Didáctica Electrónica Digital 4º ESO

Unidad Didáctica Electrónica Digital 4º ESO Unidad Didáctica Electrónica Digital 4º ESO ÍNDICE 1. INTRODUCCIÓN 2. SISTEMAS DE NUMERACIÓN 3. PUERTAS LÓGICAS 4. FUNCIONES LÓGICAS 1.- Introducción Señal analógica. Señal digital Una señal analógica

Más detalles

INDICE. XVII 0 Introducción 0.1. Historia de la computación

INDICE. XVII 0 Introducción 0.1. Historia de la computación INDICE Prefacio XVII 0 Introducción 0.1. Historia de la computación 1 0.1.1. Los inicios: computadoras mecánicas 0.1.2. Primeras computadoras electrónicas 0.1.3. Las primeras cuatro generaciones de computadoras

Más detalles

SISTEMAS LÓGICOS. UNIDAD 2: Álgebra De Boole

SISTEMAS LÓGICOS. UNIDAD 2: Álgebra De Boole Definición SISTEMAS LÓGICOS UNIDAD 2: Álgebra De Boole Comenzaremos definiendo el Álgebra de Boole como el conjunto de elementos B que puede asumir dos valores posibles (0 y 1) y que están relacionados

Más detalles

EIE SISTEMAS DIGITALES Tema 5: Análisis de la lógica combinacional. Nombre del curso: Sistemas Digitales Nombre del docente: Héctor Vargas

EIE SISTEMAS DIGITALES Tema 5: Análisis de la lógica combinacional. Nombre del curso: Sistemas Digitales Nombre del docente: Héctor Vargas EIE 446 - SISTEMS DIGITLES Tema 5: nálisis de la lógica combinacional Nombre del curso: Sistemas Digitales Nombre del docente: Héctor Vargas OJETIVOS DE L UNIDD nalizar los circuitos lógicos combinacionales

Más detalles

Funciones: Aspectos básicos

Funciones: Aspectos básicos Funciones: Aspectos básicos Nombre: Curso:.. Producto cartesiano En teoría de conjuntos, el producto cartesiano de dos conjuntos es una operación que resulta en otro conjunto cuyos elementos son todos

Más detalles

El número decimal 57, en formato binario es igual a:

El número decimal 57, en formato binario es igual a: CURSO: ELECTRÓNICA DIGITAL UNIDAD 1: COMPUERTAS LÓGICAS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA 1. NÚMEROS BINARIOS EJEMPLO En el cuadro anterior, está la representación de los números binarios en formato

Más detalles

2-Funciones y representaciones booleanas

2-Funciones y representaciones booleanas 2-Funciones y representaciones booleanas 2.1 Lógica y álgebra de Boole 2.2 Funciones booleanas 2.3 Representaciones de funciones booleanas. 2.4 Funciones de varias variables. 2: Funciones booleanas 1 Lógica

Más detalles

BOLETIN 3: Análisis y diseño de circuitos combinacionales

BOLETIN 3: Análisis y diseño de circuitos combinacionales BOLETIN 3: Análisis diseño de circuitos combinacionales Problemas básicos P. Analice los siguientes circuitos combinacionales. Para ello, se deberá encontrar la unción algebraica que representan, su tabla

Más detalles

Tema 5: Álgebra de Boole Funciones LógicasL

Tema 5: Álgebra de Boole Funciones LógicasL Tema 5: Álgebra de Boole Funciones LógicasL Ingeniería Informática Universidad Autónoma de Madrid 1 Álgebra de Boole.. Funciones LógicasL O B J E T I V O S Conocer el Álgebra de Boole, sus teoremas y las

Más detalles

MATEMÁTICAS DISCRETAS. UNIDAD 2 Algebras Booleanas y Circuitos Combinatorios

MATEMÁTICAS DISCRETAS. UNIDAD 2 Algebras Booleanas y Circuitos Combinatorios MATEMÁTICAS DISCRETAS UNIDAD 2 Algebras Booleanas y Circuitos Combinatorios 2.1 CIRCUITOS COMBINATORIOS Inicie dando lectura a la subunidad 11.1, deténgase en el ejemplo 11.1.4, compare las tablas de los

Más detalles

Control y programación de sistemas automáticos: Algebra de Boole

Control y programación de sistemas automáticos: Algebra de Boole Control y programación de sistemas automáticos: Algebra de Boole Se denomina así en honor a George Boole, matemático inglés 1815-1864, que fue el primero en definirla como parte de un sistema lógico, a

Más detalles

El álgebra booleana (Algebra de los circuitos lógicos tiene muchas leyes o teoremas muy útiles tales como :

El álgebra booleana (Algebra de los circuitos lógicos tiene muchas leyes o teoremas muy útiles tales como : SIMPLIFICACION DE CIRCUITOS LOGICOS : Una vez que se obtiene la expresión booleana para un circuito lógico, podemos reducirla a una forma más simple que contenga menos términos, la nueva expresión puede

Más detalles

PROBLEMAS DE ELECTRÓNICA DIGITAL. Simplificación por Karnaugh: CIRCUITO LÓGICO:

PROBLEMAS DE ELECTRÓNICA DIGITAL. Simplificación por Karnaugh: CIRCUITO LÓGICO: PROBLEMAS DE ELECTRÓNICA DIGITAL.- Un contactor R para el accionamiento de un motor eléctrico, está gobernado por la acción combinada de tres finales de carrera A, B y C. Para que el motor pueda funcionar,

Más detalles

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R.

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R. FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R. Programa Analítico de la Asignatura: SISTEMAS LÓGICOS Código: E-3.23.2 Plan de Estudio: 1996 Carrera: INGENIERÍA ELECTRICISTA Departamento:

Más detalles

Tema 4. Análisis y diseño de circuitos combinacionales SSI

Tema 4. Análisis y diseño de circuitos combinacionales SSI Tema 4. Análisis y diseño de circuitos combinacionales SSI Puertas Lógicas. Criterio de polaridad. Análisis lógico de circuitos digitales. Análisis circuital de circuitos digitales. Peligros lógicos. Implementaciones

Más detalles

Tema 3: Sistemas Combinacionales

Tema 3: Sistemas Combinacionales Ejercicios T3: Sistemas Combinacionales Fundamentos de Tecnología de Computadores Tema 3: Sistemas Combinacionales 1. Analizar el siguiente circuito indicando la expresión algebraica que implementa, la

Más detalles

INSTRUCTOR: ANTONIO JOSÉ AVILÉS CLARAMOUNT

INSTRUCTOR: ANTONIO JOSÉ AVILÉS CLARAMOUNT DEPTO. DE ELECTRÓNICA E INFORMÁTICA MATERIA: ELECTRONICA DIGITAL PROFESOR: ING. DAVID CÓRDOVA CICLO 02/20 11 PRÁCTICA No. 2 ÁLGEBRA DE BOOLE. POSTULADOS Y TEOREMAS OBJETIVOS: Conocer y aprender a utilizar

Más detalles

Existen diferentes compuertas lógicas y aquí mencionaremos las básicas pero a la vez quizá las más usadas:

Existen diferentes compuertas lógicas y aquí mencionaremos las básicas pero a la vez quizá las más usadas: Compuertas lógicas Las compuertas lógicas son dispositivos electrónicos utilizados para realizar lógica de conmutación. Son el equivalente a interruptores eléctricos o electromagnéticos. para utilizar

Más detalles

Programa de Estudios de Asignatura

Programa de Estudios de Asignatura 1. Información General: A. Código de Asignatura: IRB-103 C. Carrera: REDES D. Unidad de Organización Curricular: Básica F. Modalidad: Presencial H. Créditos: 2,5 J. Horas: 80 L. clase: 80 Teóricas: Prácticas:

Más detalles

CIRCUITOS DIGITALES -

CIRCUITOS DIGITALES - CIRCUITOS DIGITALES - INTRODUCCIÓN CIRCUITOS DIGITALES CIRCUITOS DIGITALES SON LOS QUE COMUNICAN Y PROCESAN INFORMACIÓN DIGITAL SEÑAL DIGITAL: SOLO PUEDE TOMAR UN NÚMERO FINITO DE VALORES. EN BINARIO:

Más detalles

28 = 16 + 8 + 4 + 0 + 0 = 11100 1

28 = 16 + 8 + 4 + 0 + 0 = 11100 1 ELECTRÓNICA DIGITAL 4º ESO Tecnología Introducción Imaginemos que deseamos instalar un sistema electrónico para la apertura de una caja fuerte. Para ello debemos pensar en el número de sensores que nos

Más detalles