Control Moderno: El espacio de estados

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Control Moderno: El espacio de estados"

Transcripción

1 Lección 3 Control Moderno: El espacio de estados 1 Estados: Definición y ejemplo Estados: variables internas que describen la evolución del sistema. El conocimiento de estas variables en t = t 0 junto al conocimiento de la entrada para t t 0 determina el comportamiento del sistema para t t 0 Ejemplo ŷ(s) û(s) = ĝ(s) = Transformada inversa: 1 + s 1 + 2s + 5s 2 (1 + 2s + 5s2 )ŷ(s) = (1 + s)û(s) 5ÿ(t) + 2ẏ(t) + y(t) = u(t) + u(t) (1) Definiendo: x 1 (t) = y(t), x 2 (t) = ẏ(t) 1 5u(t), (1) es equivalente a Ecuación de estados Ecuación de salidas ẋ1 (t) = x 2 (t) u(t) ẋ 2 (t) = 1 5 x 1(t) 2 5 x 2(t) u(t) y(t) = x 1 (t) = [ 1 0 ] Solución [ ] única fijada una condición inicial x 1 (t 0 ) = x 10, x 2 (t 0 ) = x 20. x1 (t) =Vector de estados del sistema. x 2 (t) [ x1 (t) x 2 (t) ] 2

2 Estados: Formalismo Los sistemas de control: Evolucionan en el tiempo: T =conjunto tiempo, T R un intervalo (sistemas continuos) o T = Z o N (sistemas discretos) Variables externas: entradas (controles, perturbaciones, ruido,... ) y salidas (medidas o variables que deben controlarse). Debe especificarse: U= conjunto de valores de las entradas, U u( ) : T U}= conjunto de funciones de entrada o funciones de control. Y = conjunto de valores de las salidas. Variables Internas: Estados: variables que describen la evolución del sistema. Tres condiciones: (I) El estado actual y la función de control determinan los futuros estados del sistema: Dado x(t 0 ) = x 0 y una función de control u( ) U, x(t) determinado de forma única para todo t en un cierto intervalo T t0,x 0,u( ) de T (periodo de existencia de la trayectoria x( ) que comienza en x 0 en el instante t 0 bajo el control u( )). 3 Estados: Formalismo (II) Dado x(t 0 ) = x 0 el estado x(t) para t t 0 sólo depende de los valores u( ) en [t 0, t). (III) Los valores de las salidas en el instante t están determinados completamente por los valores en t de las entradas, u(t), y de los estados, x(t). Transición de estados: Aplicación que define la evolución de los estados (solución de las ecuaciones, generalmente). Es consecuencia de (I) y (II) x(t) = ψ(t; t 0, x 0, u( )), t T t0,x 0,u( ). ψ= función de transición de estados. Sólo depende de la restricción de u( ) a [t 0, t). X=conjunto de valores de los estados. Función de salidas: Por (III) existe y(t) = η(t, x(t), u(t)) que sólo depende de x(t) y u(t) para cada t. Ejemplo ẋ1 (t) = x 2 (t) u(t) ẋ 2 (t) = 1 5 x 1(t) 2 5 x 2(t) u(t) y(t) = [ 1 0 ] [ ] x1 (t) x 2 (t) 4

3 Sistemas diferenciales (i) T R es un intervalo abierto. (ii) U R m, Y R p y X R n abiertos. (iii) x(t) = ψ(t; t 0, x 0, u( )) es la única solución del P.C.I. 1 ẋ(t) = f(t, x(t), u(t)), t t0, t T x(t 0 ) = x 0 (iv) η : T X U Y es continua. 1 Una condición suficiente para que tal solución exista y sea única es que f sea continua y continuamente diferenciable respecto a x (i.e., f x i y son continuas). 5 Sistemas recursivos o en diferencias finitas (i) T = N o Z. (ii) U, X, Y conjuntos no vacíos (iii) x(t) = ψ(t; t 0, x 0, u( )) es la única solución del sistema en diferencias finitas x(t + 1) = f(t, x(t), u(t)) con la condición inicial x(t 0 ) = x 0 con t 0 T, x 0 X y t t 0. 6

4 Sistemas lineales Un sistema dinámico es lineal si (i) U, U, X, Y son espacios vectoriales sobre K (un cuerpo). (ii) Las aplicaciones ψ(t; t 0,, ) : X U X (x(t 0 ), u( )) ψ(t; t 0, x(t 0 ), u( )) η(t,, ) : X U Y (x, u(t)) η(t, x, u(t)) son lineales para todo t, t 0 T, t t 0 En particular ψ(t; t 0, 0 X, 0 U ) = 0 X, t, t 0 T, t t 0 Sistemas Diferenciales ẋ(t) = A(t)x(t) + B(t)u(t) y(t) = C(t)x(t) + D(t)u(t) Sistemas en Diferencias x(t + 1) = A(t)x(t) + B(t)u(t) y(t) = C(t)x(t) + D(t)u(t) 7 Estados de equilibrio x X es un estado de equilibrio o estacionario de un sistema bajo el control u( ) si ψ(t; t 0, x, u( )) = x parar todo t T con t t 0. 0 X es un estado de equilibrio para los sistemas dinámicos lineales bajo el control u( ) = 0 U porque ψ(t; t 0, 0 X, 0 U ) = 0 X, t, t 0 T, t t 0. Si ẋ(t) = f(t, x(t), u(t)), t T es la ecuación del sistema, para cada ũ( ) U, los estados de equilibrio bajo el control ũ( ) son las soluciones constantes de ẋ(t) = f(t, x, ũ(t)) (i.e., f(t, x e, ũ(t)) = 0) Es decir, sus soluciones de equilibrio: Si en un instante inicial t 0 T el estado es x(t 0 ) = x e y el sistema está bajo el control de ũ( ) entonces el estado de Σ es x(t) = x e para todo t t 0, t T. 8

5 Sistema carro-péndulo invertido M(ϕ) r = (J + ml 2 )(βu cṙ ml ϕ 2 sen ϕ) ml cos ϕ( mgl sen ϕ + c P ϕ) M(ϕ) ϕ = ml cos ϕ(βu cṙ ml ϕ 2 sen ϕ) (M + m)(c p ϕ mgl sen ϕ) M(ϕ) = (M + m)j + ml 2 M + m 2 l 2 sen 2 ϕ. Estados: x 1 = r, x 2 = ṙ, x 3 = ϕ, x 4 = ϕ (alternativamente x 1 = r, x 2 = ϕ, x 3 = ṙ, x 4 = ϕ) Ecuaciones de estado: x ẋ 1 [ 2 ] ẋ2 ẋ3 = 1 (J + ml 2 )( cx M(x 3 ) 2 (ml sen x 3 )x 2 4 ) ml cos x 3( mgl sen x 3 + c P x 4 ) + β J+ml2 M(x 3 ) u x [ 4 ] ẋ4 1 ml cos x M(x 3 ) 3 ( cx 2 (ml sen x 3 )x 2 4 ) (M + m)(c P x 4 mgl sen x 3 ) + β ml cos x 3 M(x 3 ) u Ecuaciones de salida: [ ] [ ] y = x y Estados de equilibrio o estacionarios para entrada nula (u(t) = 0): x =cte; i.e. ẋ = 0: x 2 = x 4 = 0, m 2 l 2 cos x 3 sen x 3 = 0, (M + m)mgl sen x 3 = 0 Estados estacionarios: x 1 = cte arbitraria y x 3 = 0 o π. Es decir, cualquier posición del carro con el péndulo en posición vertical. 9 Linealizaciones ẋ(t) = f(t, x(t), u(t)), t T y(t) = η(t, x(t), u(t)) Sea x( ) una trayectoria correspondiente a un control ũ( ) y una C. I. (t 0, x 0 ) T X. Sean f y η continuamente diferenciables respecto a (x, u). Sean A(t) = C(t) = El sistema lineal ( fi x j (t, x(t), ũ(t)) ) n n ( ) ηi (t, x(t), ũ(t)) x j p n B(t) = D(t) = ẋ(t) = A(t)x(t) + B(t)u(t) y(t) = C(t)x(t) + D(t)u(t) (2) ( ) fi (t, x(t), ũ(t)) u j n m ( ) ηi (t, x(t), ũ(t)) u j p m es la linealización de (2) en torno a la trayectoria x( ) respecto a ũ( ) 10

6 Sistema carro-péndulo Linealización entorno al estado estacionario x = (r, 0, 0, 0) con control u(t) = 0 ( = M(0) = (M + m)j + ml 2 M): A = f 0 c(j+ml2 ) m 2 l 2 g x = M 0 (x= x,u=0) mlc (M+m)mgl 0 B = f β J+ml2 u = (x= x,u=0) 0, C = η x = (x= x,u=0) β ml Sistema de control linealizado: ẋ(t) = Ax(t) + Bu(t) y(t) = Cx(t) mlc P (M+m)c P [ ] Satélites de comunicaciones Origen: centro de la Tierra M T = Masa de la tierra M S = Masa del satélite G= cte de gravitación universal (6, N m2 Kg 2 ) Ω= velocidad angular de la Tierra (7, rad/seg) Posición del satelite: sobre el ecuador Coordenadas polares: (r, θ, ψ) (r, θ) Ecuaciones del movimiento (F r (t), F θ (t) fuerzas ejercidas por propulsores en el satélite en las direcciones radial y tangencial): M S r(t) = M S r(t) θ(t) 2 GM T M S r(t) + F 2 r (t) M S r(t) θ(t) = 2M S ṙ(t) θ(t) + F θ (t) Renombrando F r = F r /M S, F θ = F θ /M S r(t) = r(t) θ(t) 2 GM T r(t) + F 2 r (t) r(t) θ(t) = 2ṙ(t) θ(t) + F θ (t) 12

7 Órbita geoestacionaria Es la órbita geosíncrona (mismo periodo que la Tierra), circular y con inclinación cero (ψ = 0) Velocidades angulares iguales: θ(t) = θ 0 + Ωt Movimiento en dirección radial cero: r(t) = R 0 0 = M S R 0 Ω 2 GM ( ) 1 T M S GMt 3 R 0 = km Conclusión: r(t) = R 2 0 ( GMt Ω 2 con entrada nula. Estado estacionario? Ecuaciones de estado Cambio de Variables Ω 2 ) 1 3, θ(t) = θ0 + Ωt solución del sistema x 1 (t) = r(t) R 0 x 2 (t) = ṙ(t) x 3 (t) = θ(t) (θ 0 + Ωt) x 4 (t) = θ(t) Ω 13 Sistema: ẋ 1 (t) ẋ 2 (t) ẋ 3 (t) = ẋ 4 (t) x 2 (t) (x 1 (t) + R 0 )(x 4 (t) + Ω) 2 GM T (x 1 (t) + R 0 ) 2 + F r(t) x 4 (t) 2x 2(t)(x 4 (t) + Ω) + F θ(t) x 1 (t) + R 0 x 1 (t) + R 0 Estado estacionario con control nulo: x(t) = (0, 0, 0, 0) (órbita geoestacionaria) 14

8 Linealización de las ecuaciones del movimiento del satélite Linealización en torno al estado estacionario con control nulo (x(t) = 0, u(t) = 0): f x = (x 4 + Ω) 2 + 2GM T (x 1 +R 0 ) 0 0 2(x R 0 )(x 4 + Ω) x 2 (x 4 +Ω) (x 1 +R 0 ) 2 F θ (x 1 +R 0 ) 2(x 4+Ω) 2 x 1 +R 0 0 2x 2 x 1 +R f u = x 1 +R 0 ( Sistema linealizado en torno a x = 0, u = 0 R0 3 = GM T ): Ω ẋ(t) = 3Ω R 0 Ω x(t) u(t) 0 2Ω R R 0 y(t) = ( ) x(t) 15 Estudio global vs local Se quiere aplicar una fuerza en la base del péndulo invertido amortiguado para devolverlo a la posición vertical (Recordemos la expresión para el par de fuerzas: x(t)f 2 (t) y(t)f 1 (t) = N(t) = mr 2 ω(t)): θ(t) = θ+sen θ+u cos θ (g = l, gm = 1, c = 1) Ecuaciones de estado : ẋ 1 (t) = x 2 (t) ẋ 2 (t) = x 2 (t) + sen x 1 (t) + u(t) cos x 1 (t) Retrato de fase del sistema no lineal Ecuaciones de estado sistema linealizado en torno a (x, u) = (0, 0) ẋ 1 (t) = x 2 (t) ẋ 2 (t) = x 1 (t) x 2 (t) + u(t) Retrato de fase del sistema lineal 16

Práctico 2: Mecánica lagrangeana

Práctico 2: Mecánica lagrangeana Mecánica Anaĺıtica Curso 2016 Práctico 2: Mecánica lagrangeana 1. La polea y la cuerda de la figura son ideales y los bloques deslizan sin roce. Obtenga las aceleraciones de los bloques a partir de las

Más detalles

Métodos, Algoritmos y Herramientas

Métodos, Algoritmos y Herramientas Modelado y Simulación de Sistemas Dinámicos: Métodos, Algoritmos y Herramientas Ernesto Kofman Laboratorio de Sistemas Dinámicos y Procesamiento de la Información FCEIA - Universidad Nacional de Rosario.

Más detalles

Transformada de Laplace: Aplicación a vibraciones mecánicas

Transformada de Laplace: Aplicación a vibraciones mecánicas Transformada de Laplace: Aplicación a vibraciones mecánicas Santiago Gómez Jorge Estudiante de Ingeniería Electrónica Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía Blanca, Argentina thegrimreaper7@gmail.com

Más detalles

Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante

Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante Resumen de Física Cinemática, Antonio Hernandez D.F.I.S.T.S. La Mecánica se ocupa de las relaciones entre los movimientos de los sistemas materiales y las causas que los producen. Se divide en tres partes:

Más detalles

1. El movimiento circular uniforme (MCU)

1. El movimiento circular uniforme (MCU) FUNDACIÓN INSTITUTO A DISTANCIA EDUARDO CABALLERO CALDERON Espacio Académico: Física Docente: Mónica Bibiana Velasco Borda mbvelascob@uqvirtual.edu.co CICLO: VI INICADORES DE LOGRO MOVIMIENTO CIRCULAR

Más detalles

Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : v = x 2 yē x + x 2 tē y (3.1)

Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : v = x 2 yē x + x 2 tē y (3.1) Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : Se pide: v = x yē x + x tē y (3.1) a. A qué tipo de formalismo corresponde este análisis del escurrimiento, lagrangeano o eulereano?

Más detalles

Análisis en el plano de fases

Análisis en el plano de fases Análisis en el plano de fases Para un sistema lineal de segundo orden, ẍ + 2ξω 0 ẋ + ω0 = ω0u(t) 2 (1) Definiendo como variables de estado, 1 = Salida del sistema (posición) Velocidad = d 1 dt (velocidad)

Más detalles

Describe el movimiento sin atender a las causas que lo producen. Utilizaremos partículas puntuales

Describe el movimiento sin atender a las causas que lo producen. Utilizaremos partículas puntuales 3. Cinemática Cinemática Describe el movimiento sin atender a las causas que lo producen Utilizaremos partículas puntuales Una partícula puntual es un objeto con masa, pero con dimensiones infinitesimales

Más detalles

Apéndice sobre ecuaciones diferenciales lineales

Apéndice sobre ecuaciones diferenciales lineales Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.

Más detalles

ECUACIONES DIMENSIONALES

ECUACIONES DIMENSIONALES ECUACIONES DIMENSIONALES 1. En la expresión x = k v n / a, x = distancia, v = velocidad, a = aceleración y k es una constante adimensional. Cuánto vale n para que la expresión sea dimensionalmente homogénea?

Más detalles

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro LISTA DE SÍMBOLOS Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro 2.1.1 Rigidez Flexiva que Difiere en dos Ejes x- Desplazamiento

Más detalles

FUERZAS CENTRALES. Física 2º Bachillerato

FUERZAS CENTRALES. Física 2º Bachillerato FUERZAS CENTRALES 1. Fuerza central. Momento de una fuerza respecto de un punto. Momento de un fuerza central 3. Momento angular de una partícula 4. Relación entre momento angular y el momento de torsión

Más detalles

Oscilaciones. José Manuel Alcaraz Pelegrina. Curso

Oscilaciones. José Manuel Alcaraz Pelegrina. Curso José Manuel Alcaraz Pelegrina Curso 007-008 1. Introducción En el presente capítulo vamos a estudiar el movimiento en torno a una posición de equilibrio estable, concretamente estudiaremos las oscilaciones

Más detalles

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones.

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Movimiento de rotación. Cuerpos rígidos un cuerpo con una forma definida, que no cambia en forma que las partículas que lo componen permanecen

Más detalles

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE OBJETIVOS DEL APRENDIZAJE: ESTUDIAR LAS OSCILACIONES DEL PÉNDULO Y DETERMINAR LAS SIMPLIFICACIONES

Más detalles

4.3 Problemas de aplicación 349

4.3 Problemas de aplicación 349 4. Problemas de aplicación 49 4. Problemas de aplicación Ejemplo 4.. Circuito Eléctrico. En la figura 4.., se muestra un circuito Eléctrico de mallas en el cual se manejan corrientes, una en cada malla.

Más detalles

Repaso del 1º trimestre: ondas y gravitación 11/01/08. Nombre: Elige en cada bloque una de las dos opciones.

Repaso del 1º trimestre: ondas y gravitación 11/01/08. Nombre: Elige en cada bloque una de las dos opciones. Repaso del 1º trimestre: ondas y gravitación 11/01/08 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Elige en cada bloque una de las dos opciones. Bloque 1. GRAVITACIÓN. Elige un problema: puntuación 3 puntos

Más detalles

1. Modelos Matemáticos y Experimentales 1

1. Modelos Matemáticos y Experimentales 1 . Modelos Matemáticos y Experimentales. Modelos Matemáticos y Experimentales.. Definición.. Tipos de Procesos.3. Tipos de Modelos 3.4. Transformada de Laplace 4.5. Función de Transferencia 7.6. Función

Más detalles

Vibraciones Linealización de ecuaciones diferenciales

Vibraciones Linealización de ecuaciones diferenciales Vibraciones Linealización de ecuaciones diferenciales MScAA Marcos Knoblauch Departamento de Aeronáutica Universidad Nacional de La Plata Introducción Este documento contiene las ecuaciones y conceptos

Más detalles

Estudia las formas más generales del movimiento de la materia y sus transformaciones mutuas.

Estudia las formas más generales del movimiento de la materia y sus transformaciones mutuas. Capítulo 2 Mecánica de la partícula La Física es una ciencia exacta puesto que sus leyes están expresadas en forma matemática. Se puede enumerar algunas características de la Física como ciencia: Estudia

Más detalles

Controlabilidad y observabilidad

Controlabilidad y observabilidad Controlabilidad p. 1/16 Controlabilidad y observabilidad En las próximas clases discutiremos dos conceptos fundamentales de la teoría de sistemas: controlabilidad y observabilidad. Esos dos conceptos describen

Más detalles

1. Cinemática: Elementos del movimiento

1. Cinemática: Elementos del movimiento 1. Cinemática: Elementos del movimiento 1. Una partícula con velocidad cero, puede tener aceleración distinta de cero? Y si su aceleración es cero, puede cambiar el módulo de la velocidad? 2. La ecuación

Más detalles

Complementos de Análisis. Año 2016

Complementos de Análisis. Año 2016 Complementos de Análisis. Año 2016 Práctica 8. Ecuaciones diferenciales ordinarias. 1 Modelando con ecuaciones diferenciales Modelar con ecuaciones diferenciales las siguientes situaciones. Intentar resolver

Más detalles

Tema 1 Movimiento Armónico Simple

Tema 1 Movimiento Armónico Simple Tema Movimiento Armónico Simple. Conceptos de movimiento oscilatorio: el movimiento armónico simple (MAS).. Ecuación general del MAS..3 Cinemática del MAS..4 Dinámica del MAS..5 Energía del MAS..6 Aplicación

Más detalles

Momento angular o cinético

Momento angular o cinético Momento angular o cinético Definición de momento angular o cinético Consideremos una partícula de masa m, con un vector de posición r y que se mueve con una cantidad de movimiento p = mv z L p O r y x

Más detalles

Espacio de estado.- el espacio n dimensional cuyos ejes de coordenadas consisten en el eje X1, X2... Xn y se denomina espacio de estado

Espacio de estado.- el espacio n dimensional cuyos ejes de coordenadas consisten en el eje X1, X2... Xn y se denomina espacio de estado ANÁLII DE ITEMA DE CONTROL CON EL EPACIO DE ETADO La teoria de control clásica se basa en técnicas gráficas de tanteo y error mientras el control moderno es mas preciso Además se puede usar en sistemas

Más detalles

RECOMENDACIÓN UIT-R S.1256

RECOMENDACIÓN UIT-R S.1256 Rec. UIT-R S.1256 1 RECOMENDACIÓN UIT-R S.1256 METODOLOGÍA PARA DETERMINAR LA DENSIDAD DE FLUJO DE POTENCIA TOTAL MÁXIMA EN LA ÓRBITA DE LOS SATÉLITES GEOESTACIONARIOS EN LA BANDA 6 700-7 075 MHz PRODUCIDA

Más detalles

5 Estabilidad de soluciones de equilibrio

5 Estabilidad de soluciones de equilibrio Prácticas de Ecuaciones Diferenciales G. Aguilar, N. Boal, C. Clavero, F. Gaspar Estabilidad de soluciones de equilibrio Objetivos: Clasificar y analizar los puntos de equilibrio que aparecen en los sistemas

Más detalles

Tema 5: Elementos de geometría diferencial

Tema 5: Elementos de geometría diferencial Tema 5: Elementos de geometría diferencial José D. Edelstein Universidade de Santiago de Compostela FÍSICA MATEMÁTICA Santiago de Compostela, abril de 2011 Coordenadas locales y atlas. Funciones y curvas.

Más detalles

Física. Choque de un meteorito sobre la tierra

Física. Choque de un meteorito sobre la tierra Física Choque de un meteorito sobre la tierra Hace 65 millones de años la Tierra cambió de forma repentina, muchas especies desaparecieron, plantas, animales terrestres y marinos y sobre todo, los grandes

Más detalles

CINEMÁTICA. 1 - Un cuerpo se mueve a lo largo de una línea recta de acuerdo a la ecuación. bt, con k, b constantes 0.

CINEMÁTICA. 1 - Un cuerpo se mueve a lo largo de una línea recta de acuerdo a la ecuación. bt, con k, b constantes 0. CINEMÁTIC 1 - Un cuerpo se mueve a lo laro de una línea recta de acuerdo a la ecuación x + 3 = kt bt, con k, b constantes. a) Calcule la velocidad y la aceleración del cuerpo en función del tiempo, y rafíquelas.

Más detalles

CONTENIDO SÓLIDO RÍGIDO I. CINEMÁTICA. Definición de sólido rígido. Cálculo de la posición del centro de masas. Movimiento de rotación y de traslación

CONTENIDO SÓLIDO RÍGIDO I. CINEMÁTICA. Definición de sólido rígido. Cálculo de la posición del centro de masas. Movimiento de rotación y de traslación CONTENIDO Definición de sólido rígido Cálculo de la posición del centro de masas Movimiento de rotación y de traslación Movimiento del sólido rígido en el plano Momento de inercia Teorema de Steiner Tema

Más detalles

Guía de Materia Movimiento circular

Guía de Materia Movimiento circular Física Guía de Materia Movimiento circular Módulo Electivo III Medio www.puntajenacional.cl Nicolás Melgarejo, Verónica Saldaña Licenciados en Ciencias Exactas, U. de Chile Estudiantes de Licenciatura

Más detalles

LEYES DE KEPLER (Johannes Kepler )

LEYES DE KEPLER (Johannes Kepler ) LEYES DE KEPLER (Johannes Kepler 1571-1630) ü Matemático y astrónomo alemán ü Fue colaborador de Tycho Brahe, de quien obtuvo las mediciones que le permitieron plantear sus leyes del movimiento planetario

Más detalles

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna Física III (sección 3) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid M. Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil, Ingeniería

Más detalles

Procesos estocásticos. Definición

Procesos estocásticos. Definición Procesos estocásticos Definición http://humberto-r-alvarez-a.webs.com Definición de proceso estocástico Estudio del comportamiento de una variable aleatoria a lo largo del tiempo El ajuste de cualquier

Más detalles

2.5 Linealización de sistemas dinámicos no lineales

2.5 Linealización de sistemas dinámicos no lineales 25 Linealización de sistemas dinámicos no lineales En las secciones anteriores hemos visto como representar los sistemas lineales En esta sección se estudia una manera de obtener una aproximación lineal

Más detalles

Cinemática: parte de la Física que estudia el movimiento de los cuerpos.

Cinemática: parte de la Física que estudia el movimiento de los cuerpos. CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

CINEMÁTICA: se encarga del estudio de los movimientos de los cuerpos sin atender a las causas que lo originan.

CINEMÁTICA: se encarga del estudio de los movimientos de los cuerpos sin atender a las causas que lo originan. 1. CINEMÁTICA. CONCEPTO. CINEMÁTICA: se encarga del estudio de los movimientos de los cuerpos sin atender a las causas que lo originan. 2. MOVIMIENTO. 2.1. CONCEPTO Es el cambio de lugar o de posición

Más detalles

A propósito de la Linealización

A propósito de la Linealización A propósito de la Linealización William Colmenares Universidad Simón Bolívar. Centro de Automática e Informática Resumen Unas notas muy breves sobre la linealización de sistemas no lineales 1. Una introducción

Más detalles

Tareas Mecánica Clásica I

Tareas Mecánica Clásica I Tareas Mecánica Clásica I S. Wallentowitz 27 de julio de 2012 Tareas de la ayudantía del curso FIZ0121 Mecánica Clásica I. Se complementan con las tareas del ayudante. 1. Un turista escala la gran pirámide

Más detalles

Notas del curso de Ecuaciones Diferenciales

Notas del curso de Ecuaciones Diferenciales Notas del curso de Ecuaciones Diferenciales 1 Introducción 2 2 Existencia y unicidad de las soluciones 4 3 Dependencia de las condiciones iniciales 8 4 Ecuaciones diferenciales autónomas 9 4.1 Orbitas

Más detalles

Física: Torque y Momento de Torsión

Física: Torque y Momento de Torsión Física: Torque y Momento de Torsión Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Relación entre cantidades angulares y traslacionales. En un cuerpo que rota alrededor de un origen O, el punto

Más detalles

Osciladores lineales

Osciladores lineales GUIA 6 Osciladores lineales El propósito de este capítulo es estudiar algunas características de las soluciones de la ecuación diferencial lineal m d2 x dt + c dx 2 dt + k x = f(t), en el caso en que m,c

Más detalles

Slide 1 / 71. Movimiento Armónico Simple

Slide 1 / 71. Movimiento Armónico Simple Slide 1 / 71 Movimiento Armónico Simple Slide 2 / 71 MAS y Movimiento Circular Hay una profunda conexión entre el Movimiento armónico simple (MAS) y el Movimiento Circular Uniforme (MCU). Movimiento armónico

Más detalles

x = t 3 (x t) 2 + x t. (1)

x = t 3 (x t) 2 + x t. (1) Problema 1 - Considera la siguiente ecuación de primer orden: x = t 3 (x t + x t (1 (a Comprueba que x(t = t es solución de la ecuación (b Demuestra que si x = x(t es la solución que pasa por el punto

Más detalles

Representación en el espacio de estado. Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT

Representación en el espacio de estado. Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT Representación en el espacio de estado Representación en espacio de estado Control clásico El modelado y control de sistemas basado en la transformada de Laplace, es un enfoque muy sencillo y de fácil

Más detalles

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este

Más detalles

Sistemas No-Lineales

Sistemas No-Lineales Sistemas No-Lineales Profesor: María Etchechoury Departamento de Matemática, Facultad de Ciencias Exactas Universidad Nacional de La Plata e-mail: marila@mate.unlp.edu.ar 3 1 1 3 3 1 1 3 1 Introducción

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

Cinética. 1. Introducción Cantidad de movimiento Teorema del centro de masas... 2

Cinética. 1. Introducción Cantidad de movimiento Teorema del centro de masas... 2 Índice Cinética 1. Introducción. Cantidad de movimiento.1. Teorema del centro de masas................................ 3. Momento cinético 3 3.1. Teorema de König relativo al momento cinético.....................

Más detalles

Mm R 2 v= mv 2 R 24 5,98 10

Mm R 2 v= mv 2 R 24 5,98 10 POBLEMAS CAMPO GAVIAOIO. FÍSICA ºBO 1. Un satélite artificial describe una órbita circular alrededor de la ierra. En esta órbita la energía mecánica del satélite es 4,5 x 10 9 J y su velocidad es 7610

Más detalles

2.- Cuánto valen el potencial y la intensidad del campo gravitatorio creado por la Tierra en un punto de su superficie?

2.- Cuánto valen el potencial y la intensidad del campo gravitatorio creado por la Tierra en un punto de su superficie? PROBLEMAS 1.- Con una órbita de 8000 Km de radio gira alrededor de la Tierra un satélite de 500 Kg de masa. Determina: a) su momento angular b) su energía cinética c) su energía potencial d) su energía

Más detalles

Movimiento oscilatorios: libre, amortiguado, forzado.

Movimiento oscilatorios: libre, amortiguado, forzado. Movimiento oscilatorios: libre, amortiguado, forzado. Masa sujeta a un resorte Ley de Hooke: F = kx Segunda Ley de Newton: ma = kx; a = ω x; ω = k m Conservación de la energía: E = 1 m ẋ + 1 mω x ẋ = E

Más detalles

Ayudantía 4. Ignacio Reyes Dinámica, Trabajo y Energía

Ayudantía 4. Ignacio Reyes Dinámica, Trabajo y Energía P. Universidad Católica de Chile Facultad de Física Estática y Dinámica Profesor Rafael Benguria Ayudantía 4 Ignacio Reyes (iareyes@uc.cl). Prob. 2/I--200 Dinámica, Trabajo y Energía Una partícula de masa

Más detalles

Breviario de cálculo vectorial

Breviario de cálculo vectorial Apéndice A Breviario de cálculo vectorial versión 16 de octubre de 2006 Este apéndice no pretende ser mas que un resumen de definiciones y fórmulas útiles acerca de la función delta de Dirac, cálculo vectorial

Más detalles

Javier Junquera. Movimiento de rotación

Javier Junquera. Movimiento de rotación Javier Junquera Movimiento de rotación Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 Física, Volumen 1 R. P. Feynman, R. B.

Más detalles

PRINCIPIOS DE LA DINÁMICA

PRINCIPIOS DE LA DINÁMICA Capítulo 3 PRINCIPIOS DE LA DINÁMICA CLÁSICA 3.1 Introducción En el desarrollo de este tema, cuyo objeto de estudio son los principios de la dinámica, comenzaremos describiendo las causas del movimiento

Más detalles

Física General IV: Óptica

Física General IV: Óptica Facultad de Matemática, Astronomía y Física Universidad Nacional de Córdoba Física General IV: Óptica Práctico de Laboratorio N 1: Ondas en una Cuerda Elástica 1 Objetivo: Estudiar el movimiento oscilatorio

Más detalles

CANTABRIA / JUNIO 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CANTABRIA / JUNIO 02. LOGSE / FÍSICA / EXAMEN COMPLETO CANTABRIA / JUNIO 0. LOGSE / FÍSICA / EXAMEN COMPLETO El alumno elegirá tres de las cinco cuestiones propuestas, así como sólo una de las dos opciones de problemas CUESTIONES ( puntos cada una) A. Se considera

Más detalles

CINEMÁTICA 1. Sistema de referencia. 2. Trayectoria. 3. Velocidad. 4. Aceleración. 5. Movimientos simples. 6. Composición de movimientos.

CINEMÁTICA 1. Sistema de referencia. 2. Trayectoria. 3. Velocidad. 4. Aceleración. 5. Movimientos simples. 6. Composición de movimientos. CINEMÁTICA 1. Sistema de referencia. 2. Trayectoria. 3. Velocidad. 4. Aceleración. 5. Movimientos simples. 6. Composición de movimientos. Física 1º bachillerato Cinemática 1 CINEMÁTICA La cinemática es

Más detalles

Ecuaciones de primer orden Ecuaciones de segundo orden Sistemas de ecuaciones de primer orden Modelo Malthusiano dp dt = rp, P(0) = P 0 donde r es la

Ecuaciones de primer orden Ecuaciones de segundo orden Sistemas de ecuaciones de primer orden Modelo Malthusiano dp dt = rp, P(0) = P 0 donde r es la Simulación numérica Ander Murua Donostia, UPV/EHU Ecuaciones de primer orden Ecuaciones de segundo orden Sistemas de ecuaciones de primer orden Modelo Malthusiano dp dt = rp, P(0) = P 0 donde r es la diferencia

Más detalles

Tema 2 Análisis Dinámico de Sistemas 2º Ing. Telecomunicación. Octubre de 2003 Análisis Dinámico de Sistemas (2º Teleco, EPSIG) 1 de 30

Tema 2 Análisis Dinámico de Sistemas 2º Ing. Telecomunicación. Octubre de 2003 Análisis Dinámico de Sistemas (2º Teleco, EPSIG) 1 de 30 Tema 2 Análisis Dinámico de Sistemas 2º Ing. Telecomunicación Octubre de 2003 Análisis Dinámico de Sistemas (2º Teleco, EPSIG) 1 de 30 Ecuaciones Diferenciales y Dinámica definición de la RAE Modelo: (definición

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE ASIGNATURA NOMBRE DE LA ASIGNATURA TRONCO COMÚN 2005-2 4348 DINÁMICA PRÁCTICA NO. DIN-09 LABORATORIO DE NOMBRE DE LA PRÁCTICA LABORATORIO DE CIENCIAS BÁSICAS PÉNDULO SIMPLE

Más detalles

Transformada de Laplace (material de apoyo)

Transformada de Laplace (material de apoyo) Transformada de Laplace (material de apoyo) André Luiz Fonseca de Oliveira Michel Hakas Resumen En este artículo se revisará los conceptos básicos para la utilización de la transformada de Laplace en la

Más detalles

5) Un satélite artificial orbita a Km. sobre la superficie terrestre. Calcula el período de rotación. (Rt = 6370 Km. g = 9,81 N/Kg.

5) Un satélite artificial orbita a Km. sobre la superficie terrestre. Calcula el período de rotación. (Rt = 6370 Km. g = 9,81 N/Kg. Problemas PAU Campo Gravitatorio 1) El valor promedio del radio terrestre es 6370 Km. Calcular la intensidad del campo gravitatorio: a) En un punto situado a una altura doble del radio de la Tierra b)

Más detalles

Solución de la Ecuación de Estado y Realizaciones

Solución de la Ecuación de Estado y Realizaciones Capítulo 4 Solución de la Ecuación de Estado y Realizaciones 4.. Introducción Vimos que los sistemas lineales pueden representarse mediante integrales de convolución y, si son de dimensión finita (a parámetros

Más detalles

Respuesta transitoria

Respuesta transitoria Capítulo 4 Respuesta transitoria Una ves que los diagramas a bloques son desarrollados, el siguiente paso es llevar a cabo el análisis de los sistemas. Existen dos tipos de análisis: cuantitativo y cualitativo.

Más detalles

NÚCLEO DE BOLÍVAR CÓDIGO: Horas Teóricas Horas para Evaluaciones Horas Perdidas Horas Efectivas

NÚCLEO DE BOLÍVAR CÓDIGO: Horas Teóricas Horas para Evaluaciones Horas Perdidas Horas Efectivas UNIVERSIDAD DE ORIENTE ASIGNATURA: Física I NÚCLEO DE BOLÍVAR CÓDIGO: 005-1814 UNIDAD DE ESTUDIOS BÁSICOS PREREQUISITO: Ninguno ÁREA DE FÍSICA HORAS SEMANALES: 6 horas OBJETIVOS GENERALES: Al finalizar

Más detalles

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A Problemas de Ondas.- Una onda transversal sinusoidal, que se propaga de derecha a izquierda, tiene una longitud de onda de 0 m, una amplitud de 4 m y una velocidad de propagación de 00 m/s. Si el foco

Más detalles

Magnitudes y Unidades. Cálculo Vectorial.

Magnitudes y Unidades. Cálculo Vectorial. Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades

Más detalles

FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN

FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN 1. Considere el siguiente potencial (pozo infinito): { 0 x a; y b y z c V(x)= sino Escribiendo

Más detalles

Contenidos. Importancia del tema. Conocimientos previos para este tema?

Contenidos. Importancia del tema. Conocimientos previos para este tema? Transformación conforme Contenidos Unidad I: Funciones de variable compleja. Operaciones. Analiticidad, integrales, singularidades, residuos. Funciones de variable real a valores complejos. Funciones de

Más detalles

Cinemática. Marco A. Merma Jara Versión:

Cinemática. Marco A. Merma Jara  Versión: Cinemática Marco A. Merma Jara http://mjfisica.net Versión: 08.2013 Contenido Cinemática Movimiento Unidimensional Movimiento Unidimensional con aceleración constante Movimiento Bidimensional Movimiento

Más detalles

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma:

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: 1.3. Oscilador armónico amortiguado 1» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: Si introducimos esta solución en

Más detalles

PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso

PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso 2014-15 1) (P Jun94) La ecuación del movimiento de un impulso propagándose a lo largo de una cuerda viene dada por, y = 10 cos(2x-

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

Lección 11 Ecuaciones Diferenciales de Segundo Orden. Ecuaciones de segundo orden

Lección 11 Ecuaciones Diferenciales de Segundo Orden. Ecuaciones de segundo orden Lección 11 Ecuaciones Diferenciales de Segundo Orden 1 En forma normal: Ejemplo: Ecuaciones de segundo orden x = f (t, x, x ) 2tx x + 1 x = 0 x = (x ) 2 1 2tx Casos Particulares Ecuaciones en las que no

Más detalles

Aplicaciones de ED de segundo orden

Aplicaciones de ED de segundo orden CAPÍTULO Aplicaciones de ED de segundo orden..1 Movimiento armónico simple x 0 k m Sistema masa-resorte para el estudio de las vibraciones mecánicas Para iniciar el estudio de las vibraciones mecánicas,

Más detalles

2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Soluciones del boletín de problemas 6

2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Soluciones del boletín de problemas 6 2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera 2003 Soluciones del boletín de problemas 6 Problema 1. Varilla deslizándose por una pared. Dado que los extremos de la varilla están forzados a permanecer

Más detalles

Laboratorio de Física Universitaria 1. Péndulo Físico. Pimavera 2006 Domitila González PENDULO FÍSICO

Laboratorio de Física Universitaria 1. Péndulo Físico. Pimavera 2006 Domitila González PENDULO FÍSICO Laboratorio de Física Universitaria 1. Péndulo Físico. Pimavera 006 PENDULO FÍSICO Autor: M. en C. Patiño Fecha: Primaverao 006 OBJETIVOS Encontrar la relación que existe entre la longitud L, y El periodo

Más detalles

Sistemas lineales homogéneos

Sistemas lineales homogéneos Lección 9 Sistemas de ecuaciones diferenciales lineales con coeficientes constantes 1 Sistemas lineales homogéneos Estudiaremos los sistemas de la forma x (t) = Ax(t) + b(t) Sistemas homogéneos: x = Ax

Más detalles

TEMA 2. CAMPO GRAVITATORIO. (SELECTIVIDAD 2014, 2013, 2012)

TEMA 2. CAMPO GRAVITATORIO. (SELECTIVIDAD 2014, 2013, 2012) TEMA 2. CAMPO GRAVITATORIO. (SELECTIVIDAD 2014, 2013, 2012) CUESTIONES 1.- a.- Explique las características del campo gravitatorio de una masa puntual. b.- Dos partículas de masas m y 2m están separadas

Más detalles

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna Física III (sección 1) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil Civil, Ingeniería

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA

PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA CURSO 013 014 CONVOCATORIA: PROBLEMAS OPCIÓN A MATERIA: FÍSICA De las dos opciones propuestas, sólo hay que desarrollar

Más detalles

Física 2º Bach. Ondas 16/11/10

Física 2º Bach. Ondas 16/11/10 Física º Bach. Ondas 16/11/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestiones 4 puntos (1 cada apartado o cuestión, teórica o práctica) No se

Más detalles

Técnicas analíticas para las Ecuaciones diferenciales de primer orden: Ecuaciones Separables y Lineales

Técnicas analíticas para las Ecuaciones diferenciales de primer orden: Ecuaciones Separables y Lineales Lección Técnicas analíticas para las Ecuaciones diferenciales de primer orden: Ecuaciones Separables y Lineales.1. Introducción Tal y como hemos visto en el capítulo anterior la forma general de las ecuaciones

Más detalles

Aplicaciones de los S.E.D.O.

Aplicaciones de los S.E.D.O. Tema 7 Aplicaciones de los S.E.D.O. 7. Introducción Nota: APUNTES INCOMPLETOS Estudiaremos en este Tema algunos modelos de interés en las Ciencias Naturales que utilizan para su modelización sistemas de

Más detalles

Movimiento y Dinámica circular

Movimiento y Dinámica circular SECTOR CIENCIAS - FÍSICA TERCERO MEDIO 2011 Trabajo de Fábrica III MEDIO APREDIZAJES ESPERADOS - Aplicar las nociones físicas fundamentales para explicar y describir el movimiento circular; utilizar las

Más detalles

CAMPO GRAVITATORIO SELECTIVIDAD

CAMPO GRAVITATORIO SELECTIVIDAD CAMPO GRAVITATORIO SELECTIVIDAD EJERCICIO 1 (Sept 2000) a) Con qué frecuencia angular debe girar un satélite de comunicaciones, situado en una órbita ecuatorial, para que se encuentre siempre sobre el

Más detalles

Formulario PSU Parte común y optativa de Física

Formulario PSU Parte común y optativa de Física Formulario PSU Parte común y optativa de Física I) Ondas: Sonido y Luz Frecuencia ( f ) f = oscilaciones Vector/, Unidad de medida f 1/s = 1 Hz Periodo ( T ) T = oscilaciones f = 1 T T Segundo ( s ) Longitud

Más detalles

FÍSICA MECÁNICA. Dino E. Risso Carlos K. Ríos Departamento de Física. martes, 19 de marzo de 13

FÍSICA MECÁNICA. Dino E. Risso Carlos K. Ríos Departamento de Física.  martes, 19 de marzo de 13 FÍSICA MECÁNICA Dino E. Risso Carlos K. Ríos Departamento de Física http://maxwell.ciencias.ubiobio.cl/~drisso/wiki/ ANALISIS DIMENSIONAL Es una técnica para analizar las expresiones matemáticas de un

Más detalles

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad Diferenciabilidad 1 Función diferenciable 2 Regla de la cadena (2 variables) 3 Regla de la cadena (vectorial) OBJETIVO Generalizar el concepto de diferenciabilidad (conocido ya para funciones de una variable)

Más detalles

Ecuaciones Diferenciales Ordinarias

Ecuaciones Diferenciales Ordinarias Ecuaciones Diferenciales Ordinarias (Transformada de Laplace) Julio López jclopez@dim.uchile.cl Depto Ingeniería Matemática, Universidad de Chile Verano 2010, Resumen clases Julio López EDO 1/30 Introducción

Más detalles

GUIA DE ESTUDIO FÍSICA 3 COMÚN PREPARACIÓN PRUEBA COEFICIENTE DOS Nombre: Curso: Fecha:

GUIA DE ESTUDIO FÍSICA 3 COMÚN PREPARACIÓN PRUEBA COEFICIENTE DOS Nombre: Curso: Fecha: I.MUNICIPALIDAD DE PROVIDENCIA CORPORACIÓN DE DESARROLLO SOCIAL LICEO POLIVALENTE ARTURO ALESSANDRI PALMA DEPARTAMENTO DE FÍSICA PROF.: Nelly Troncoso Rojas. GUIA DE ESTUDIO FÍSICA 3 COMÚN PREPARACIÓN

Más detalles

La cuerda vibrante. inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical

La cuerda vibrante. inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical la cuerda es extensible La cuerda vibrante inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical y(x, t) la posición depende

Más detalles

Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas.

Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas. Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas. Introducción y ecuaciones que rigen la propagación del oleaje. La propagación de oleaje en un fluido es un proceso no lineal. Podemos tratar

Más detalles

La cantidad de movimiento angular obedece una ley de conservación muy similar a la que obedece el momentum lineal.

La cantidad de movimiento angular obedece una ley de conservación muy similar a la que obedece el momentum lineal. En vista de la gran analogía que se han presentado entre la mecánica lineal y la mecánica rotacional, no debe ser ninguna sorpresa que la cantidad de movimiento o momento lineal tenga un similar rotacional.

Más detalles

Funciones vectoriales

Funciones vectoriales Unidad 2: Funciones vectoriales INDICE 1. CURVAS, MOVIMIENTO EN EL ESPACIO Y ECUACIONES PARAMÉTRICAS... 1 1.1 Introducción... 1 1.2 Formas de definir una curva... 1 2. FUNCIONES VECTORIALES, LIMITES Y

Más detalles