Vibraciones Linealización de ecuaciones diferenciales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Vibraciones Linealización de ecuaciones diferenciales"

Transcripción

1 Vibraciones Linealización de ecuaciones diferenciales MScAA Marcos Knoblauch Departamento de Aeronáutica Universidad Nacional de La Plata Introducción Este documento contiene las ecuaciones y conceptos teóricos fundamentales para la obtención de las expresiones linealizadas de las ecuaciones diferenciales utilizados en el curso de Vibraciones dictado en el Departamento de Aeronáutica de la Facultad de Ingeniería de la Universidad Nacional de La Plata. Este compendio es una herramienta de consulta y apoyo para los estudiantes del curso que complementa los contenidos teóricos desarrollados durante las clases teórico-prácticas y los apuntes de la cátedra. Linealidad - No Linealidad En el curso de Vibraciones aplicamos las teorías de análisis de sistemas lineales cuyo comportamiento dinámico puede ser expresado mediante ecuaciones diferenciales ordinarias 1. De esta manera podemos obtener, a partir del planteo y resolución del problema de autovalores y autovectores, características del comportamiento de los sistemas como las pulsaciones naturales y los modos de vibrar. Así mismo, es posible hallar las soluciones temporales de las ecuaciones diferenciales que describen el movimiento, tanto del sistema libre como del sistema forzado. Ecuaciones diferenciales lineales Una ecuación diferencial lineal es aquella en la que las variables y sus derivadas aparecen como una combinación lineal. Si y(t) es la función desconocida, dependiente del tiempo, y L[ ] es el operador diferencial lineal, las ecuaciones diferenciales lineales son de la forma L[y(t)] = f(t) 1 Una ecuación diferencial ordinaria es aquella que contiene una o varias funciones de una única variable independiente y sus derivadas. En nuestro estudio, las funciones son temporales, en las que el tiempo es la variable independiente 1

2 El desarrollo del miembro izquierdo, el operador diferencial lineal, resulta L n [y] dn y dt n + A d n 1 y 1 dt n A dy n 1 dt + A ny Siendo A i funciones del tiempo (para los alcances de este curso, serán consideradas constantes). A modo de ejemplo, la ecuación diferencial que describe la dinámica de un sistema masa-resorte-amortiguador sobre el que actúa una fuerza exterior F (t) tiene la forma: mÿ + cẏ + ky = F (t) En esta ecuación, la variable independiente es el tiempo y la función incógnita y sus derivadas están combinadas linealmente, siendo m, c y k las constantes de dicha combinación. Ecuaciones diferenciales no lineales De la definición de la ecuación diferencial lineal puede inferirse la idea de ecuaciones diferenciales no lineales. Estas son las ecuaciones en las que la función incógnita y(t) y sus derivadas no aparecen en la ecuación como una combinación lineal. Así, si en la ecuación diferencial aparece uno o más términos que no tengan d la forma A i y(t) i, siendo A dt i i una constante, la ecuación diferencial es no lineal y no será posible aplicar sobre ella las herramientas de estudio, ni extraer información relacionada a las pulsaciones naturales y modos de vibrar. Las ecuaciones diferenciales no lineales pueden exhibir comportamientos muy variados: múltiples puntos de equilibrio o ninguno, tanto estables como inestables. 2 Desarrollo en Serie En las siguientes secciones se presentan las expresiones de los desarrollos en serie de Taylor de aproximación de la función y = f(x 1, x 2, ). Funciones de una sola variable Una función puede ser expresada por una suma de términos de la serie de Taylor. Dicha serie de Taylor es una suma infinita de términos calculados a partir de las derivadas de la función en un punto determinado. Sea la variable independiente x y la función de dicha variable y = f(x) y un punto del dominio tal que la función sea infinitamente diferenciable en x = a 2 Entendemos por punto de equilibrio estable al punto en el espacio conformado por las coordenadas del sistema al cual tienden las trayectorias. Si el sistema disipa energía (asintóticamente estable), el movimiento se disipará dejando al sistema justamente en dicho punto. Un punto de equilibrio inestable al punto de equilibrio en el espacio conformado por las coordenadas del sistema desde el cual las trayectorias divergen. Una vez perturbado, el sistema evolucionará desde dicho punto en trayectorias divergentes. 2

3 f(x) n=0 El desarrollo de la sumatoria resulta f (n) (x) x=a (x a) n n! f(x) f(a) + f (a) (x a) + f (a) (x a) 2 + f (a) (x a) 3 + 1! 2! 3! En el caso de restringir la suma infinita de la serie de Taylor a n términos, se obtiene una aproximación dada por un polinomio de grado n denominado polinomio de Taylor. Como caso particular, si el punto del dominio es el origen a = 0 la serie es conocida como serie de Maclaurin, cuya expresión resulta: f(x) n=0 f (n) (x) x=0 x n n! En otras palabras, la serie de Taylor y su caso particular de Maclaurin son expresiones que permiten desarrollar una función analítica e infinitamente derivable en un punto de su dominio como una sumatoria de términos de un polinomio. Si se trunca el desarrollo de la serie tomando sólo los primeros (p + 1) términos, se obtiene una aproximación de grado p de la función f(x). En el entorno del punto de desarrollo, el polinomio de aproximación de orden p y la función original f(x) exhibirán una diferencia tendiende a cero conforme se aproxima a dicho punto. Si se desea obtener una aproximación lineal de la función f(x) en el entorno del punto x = a, se elige p = 1 y se toman los dos primeros términos del desarrollo resultando en un polinomio de Taylor de primer grado f(x) f(a) + f (a) (x a) = f(a) + f (a)(x a) 1! Para el objetivo de este documento, es de interés esta última expresión. En las siguientes secciones se mostrará cómo se aplica el desarrollo en serie de Taylor - en particular eligiendo p = 1 - para obtener aproximaciones lineales de las ecuaciones diferenciales. Así mismo, se discutirá la elección del punto a en el cual se desarrollará la linealización. Funciones de varias variables De manera análoga, es posible generalizar la expresión del desarrollo en serie de Taylor cuando la variable depende de d variables independientes x 1, x 2 x d, en el punto de coordenadas a 1,.a d (x 1 a 1 ) n1 (x d a d ) n d f(x 1,, x d ) n 1! n d! n 1 =0 n 2 =0 n d =0 ( n 1 + +n df x n 1 1 x n d d ) (a 1,,a d ) 3

4 Desarrollando esta expresión para el polinomio de Taylor de primer grado en el punto de linealización (a 1,, a d ) se obtiene f(x 1,, x d ) f(a 1,, a d ) + d j=1 f(a 1,, a d ) x j (x j a j ) En el caso de una función escalar de dos variables independientes de la forma z = f(x 1, x, la linealización en el punto a = (x (0) 1, x (0) resulta z = f(x, y) f(x (0) 1, x (0) + f(x(0) 1, x (0) x (x x (0) 1 ) + f(x(0) 1, x (0) y (y x (0) La función aproximada por el polinomio de Taylor de primer grado en (x (0) 1, x (0) representa el plano tangente a la función z = f(x, y) en dicho punto. Linealización de ecuaciones diferenciales Es de interés obtener las soluciones temporales de las ecuaciones diferenciales y extraer información relevante respecto al comportamiento de los sistemas dinámicos. Si la ecuación diferencial del movimiento de un determinado sistema incluye uno o varios términos no lineales deberá estudiarse la viabilidad de realizar una aproximación de dicho término o términos mediante el polinomio de Taylor de primer grado. La elección del punto de linealización a no es trivial y dependerá del fenómeno que desee estudiarse. Elección del punto de linealización Los sistemas lineales elásticos (ej: un péndulo) oscilan alrededor de una posición conocida como posición de equilibrio estático. Esto es, las oscilaciones evolucionarán con un valor medio que coincide con la posición que adoptaría el sistema si estuviera en equilibrio estático: todas las fuerzas externas son aplicadas cuasi estáticamente y el trabajo realizado se acumula en forma de energía potencial gravitatoria y elástica. La ecuación diferencial no lineal del péndulo rígido de longitud l es θ + g l sinθ = 0 Naturalmente, la posición θ = 0 es una posición de equilibrio del péndulo. Si se lo aparta ligeramente de esa posición, el péndulo oscilará alrededor de la vertical. En la práctica, el comportamiento del péndulo acusa la disipación de energía debido a que el péndulo está sumergido en el aire, debido a rozamientos y otros fenómenos. El movimiento se extingue al cabo de un tiempo suficientemente largo y el péndulo quedará en reposo en la posición vertical, volviendo a θ = 0. Dicho punto es un punto de equilibrio estable. 4

5 Así mismo, se puede observar que cuando sinθ = 0 el péndulo encuentra el equilibrio, ya que θ = 0, situación que ocurrirá para θ = nπ, con n Z. En particular, el péndulo encuentra una posición de equilibrio en θ = π que es naturalmente inestable. Una vez apartado ligeramente de esa posición, el péndulo evolucionará alejandose de esa posición. Los sistemas no lineales pueden tener muchos puntos de equilibrio estables e inestables. Considerando el caso del péndulo, los puntos θ = 0, π, 2π, son puntos de equilibrio estables, mientras que los puntos θ = ±1, ±3, ±5, son inestables. El punto alrededor del cual se realiza la linealización dependerá de la necesidad de análisis. En el caso particular de estructuras o mecanismos vibrando es de interés obtener la linealización alrededor de un punto de equilibrio estable. Así, en el caso del péndulo, es deseable obtener la aproximación lineal de la ecuación diferencial en el entorno de θ = 0. Es importante destacar que las ecuaciones diferenciales linealizadas se aproximan a las ecuaciones diferenciales originales no lineales en un entorno reducido del punto de linealización escogido. Fuera de dicho entorno, las ecuaciones linealizadas pierden validez. La magnitud de dicho entorno de validez dependerá de cada caso y aplicación, mereciendo un estudio pormenorizado. Ejemplo de aplicación Sea el péndulo de dos segmentos de igual longitud l e iguales masas concentradas m. Se eligen como coordenadas generalizadas los ángulos respecto de la vertical θ y ϕ. Las ecuaciones diferenciales del movimiento son: { 2ml 2 θ + ml2 ϕ cos (θ ϕ) + ml 2 ϕ 2 sin (θ ϕ) + 2mgl sin (θ) = 0 ml 2 ϕ + ml 2 θ cos (θ ϕ) ml 2 θ2 sin (θ ϕ) + mgl sin (ϕ) = 0 θ l m Las ecuaciones diferenciales son no lineales debido a la presencia de: φ l funciones armónicas de las coordenadas generalizadas: cos (θ ϕ), sin (θ), etc. productos o potencias de coordenadas generalizadas: ϕ 2 productos de los anteriores: ϕ 2 sin (θ ϕ) m Punto de linealización Es de interés el estudio de la dinámica del péndulo en el entorno de su posición de equilibrio estático; esto es, cuando ambos segmentos están suspendidos y la energía potencial es mínima. De esta manera, el punto de linealización es (θ 0, ϕ 0 ) = (0, 0) que 5

6 es, además, estable. Frente a cualquier apartamiento, la tendencia de evolución del péndulo es en la dirección del punto de equilibrio estable. Así mismo, en el equilibrio las derivadas temporales de las coordenadas generalizadas son también nulas. Desarrollo de las series Las linealizaciones se realizarán entonces en el (0, 0) por lo que se obtendrá la aproximación de las ecuaciones diferenciales mediante el polinomio de Maclaurin de primer grado. Es posible linealizar cada uno de los términos por separado. Término función de 3 variables independientes ϕ cos (θ ϕ) = f( ϕ, θ, ϕ) f( ϕ, θ, ϕ) f(0, 0, 0) + f f f ( ϕ 0) + (θ 0) + (ϕ 0) ϕ θ ϕ ϕ cos (θ ϕ) + cos (θ ϕ)( ϕ) ϕ sin (θ ϕ)(θ) + ϕ sin (θ ϕ)(ϕ) ϕ En las expresiones anteriores y siguientes no se ha explicitado, pero deberá evaluarse las derivadas parciales de la función respecto a cada una de las variables en el punto de linealización. Término función de 3 variables independientes ϕ 2 sin (θ ϕ) = f( ϕ, θ, ϕ) f( ϕ, θ, ϕ) f(0, 0, 0) + f f f ( ϕ 0) + (θ 0) + (ϕ 0) ϕ θ ϕ ϕ 2 sin (θ ϕ) + 2 ϕ sin (θ ϕ)( ϕ) ϕ 2 cos (θ ϕ)(θ) ϕ 2 sin (θ ϕ)(ϕ) 0 Término función de 1 variable independiente sin (θ) = f(θ) f(θ) f(0) + df (θ 0) dθ sin (θ) + cos (θ)θ θ Por simple comparación de su estructura, es posible deducir el polinomio de primer grado de Maclaurin de los términos restantes. Resumiendo: ϕ 2 sin (θ ϕ) ϕ θ cos (θ ϕ) θ ϕ 2 sin (θ ϕ) 0 θ 2 sin (θ ϕ) 0 sin (θ) θ sin (ϕ) ϕ 6

7 Reemplazando las series en las ecuaciones diferenciales anteriores se obtienen las ecuaciones diferenciales linealizadas: { 2ml 2 θ + ml2 ϕ + 2mglθ = 0 ml 2 ϕ + ml 2 θ + mglϕ = 0 Estas ecuaciones exhiben un comportamiento próximo al de las ecuaciones originales en un entorno pequeño del punto de linealización elegido. Para cada caso será necesario establecer un rango de validez. 7

INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3

INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3 INDICE Introducción 1 Movimiento vibratorio armónico simple (MVAS) 1 Velocidad en el MVAS Aceleración en el MVAS Dinámica del MVAS 3 Aplicación al péndulo simple 4 Energía cinética en el MVAS 6 Energía

Más detalles

Sistemas autónomos. Introducción a la teoría cualitativa.

Sistemas autónomos. Introducción a la teoría cualitativa. Lección 4 Sistemas autónomos. Introducción a la teoría cualitativa. 4.1 Sistemas autónomos. Mapas de fase. En esta lección nos centraremos en el estudio de sistemas autónomos, es decir, aquellos que pueden

Más detalles

1. Estudio de la caída de un puente.

1. Estudio de la caída de un puente. 1 1. Estudio de la caída de un puente. A. Introducción Las oscilaciones de un puente bajo la acción de una fuerza externa pueden estudiarse a partir de la resolución de una ecuación a derivadas parciales

Más detalles

Tema 2. Dinámica básica de la partícula aislada y de los sistemas de partículas

Tema 2. Dinámica básica de la partícula aislada y de los sistemas de partículas Mecánica teórica Tema 2. Dinámica básica de la partícula aislada y de los sistemas de partículas Tema 2B Universidad de Sevilla - Facultad de Física cotrino@us.es 22 de septiembre de 2016 Tema 2B (Grupo

Más detalles

Semana 06 EDO de orden alto - Aplicaciones

Semana 06 EDO de orden alto - Aplicaciones Matemáticas Aplicadas MA101 Semana 06 EDO de orden alto - Aplicaciones Elizabeth Villota Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería Aplicaciones Ecuaciones diferenciales de orden

Más detalles

DETERMINACIÓN DE LA CONSTANTE ELÁSTICA DE UN MUELLE Y DEL MOMENTO DE INERCIA DE UN SÓLIDO RÍGIDO

DETERMINACIÓN DE LA CONSTANTE ELÁSTICA DE UN MUELLE Y DEL MOMENTO DE INERCIA DE UN SÓLIDO RÍGIDO DETERINACIÓN DE LA CONSTANTE ELÁSTICA DE UN UELLE Y DEL OENTO DE INERCIA DE UN SÓLIDO RÍGIDO Santiago Ramírez de la Piscina illán Francisco Sierra Gómez Francisco Javier Sánchez Torres 1. CONSTANTE ELÁSTICA.

Más detalles

Práctica Módulo de torsión

Práctica Módulo de torsión Práctica Módulo de torsión Objetivo eterminar el módulo de torsión de varillas de distintos materiales por los métodos estático y dinámico. Material Aparato de torsión representado en la figura, varillas

Más detalles

AMORTIGUAMIENTO, OSCILACIONES FORZADAS Y RESONANCIA

AMORTIGUAMIENTO, OSCILACIONES FORZADAS Y RESONANCIA AMORTIGUAMIENTO, OSCILACIONES FORZADAS Y RESONANCIA Las vibraciones forzadas son aquellas que se originan y mantienen mediante fuerzas aplicadas exteriormente y que no dependen de la posición ni del movimiento

Más detalles

Tema 2 Análisis Dinámico de Sistemas 2º Ing. Telecomunicación. Octubre de 2003 Análisis Dinámico de Sistemas (2º Teleco, EPSIG) 1 de 30

Tema 2 Análisis Dinámico de Sistemas 2º Ing. Telecomunicación. Octubre de 2003 Análisis Dinámico de Sistemas (2º Teleco, EPSIG) 1 de 30 Tema 2 Análisis Dinámico de Sistemas 2º Ing. Telecomunicación Octubre de 2003 Análisis Dinámico de Sistemas (2º Teleco, EPSIG) 1 de 30 Ecuaciones Diferenciales y Dinámica definición de la RAE Modelo: (definición

Más detalles

MODELADO DE SISTEMAS

MODELADO DE SISTEMAS MODELADO DE SISTEMAS OBJETIVOS Introducir el concepto de modelo matemático y función de transferencia. Partiendo de los sistemas físicos se desarrolla el modelo matemático en forma de función de transferencia

Más detalles

CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO

CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO MATEMÁTICAS AVANZADAS PARA LA INGENIERÍA EN SISTEMAS CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO 1 1. SISTEMAS LINEALES DISCRETOS Y CONTINUOS 1.1. Modelos matemáticos 1.2. Sistemas 1.3. Entrada

Más detalles

8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV

8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV 8.4. CRITERIO DE ESTAB.: METODO DE LIAPUNOV 309 8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV Consideremos el sistema autónomo dx = F (x, y) dt (8.32) dt = G(x, y), y supongamos que tiene

Más detalles

APLICACIONES COMPUTACIONALES INGENIERÍA EJECUCIÓN MECÁNICA

APLICACIONES COMPUTACIONALES INGENIERÍA EJECUCIÓN MECÁNICA APLICACIONES COMPUTACIONALES INGENIERÍA EJECUCIÓN MECÁNICA ECUACIONES DIFERENCIALES ORDINARIAS (EDO) MOTIVACIÓN Se llamará ecuación diferencial a aquella ecuación que contiene una variable dependiente

Más detalles

Métodos Numéricos - Cap. 7. Ecuaciones Diferenciales Ordinarias PVI 1/8

Métodos Numéricos - Cap. 7. Ecuaciones Diferenciales Ordinarias PVI 1/8 No se puede mostrar la imagen en este momento. Métodos Numéricos - Cap. 7. Ecuaciones Diferenciales Ordinarias PVI 1/8 Ecuaciones Diferenciales Ordinarias (EDO) Una Ecuación Diferencial es aquella ecuación

Más detalles

VI. Sistemas de dos grados de libertad

VI. Sistemas de dos grados de libertad Objetivos: 1. Describir que es un sistema de dos grados de.. Deducir las ecuaciones diferenciales de movimiento para un sistema de dos grados de masa-resorte-amortiguador, con amortiguamiento viscoso y

Más detalles

x (0) si f (x) = 2s 1, s > 1 d) f 3. Analizar la existencia de derivadas laterales y de derivada en a = 0, para las siguientes funciones:

x (0) si f (x) = 2s 1, s > 1 d) f 3. Analizar la existencia de derivadas laterales y de derivada en a = 0, para las siguientes funciones: FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES COMPLEMENTOS DE ANÁLISIS MAESTRíA EN ESTADíSTICA MATEMÁTICA SEGUNDO CUATRIMESTRE 2007 PRÁCTICA 7 1. Usando sólo la definición de derivada,

Más detalles

3. Funciones de varias variables

3. Funciones de varias variables Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 17 3. Funciones de varias variables Función real de varias variables reales Sea f una función cuyo dominio es un subconjunto D de R n

Más detalles

Diferencial de una función 1

Diferencial de una función 1 Cálculo _Comisión y Año 7 Diferencial de una función Dada una función y f (, derivable en x, se define: Diferencial de f, en x, al producto de la derivada de la función en dicho punto, por el incremento

Más detalles

Movimiento armónico simple.

Movimiento armónico simple. 1 Movimiento armónico simple. 1.1. Concepto de movimiento armónico simple: Su ecuación. Supongamos un muelle que cuelga verticalmente, y de cuyo extremo libre pende una masa m. Si tiramos de la masa y

Más detalles

Movimiento armónico. Péndulos físico y de torsión.

Movimiento armónico. Péndulos físico y de torsión. Movimiento armónico. Péndulos físico y de torsión. Objetivo eterminar el radio de giro de un péndulo físico y la aceleración de la gravedad. eterminar el módulo de rigidez de un hilo metálico mediante

Más detalles

Ecuaciones lineales de orden superior

Ecuaciones lineales de orden superior ANEXO GUIA 5 Ecuaciones lineales de orden superior Las ideas presentadas para ecuaciones lineales de segundo orden se pueden generalizar a ecuaciones lineales de orden n d n x n + a n 1(t) dn 1 x n 1 +

Más detalles

Preliminares Problemas de Valor Inicial Problemas de Contorno ECUACIONES DIFERENCIALES ORDINARIAS

Preliminares Problemas de Valor Inicial Problemas de Contorno ECUACIONES DIFERENCIALES ORDINARIAS ECUACIONES DIFERENCIALES ORDINARIAS Contenido Preliminares 1 Preliminares 2 3 El Método de Disparo Lineal Contenido Preliminares 1 Preliminares 2 3 El Método de Disparo Lineal Preliminares Las ecuaciones

Más detalles

II. Vibración libre de un sistema de un grado de libertad

II. Vibración libre de un sistema de un grado de libertad Objetivos: 1. Definir que es vibración libre. 2. Recordar el método de diagrama de cuerpo libre para deducir las ecuaciones de movimiento. 3. Introducir el método de conservación de energía para deducir

Más detalles

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados Capítulo 5 Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados En este tema iniciamos el estudio de los conceptos geométricos de distancia y perpendicularidad en K n. Empezaremos con las definiciones

Más detalles

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma:

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: 1.3. Oscilador armónico amortiguado 1» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: Si introducimos esta solución en

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago Guía dinámica. En general, los problemas de dinámica se resuelven aplicando 3 pasos: 1º Dibuje un diagrama de cuerpo libre para cada cuerpo involucrado en el sistema. Es decir, identifique todas las fuerzas

Más detalles

Estática y Dinámica Analítica

Estática y Dinámica Analítica Estática y Dinámica Analítica p. 1/25 Estática y Dinámica Analítica Mecánica II Temas 6 y 7 Manuel Ruiz Delgado Escuela Técnica Superior de Ingenieros Aeronáuticos Universidad Politécnica de Madrid Mecánica

Más detalles

Física 2º Bach. Ondas 16/11/10

Física 2º Bach. Ondas 16/11/10 Física º Bach. Ondas 16/11/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestiones 4 puntos (1 cada apartado o cuestión, teórica o práctica) No se

Más detalles

Aceleración n de la gravedad Péndulo simple

Aceleración n de la gravedad Péndulo simple Aceleración n de la gravedad Péndulo simple Experiencia de Laboratorio, Física F experimental I, 2007 A. Biera, G. Huck y P. Palermo Tandil - Octubre de 2007 1 Aceleración n de la gravedad - Péndulo simple

Más detalles

Dinámica del Sólido Rígido

Dinámica del Sólido Rígido Dinámica del Sólido Rígido El presente documento de clase sobre dinámica del solido rígido está basado en los contenidos volcados en la excelente página web del curso de Física I del Prof. Javier Junquera

Más detalles

PÉNDULO SIMPLE 2 (2) ( ) y el péndulo realizará oscilaciones armónicas simples (MAS) de período

PÉNDULO SIMPLE 2 (2) ( ) y el péndulo realizará oscilaciones armónicas simples (MAS) de período PÉNDULO SIMPLE 1.- OBJETIVOS 1) Estudio experimental de la ecuación de movimiento del péndulo simple. ) Cálculo de la aceleración de la gravedad terrestre..- FUNDAMENTO TEÓRICO Una masa m cuelga verticalmente

Más detalles

Péndulo de torsión y momentos de inercia

Péndulo de torsión y momentos de inercia Prácticas de Física Péndulo de torsión y momentos de inercia 1 Objetivos Curso 2009/10 Determinar la constante de un muelle espiral Determinar el momento de inercia de varios sólidos rígidos Comprobar

Más detalles

Representación en el espacio de estado. Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT

Representación en el espacio de estado. Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT Representación en el espacio de estado Representación en espacio de estado Control clásico El modelado y control de sistemas basado en la transformada de Laplace, es un enfoque muy sencillo y de fácil

Más detalles

Laboratorio dé Estática y Dinámica. Péndulo Simple Fis. Martín Pérez Díaz

Laboratorio dé Estática y Dinámica. Péndulo Simple Fis. Martín Pérez Díaz Laboratorio dé Estática y Dinámica. Péndulo Simple Fis. Martín Pérez Díaz PENDULO SIMPLE: OBJETIVOS: 1) El alumno podrá representar gráficamente el Movimiento de un Péndulo. 2) Comprobará el principio

Más detalles

SOLO PARA INFORMACION

SOLO PARA INFORMACION INTRODUCCIÓN Al igual que la deformación lineal, la torsión también es una caso de elasticidad, que en el siguiente laboratorio se estudiara unos de los casos de elasticidad, la Torsión. Se mostrara y

Más detalles

SIMULACIÓN NUMÉRICA - 11/12 Ejercicios 1. u = (a bv)u, v = (cu d)v, a = d = 1, b = 0,02, c = 0,03.

SIMULACIÓN NUMÉRICA - 11/12 Ejercicios 1. u = (a bv)u, v = (cu d)v, a = d = 1, b = 0,02, c = 0,03. SIMULACIÓN NUMÉRICA - 11/12 Ejercicios 1 1. Consideremos el sistema de Lotka-Volterra u = (a bv)u, v = (cu d)v, a = d = 1, b = 0,02, c = 0,03. a) Hacer uso de ode45 para integrar el sistema con valores

Más detalles

DINAMICA DEL PUNTO. Es el momento con respecto a un punto O de la cantidad de movimiento de una partícula móvil.

DINAMICA DEL PUNTO. Es el momento con respecto a un punto O de la cantidad de movimiento de una partícula móvil. DINMIC DEL PUNTO Leyes de Newton Primera ley o ley de inercia: si sobre un sistema material no actúa fuerza alguna sigue en reposo o movimiento rectilíneo uniforme si inicialmente lo estaba. Segunda ley

Más detalles

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Autores Introducción C O N S E R V A C I Ó N D E L M O M E N T O A N G U L A R Juan Andrés Diana, Fernando

Más detalles

INDICE Capitulo Primero. Número. Variable. Función Capitulo II. Límite y Continuidad de las Funciones Capitulo III. Derivada y Diferencial

INDICE Capitulo Primero. Número. Variable. Función Capitulo II. Límite y Continuidad de las Funciones Capitulo III. Derivada y Diferencial INDICE Capitulo Primero. Número. Variable. Función 1. Números reales. Representación de números reales por los puntos 1 del eje numérico 2. Valor absoluto de un número real 3 3. Magnitudes variables y

Más detalles

4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE

4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE Prácticas de Matemáticas I y Matemáticas II con DERIVE-5 54 4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE En esta sección realizaremos algunos ejercicios sobre el estudio de funciones de una variable. En la

Más detalles

Lección 3: Aproximación de funciones. por polinomios. Fórmula de Taylor para

Lección 3: Aproximación de funciones. por polinomios. Fórmula de Taylor para Lección 3: Aproximación de funciones por polinomios. Fórmula de Taylor para funciones escalares 3.1 Introducción Cuando es difícil trabajar con una función complicada, tratamos a veces de hallar una función

Más detalles

AAD (HE) Estabilidad Conceptos generales 1 / 21. Hipótesis

AAD (HE) Estabilidad Conceptos generales 1 / 21. Hipótesis Mecánica del vuelo del helicóptero II 7. Estabilidad 7.1 Conceptos generales Debido a los movimientos de batimiento y arrastre de las palas el centro de gravedad cambiará su situación. Las fuerzas exteriores

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

Dinámica en dos o tres dimensiones

Dinámica en dos o tres dimensiones 7.0.2. Dinámica en dos o tres dimensiones Ejercicio 7.27 Un cuerpo de masa 8kg, describe una trayectoria cuyas ecuaciones paramétrica son: x =2+5t 2t 2 m e y = t 2 m.determinela fuerza aplicada sobre el

Más detalles

OSCILACIONES ACOPLADAS

OSCILACIONES ACOPLADAS OSCILACIONES ACOPLADAS I. Objetivos: Analizar el movimiento conjunto de dos osciladores armónicos similares (péndulos de varilla), con frecuencia natural f 0, acoplados por medio de un péndulo bifilar.

Más detalles

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre:

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: Física moderna 9/11/7 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Un muelle de constante k =, 1 3 N/m está apoyado en una superficie horizontal sin rozamiento. A 1, m hay un bucle vertical de

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Un cuerpo baja por un plano inclinado y sube, a continuación, por otro con igual inclinación, alcanzando en ambos la misma altura al deslizar sin rozamiento. Este movimiento,

Más detalles

Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 01/02

Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 01/02 Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 0/02 x 2 + y 4. (a) Comprueba que el siguiente límite no existe lim (x,y) (0,0) x 2 + y. 2 (b) Busca una trayectoria a través de la

Más detalles

Introducción al cálculo numérico. Método de Euler

Introducción al cálculo numérico. Método de Euler Capíítullo T1 Introducción al cálculo numérico. Método de Euler En la figura 1.1 se muestra una masa sometida a la aceleración de la gravedad soportada por un muelle un amortiguador viscoso colocados en

Más detalles

TEMA 4 SISTEMAS DE 2 GRADOS DE LIBERTAD. Sistemas de 2 Grados de Libertad

TEMA 4 SISTEMAS DE 2 GRADOS DE LIBERTAD. Sistemas de 2 Grados de Libertad TEMA 4 SISTEMAS DE GRADOS DE LIBERTAD Sistemas de Grados de Libertad ELEMENTOS DE MÁQUINAS Y VIBRACIONES - 4. - TEMA 4 SISTEMAS DE GRADOS DE LIBERTAD ELEMENTOS DE MÁQUINAS Y VIBRACIONES - 4. - TEMA 4 SISTEMAS

Más detalles

FISICA 2º BACHILLERATO

FISICA 2º BACHILLERATO A) Definiciones Se llama movimiento periódico a aquel en que la posición, la velocidad y la aceleración del móvil se repiten a intervalos regulares de tiempo. Se llama movimiento oscilatorio o vibratorio

Más detalles

TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE

TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE Un movimiento periódico es aquel que describe una partícula cuando las variables posición, velocidad y aceleración de su movimiento toman los mismos valores después de

Más detalles

Trabajo Práctico 2 SISTEMAS DE 2 GRADOS DE LIBERTAD PRIMERA PARTE: APLICACIÓN DE LAS ECUACIONES DE LAGRANGE

Trabajo Práctico 2 SISTEMAS DE 2 GRADOS DE LIBERTAD PRIMERA PARTE: APLICACIÓN DE LAS ECUACIONES DE LAGRANGE PRIMERA PARTE: APLICACIÓN DE LAS ECUACIONES DE LAGRANGE Problema 1. El sistema de la figura está constituido por un cilindro circular de masa m y radio r que rueda sin deslizar dentro de la superficie

Más detalles

CONSIDERACIONES GENERALES SOBRE ESTÁTICA

CONSIDERACIONES GENERALES SOBRE ESTÁTICA CONSIDERACIONES GENERALES SOBRE ESTÁTICA Índice 1. CONCEPTOS ÚTILES 2 1.1. Configuración geométrica de un sistema....................... 2 1.2. Ligaduras....................................... 2 1.3. Coordenadas

Más detalles

1. La capacidad límite del hábitat de un rebaño en vida salvaje es L. El ritmo de crecimiento dn dt

1. La capacidad límite del hábitat de un rebaño en vida salvaje es L. El ritmo de crecimiento dn dt AMPLIACIÓN DE MATEMÁTICAS Relación 3 005/006 1. La capacidad límite del hábitat de un rebaño en vida salvaje es L. El ritmo de crecimiento dn dt del rebaño, es proporcional a las oportunidades de crecimiento

Más detalles

ACADEMIA CENTRO DE APOYO AL ESTUDIO MOVIMIENTO VIBRATORIO.

ACADEMIA CENTRO DE APOYO AL ESTUDIO MOVIMIENTO VIBRATORIO. MOVIMIENTO VIBRATORIO. Movimiento vibratorio armónico simple 1. Explica como varía la energía mecánica de un oscilador lineal si: a) Se duplica la amplitud. b) Se duplica la frecuencia. c) Se duplica la

Más detalles

EXAMEN DE MATEMÁTICAS I (Primer Parcial) 10 de febrero de 2010

EXAMEN DE MATEMÁTICAS I (Primer Parcial) 10 de febrero de 2010 CUESTIONES TIPO TEST Sólo una respuesta a cada cuestión es correcta. Respuesta correcta: 0. puntos. Respuesta incorrecta: -0.1 puntos Respuesta en blanco: 0 puntos 1.- En un triángulo esférico rectángulo,

Más detalles

EXAMEN DE MATEMÁTICAS I. Test

EXAMEN DE MATEMÁTICAS I. Test Primer Parcial 16 de febrero de 005 Test Sólo una respuesta a cada cuestión es correcta. Respuesta correcta: 0. puntos. Respuesta incorrecta: -0.1 puntos Respuesta en blanco: 0 puntos 1.- Considerando

Más detalles

SISTEMAS NO LINEALES CLASE 1. Prof. Virginia Mazzone - Prof. Mariana Suarez. Introducción Desarrollo. 17 de marzo de 2010

SISTEMAS NO LINEALES CLASE 1. Prof. Virginia Mazzone - Prof. Mariana Suarez. Introducción Desarrollo. 17 de marzo de 2010 SISTEMAS NO LINEALES CLASE 1 Prof. Virginia Mazzone - Prof. Mariana Suarez 17 de marzo de 2010 Plan de la clase El curso: Introducción a los sistemas no lineales Programa Introducción Parte I: Análisis

Más detalles

9 Ecuaciones diferenciales ordinarias. Ecuaciones diferenciales de primer orden en forma normal

9 Ecuaciones diferenciales ordinarias. Ecuaciones diferenciales de primer orden en forma normal Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 9 Ecuaciones diferenciales ordinarias. Ecuaciones diferenciales de primer orden en forma normal 9.1 Definición Se llama ecuación diferencial ordinaria

Más detalles

Determinar el comportamiento transitorio y estacionario del sistema. Especificar e identificar las condiciones de operación

Determinar el comportamiento transitorio y estacionario del sistema. Especificar e identificar las condiciones de operación Análisis de estabilidad Determinar el comportamiento transitorio y estacionario del sistema Especificar e identificar las condiciones de operación El primer paso al analizar un sistema de control es establecer

Más detalles

Ecuaciones e inecuaciones. Sistemas de ecuaciones e inecuaciones

Ecuaciones e inecuaciones. Sistemas de ecuaciones e inecuaciones de ecuaciones e inecuaciones Álvarez S., Caballero M.V. y Sánchez M. a M. salvarez@um.es, m.victori@um.es, marvega@um.es 1 Índice 1. Definiciones 3 2. Herramientas 5 2.1. Factorización de polinomios: Regla

Más detalles

= f (a) R. f(x) f(a) x a. recta por (a, f(a)) de pendiente f(a+h2) f(a) recta tangente por (a, f(a)) de pendiente f (a)

= f (a) R. f(x) f(a) x a. recta por (a, f(a)) de pendiente f(a+h2) f(a) recta tangente por (a, f(a)) de pendiente f (a) 1 1. DERIVACIÓN 1.1. DEFINICIONES Y RESULTADOS PRINCIPALES Definición 1.1. Derivada. Sea f una función definida en un intervalo abierto I con a I. Decimos que f es derivable en a si existe y es real el

Más detalles

ECUACION DINÁMICA DE ROTACIÓN PURA DE UN CUERPO RIGIDO ALREDEDOR DE UN EJE ω

ECUACION DINÁMICA DE ROTACIÓN PURA DE UN CUERPO RIGIDO ALREDEDOR DE UN EJE ω ECUACION DINÁMICA DE ROTACIÓN PURA DE UN CUERPO RIGIDO ALREDEDOR DE UN EJE ω Suponiendo un cuerpo rígido que gira con velocidad angular ω alrededor del eje Z que permanece fijo al cuerpo. dl = ( dm R 2

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

PRÁCTICA 6: PÉNDULO FÍSICO Y MOMENTOS DE INERCIA

PRÁCTICA 6: PÉNDULO FÍSICO Y MOMENTOS DE INERCIA Departamento de Física Aplicada Universidad de Castilla-La Mancha Escuela Técnica Superior Ing. Agrónomos PRÁCTICA 6: PÉNDULO FÍSICO Y MOMENTOS DE INERCIA Materiales * Varilla delgada con orificios practicados

Más detalles

Momento angular de una partícula. Momento angular de un sólido rígido

Momento angular de una partícula. Momento angular de un sólido rígido Momento angular de una partícula Se define momento angular de una partícula respecto de del punto O, como el producto vectorial del vector posición r por el vector momento lineal mv L=r mv Momento angular

Más detalles

Medición de la aceleración de la gravedad Masa unida a un resorte

Medición de la aceleración de la gravedad Masa unida a un resorte Medición de la aceleración de la gravedad Masa unida a un resorte Física Experimental I Octubre 2010 Fernández, Yohanna (yoko_6_10@hotmail.com) Guariste, Maximiliano (maxi_862@hotmail.com) Correa, Pablo

Más detalles

Ejemplos de Modelos en Ecuaciones Diferenciales en Derivadas Parciales

Ejemplos de Modelos en Ecuaciones Diferenciales en Derivadas Parciales Ejemplos de Modelos en Ecuaciones Diferenciales en Derivadas Parciales Hugo Franco, PhD Principios de Modelado y Simulación CLASIFICACIÓN DE LAS ECUACIONES DIFERENCIALES PARCIALES (PDE s) Definiendo la

Más detalles

Estudiar las fuerzas que intervienen en diferentes situaciones de equilibrio estático de la partícula y

Estudiar las fuerzas que intervienen en diferentes situaciones de equilibrio estático de la partícula y Laboratori de Física I Estática Objetivo Estudiar las fuerzas que intervienen en diferentes situaciones de equilibrio estático de la partícula y del sólido rígido. Material Panel vertical con dos poleas

Más detalles

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos Lección 2: Funciones vectoriales: límite y continuidad. Diferenciabilidad de campos vectoriales 1.1 Introducción En economía, frecuentemente, nos interesa explicar la variación de unas magnitudes respecto

Más detalles

Universidad Diego Portales

Universidad Diego Portales Universidad Diego Portales Facultad de Ingeniería. Instituto de Ciencias Básicas Asignatura: Cálculo II LABORATORIO Nº 0 Longitud de arco y Volumen de sólido de revolución Contenido: Longitud de arco en

Más detalles

A propósito de la Linealización

A propósito de la Linealización A propósito de la Linealización William Colmenares Universidad Simón Bolívar. Centro de Automática e Informática Resumen Unas notas muy breves sobre la linealización de sistemas no lineales 1. Una introducción

Más detalles

Ejemplos de los capítulos I, II, III y IV

Ejemplos de los capítulos I, II, III y IV 1. Considere el péndulo compuesto mostrado a continuación. Dicho péndulo consiste de una barra esbelta de longitud L, masa m, pivotada en el punto O. Utilizando el desplazamiento angular de la barra θ

Más detalles

Métodos Numéricos en Ecuaciones Diferenciales Ordinarias

Métodos Numéricos en Ecuaciones Diferenciales Ordinarias Tema 4 Métodos Numéricos en Ecuaciones Diferenciales Ordinarias 4.1 Introducción Estudiaremos en este Tema algunos métodos numéricos para resolver problemas de valor inicial en ecuaciones diferenciales

Más detalles

Ecuaciones diferenciales ordinarias

Ecuaciones diferenciales ordinarias Tema 9 Ecuaciones diferenciales ordinarias Versión: 13 de mayo de 29 9.1 Introducción El objetivo de este tema es exponer muy brevemente algunos de los conceptos básicos relacionados con las ecuaciones

Más detalles

Cinemática del sólido rígido

Cinemática del sólido rígido Cinemática del sólido rígido Teoría básica para el curso Cinemática del sólido rígido, ejercicios comentados α δ ω B B A A P r B AB A ω α O Ramírez López-Para, Pilar Loizaga Garmendia, Maider López Soto,

Más detalles

Tema 8 Ecuaciones diferenciales

Tema 8 Ecuaciones diferenciales Tema 8 Ecuaciones diferenciales 1. ECUACIONES DIFERENCIALES ORDINARIAS Definición 1.1: Ecuación diferencial Se llama ecuación diferencial de orden n a una ecuación que relaciona la variable independiente

Más detalles

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía Física y Química 1º Bachillerato LOMCE Bloque 3: Trabajo y Energía Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre un cuerpo que experimenta un desplazamiento,

Más detalles

CURSO 2015/2016 FÍSICA

CURSO 2015/2016 FÍSICA INFORMACIÓN SOBRE LA PRUEBA DE ACCESO PARA MAYORES DE 25 AÑOS CURSO 2015/2016 FÍSICA 1. TEMARIO: CONTENIDOS Y BIBLOGRAFÍA RECOMENDADA. 1. Magnitudes escalares y vectoriales. Algebra vectorial. Sistemas

Más detalles

Tema 2: Representación y modelado de sistemas dinámicos

Tema 2: Representación y modelado de sistemas dinámicos Fundamentos de Control Automático 2º G. Ing. Tecn. Industrial Tema 2: Representación y modelado de sistemas dinámicos Índice del tema Tema 2: Representación y modelado de sistemas dinámicos 2. Señales

Más detalles

Nombre de la asignatura: Ingeniería Mecatrónica. Clave de la asignatura: MCM Horas teoría-horas práctica-créditos: 3-2-8

Nombre de la asignatura: Ingeniería Mecatrónica. Clave de la asignatura: MCM Horas teoría-horas práctica-créditos: 3-2-8 . - DATOS DE LA ASIGNATURA Nombre de la asignatura: Dinámica Carrera: Ingeniería Mecatrónica Clave de la asignatura: MCM-009 Horas teoría-horas práctica-créditos: --8. - UBICACIÓN a) RELACION CON OTRAS

Más detalles

MOVIMIENTO OSCILATORIO O VIBRATORIO

MOVIMIENTO OSCILATORIO O VIBRATORIO MOVIMIENTO OSCILATORIO O VIBRATORIO 1. Movimiento armónico simple (MAS). 2. Ecuaciones del MAS. 3. Dinámica del MAS. 4. Energía del MAS. 5. El oscilador armónico. 6. El péndulo simple. Física 2º bachillerato

Más detalles

4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE

4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE Análisis de funciones de una variable 49 4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE En esta sección realizaremos algunos ejercicios sobre el estudio de funciones de una variable: En la parte final hay ejercicios

Más detalles

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento.

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento. Problemas de M.A.S. 1.- Una partícula animada de m.a.s. inicia el movimiento en el extremo positivo de su trayectoria y tarda 0'5 s en llegar al centro de la misma. La distancia entre ambas posiciones

Más detalles

4.- ANALISIS DE SISTEMAS EN TIEMPO CONTINUO

4.- ANALISIS DE SISTEMAS EN TIEMPO CONTINUO ANALISIS DE SISTEMAS EN TIEMPO CONTINUO Dinámica de Sistemas 4. 4.- ANALISIS DE SISTEMAS EN TIEMPO CONTINUO 4..- Efecto de los polos en el comportamiento del sistema. 4..- Estabilidad. 4.3.- Análisis de

Más detalles

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL PARANÁ

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL PARANÁ UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL PARANA ANÁLISIS MATEMATICO I ALGEBRA Y GEOMETRIA ANALITICA TRABAJO PRACTICO INTEGRADOR Nº1 PARTE C UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL

Más detalles

Introducción. La masa intrínseca ( m ) y el factor frecuencia ( f ) de una partícula masiva están dados por: . = m o

Introducción. La masa intrínseca ( m ) y el factor frecuencia ( f ) de una partícula masiva están dados por: . = m o UNA FORMULACIÓN INVARIANTE DE LA RELATIVIDAD ESPECIAL A. Blato Licencia Creative Commons Atribución 3.0 (207) Buenos Aires Argentina Este artículo presenta una formulación invariante de la relatividad

Más detalles

MDOF. Dinámica Estructural Aplicada II C 2012 UCA

MDOF. Dinámica Estructural Aplicada II C 2012 UCA MDOF Dinámica Estructural Aplicada II C 2012 UCA Desde el punto de vista dinámico, interesan los grados de libertad en los que se generan fuerzas generalizadas de inercia significativas; es decir, fuerzas

Más detalles

Tema 4: Dinámica del punto I

Tema 4: Dinámica del punto I Tema 4: Dinámica del punto I FISICA I, 1º Grado en Ingeniería Aeroespacial Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Introducción Leyes de Newton Fuerzas activas y de reacción

Más detalles

Ecuaciones e inecuaciones. Sistemas de ecuaciones e inecuaciones

Ecuaciones e inecuaciones. Sistemas de ecuaciones e inecuaciones Ecuaciones e inecuaciones. Sistemas de ecuaciones e inecuaciones Álvarez S., Caballero M.V. y Sánchez M. a M. salvarez@um.es, m.victori@um.es, marvega@um.es Índice 1. Herramientas 6 1.1. Factorización

Más detalles

Prof. Virginia Mazzone - Mariana Suarez

Prof. Virginia Mazzone - Mariana Suarez SISTEMAS NO LINEALES SISTEMAS DE SEGUNDO ORDEN Prof. Virginia Mazzone - Prof. Mariana Suarez 1 Introducción Método de isoclinas Ejemplos 3 Introducción Un sistema de segundo orden autónomo está representado

Más detalles

Informe De Laboratorio PRÁCTICA 3: PERIODO DEL PENDULO SIMPLE

Informe De Laboratorio PRÁCTICA 3: PERIODO DEL PENDULO SIMPLE R Informe De Laboratorio PRÁCTICA 3: PERIODO DEL PENDULO SIMPLE Presentado Por: JEAN NICOLAS HERNANDEZ BUITRAGO G7N16 ALEJANDRO GOMEZ G7N15 MAURICIO POLANIA G7N23 SANTIAGO ALDANA G7N02 Presentado a: JAIME

Más detalles

Unidad IV: Sistemas de ecuaciones diferenciales lineales

Unidad IV: Sistemas de ecuaciones diferenciales lineales Unidad IV: Sistemas de ecuaciones diferenciales lineales 4.1 Teoría preliminar 4.1.1 Sistemas de EDL Los problemas de la vida real pueden representarse de mejor manera con la ayuda de múltiples variables.

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Estudio del movimiento armónico simple. Desde el punto de vista dinámico, es el movimiento de una partícula que se mueve sobre una recta, sometida a la acción de una fuerza atractiva

Más detalles

Bajo estas hipótesis la ley de Newton permite escribir las ecuaciones del cohete (ver Figura 1.1) como. = m(t) g + T (t), = g + dx dt (0) = v 0.

Bajo estas hipótesis la ley de Newton permite escribir las ecuaciones del cohete (ver Figura 1.1) como. = m(t) g + T (t), = g + dx dt (0) = v 0. CAPÍTULO 1 INTRODUCCIÓN Ejercicios resueltos Problema 1. Desarrolle un modelo simplificado de un coete como un cuerpo sujeto a la gravedad que se mueve en vertical por el empuje de una fuerza de propulsión

Más detalles

Práctico 2: Mecánica lagrangeana

Práctico 2: Mecánica lagrangeana Mecánica Anaĺıtica Curso 2016 Práctico 2: Mecánica lagrangeana 1. La polea y la cuerda de la figura son ideales y los bloques deslizan sin roce. Obtenga las aceleraciones de los bloques a partir de las

Más detalles

Posición de un Cuerpo. Elementos para la descripción del movimiento. Vector de Posición y Vector Desplazamiento

Posición de un Cuerpo. Elementos para la descripción del movimiento. Vector de Posición y Vector Desplazamiento 1 Bárbara Cánovas Conesa 637 70 113 www.clasesalacarta.com 1 Cinemática Posición de un Cuerpo Coordenadas Cartesianas Coordenadas Polares Vector de Posición (,, z) r, q r Elementos para la descripción

Más detalles

CRITERIOS DE EVALUACIÓN 1º BACH. C. N. S. MATEMÁTICAS I

CRITERIOS DE EVALUACIÓN 1º BACH. C. N. S. MATEMÁTICAS I CRITERIOS DE EVALUACIÓN 1º BACH. C. N. S. MATEMÁTICAS I UNIDAD 1 NÚMEROS REALES 1.1. Dados varios números, los clasifica en los distintos campos numéricos y los representa en la recta real. 1.2. Domina

Más detalles

Cinemática y Dinámica

Cinemática y Dinámica Cinemática y Dinámica Cinética de la partícula Objetivo: El alumno aplicará las leyes de Newton en la resolución de ejercicios de movimiento de la partícula en un plano, donde intervienen las causas que

Más detalles