SISTEMAS NO LINEALES CLASE 1. Prof. Virginia Mazzone - Prof. Mariana Suarez. Introducción Desarrollo. 17 de marzo de 2010

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SISTEMAS NO LINEALES CLASE 1. Prof. Virginia Mazzone - Prof. Mariana Suarez. Introducción Desarrollo. 17 de marzo de 2010"

Transcripción

1 SISTEMAS NO LINEALES CLASE 1 Prof. Virginia Mazzone - Prof. Mariana Suarez 17 de marzo de 2010

2 Plan de la clase El curso: Introducción a los sistemas no lineales

3 Programa Introducción Parte I: Análisis de sistemas no lineales (SNL) Introducción, sistemas planares, ciclos límite, estabilidad de Lyapunov. Parte II: Control de sistemas no lineales Control en realimentación, linealización exacta por realimentación, control por modo deslizante, introducción a los observadores no lineales.

4 Bibliografía Introducción Obligatoria: Khalil: Nonlinear Systems Slotine- Li : Applied Nonlinear Control D Attellis: de control y sus aplicaciones

5 Bibliografía (cont.) Introducción De consulta: Sontag: Mathematical Control Theory

6 Evaluación: Introducción 1 Presentación, por escrito y en forma individual, de una serie de problemas resueltos. 2 Coloquio oral.

7 Modelos de SNL Introducción Sistemas dinámicos representados por la EDO vectorial de primer orden ẋ = f (x,u) donde x R n es el vector de estados y u R p es el vector de entradas. Ecuación de salida y = h(x,u)

8 Sistemas no forzados Introducción 1 Sistemas estacionarios o invariantes en el tiempo ẋ = f (x) (1) 2 Sistemas inestacionarios o variantes en el tiempo ẋ = f (x,t) (2)

9 Definición (Puntos de Equilibrio) Un punto x = x en el espacio de estado es un punto de equilibrio (PE)de (1) si tiene la propiedad de que cuando el estado inicial del sistema es x, el estado permanece en x en todo tiempo futuro.

10 Puntos de Equilibrio (cont.) Los PE de (1) son las raíces de la ecuación Ejemplo: Sistema lineal. El sistema f (x) = 0 ẋ = Ax + Bu tiene como único punto de equilibrio a x = 0

11 Insuficiencia de la linealización El análisis de la linealización de un SNL no es suficiente ya que: 1 la linealización sólo predice comportamiento local. 2 se pierde la riqueza de la dinámica del SNL : escape en tiempo finito, ciclos límite, múltiples PE aislados, oscilaciones, caos.

12 Ejemplos Introducción Ejemplo 1: El péndulo Ecuación: ml θ = mgsenθ kl θ, donde m: masa de la bola, l: long. del brazo, θ: áng. entre vertical y brazo, g: acel. de la gravedad, k:coef. de fricción.

13 Ejemplos Introducción Ejemplo 1 (cont.): Variables de estado: x 1 = θ, x 2 = θ Ecuaciones de estado: ẋ 1 = x 2 ẋ 2 = g l senx 1 k m x 2

14 Ejemplos Introducción Ejemplo 1 (cont.): Puntos de equilibrio: Haciendo ẋ 1 = ẋ 2 = 0, los PE son Físicamente: (0,0) PE estable (π,0) PE inestable (nπ,0), n = 0,±1,±2,...

15 Ejemplos Introducción Ejemplo 2: Sistema masa-resorte Por Ley de Newton mÿ + F f + F r = F donde F f :fuerza resistiva de fricción F r : fuerza de recuperación del resorte F : fuerza externa. F = g(y), g(0) = 0

16 Ejemplos Introducción Expresiones para la fuerza de recuperación del resorte F r = g(y) ky pequeños desplazamientos k(1 a 2 y 2 )y ay < 1 grandes desplaz., resorte suave k(1 + a 2 y 2 )y grandes desplaz., resorte duro

17 Ejemplos Introducción Expresiones para la fuerza de fricción F v = h(ẏ) h(0) = 0 fuerza viscosa F v = cẏ pequeñas velocidades F s = µ s mg fricción estática, 0 > µ s > 1 F d = µ k mg fricción de deslizamiento

18 Ejemplos (cont.): Una ecuación para el sistema masaresorte Ecuación de Duffing Combinando resorte duro, amortiguamiento lineal y fuerza ext. periódica F = Acosωt se tiene mÿ + cẏ + ky + ka 2 y 3 = Acosωt estudio de la excitación periódica de SNL

19 Ejemplos (cont.): Otra ecuación para el sistema masaresorte Modelo ideal para la fuerza de fricción F d = µ k mg para ẏ < 0 F s para ẏ = 0 µ k mg para ẏ > 0 (3)

20 Ejemplos (cont.): Otra ecuación para el sistema masaresorte Combinando resorte lineal con amortiguamiento viscoso, fricción estática y fuerza ext. nula se tiene mÿ + cẏ + ky + η(y,ẏ) = 0

21 Ejemplos (cont.): Otra ecuación para el sistema masaresorte Donde η(y,ẏ) = µ k mg sign(ẏ) para ẏ > 0 ky para ẏ = 0 y ẏ µ s mg/k µ s mg sign(y) para ẏ = 0 y y > µ s mg/k (4)

22 Ejemplos (cont.): Otra ecuación para el sistema masaresorte Ecuaciones de estado: ẋ 1 = x 2 ẋ 2 = k m x 1 c m x 2 1 m η(x 1,x 2 ) Puntos de equilibrio: no aislados (conjunto de equilibrio) Miembro derecho de la ec. es función discontinua del estado

23 Modelo de Lotka-Volterra Competencia entre dos especies (conejos y ovejas) ambas compiten por la misma comida la cantidad disponible es limitada se ignoran: predadores, efectos estacionales, otros.

24 Modelo de Lotka-Volterra (cont.) Efectos: si hubiera una sola especie (modelo logístico) ( Ṅ = rn 1 N ) k si están ambas, habrá conflicto: se reduce el crecimiento de ambas especies.

25 Modelo de Lotka-Volterra (cont.) El siguiente modelo incorpora estas hipótesis ẋ = x(a x by) ẏ = y(c x y) donde a, b, c son parámetros positivos.

26 Modelo de Lotka-Volterra (cont.) Buscamos los puntos de equilibrio para los valores a = 3, b = 2, c = 2. ẋ = 0 ẏ = 0 Los PE son (0,0), (0,2), (3,0), (1,1). SNL planar, con equilibrios múltiples que pueden analizarse por medio de su retrato de fase

27 Las ecuaciones de Lorenz Teoría del Caos (1963): trabajo de Lorenz. Se intentaba dar una explicación y predicción global del clima atmosférico. Las ecuaciones que modelaban la atmósfera son aproximaciones a las ecuaciones de Navier-Stokes. Se llega a las siguientes ecuaciones diferenciales.

28 Las ecuaciones de Lorenz (cont.) ẋ = σ(y x) ẏ = rx y xz ż = xy bz con σ, r, b parámetros definidos positivos.

29 Caos Introducción Definición: soluciones de sistemas dinámicos no lineales deterministas que oscilan aleatoriamente, con una oscilación irregular y aperiódica, y donde se tiene una gran sensibilidad a las condiciones iniciales imposibilidad de la previsión del comportamiento a grandes tiempos.

Representación en el espacio de estado. Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT

Representación en el espacio de estado. Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT Representación en el espacio de estado Representación en espacio de estado Control clásico El modelado y control de sistemas basado en la transformada de Laplace, es un enfoque muy sencillo y de fácil

Más detalles

Vibraciones Linealización de ecuaciones diferenciales

Vibraciones Linealización de ecuaciones diferenciales Vibraciones Linealización de ecuaciones diferenciales MScAA Marcos Knoblauch Departamento de Aeronáutica Universidad Nacional de La Plata Introducción Este documento contiene las ecuaciones y conceptos

Más detalles

Prof. Virginia Mazzone - Prof. Mariana Suarez

Prof. Virginia Mazzone - Prof. Mariana Suarez SISTEMAS NO LINEALES SISTEMAS PLANARES - CICLOS LÍMITES Prof. Virginia Mazzone - Prof. Mariana Suarez 1 Teorema de Hartman-Grobman 2 Teorema de Hartman-Grobman Teorema Sea ẋ = f (x), con f suficientemente

Más detalles

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro LISTA DE SÍMBOLOS Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro 2.1.1 Rigidez Flexiva que Difiere en dos Ejes x- Desplazamiento

Más detalles

UNIDAD I. EL MUNDO EN QUE VIVIMOS

UNIDAD I. EL MUNDO EN QUE VIVIMOS ÍNDICE UNIDAD I. EL MUNDO EN QUE VIVIMOS Capítulo 1. Estructura de la materia 3 1-1. La materia, 3. 1-2. Los elementos químicos, 3. 1-3. Atomos, 5. 1-4. Isótopos, 7. 1-5. Moléculas, 8. 1-6. Partículas

Más detalles

8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV

8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV 8.4. CRITERIO DE ESTAB.: METODO DE LIAPUNOV 309 8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV Consideremos el sistema autónomo dx = F (x, y) dt (8.32) dt = G(x, y), y supongamos que tiene

Más detalles

Ecuaciones de primer orden Ecuaciones de segundo orden Sistemas de ecuaciones de primer orden Modelo Malthusiano dp dt = rp, P(0) = P 0 donde r es la

Ecuaciones de primer orden Ecuaciones de segundo orden Sistemas de ecuaciones de primer orden Modelo Malthusiano dp dt = rp, P(0) = P 0 donde r es la Simulación numérica Ander Murua Donostia, UPV/EHU Ecuaciones de primer orden Ecuaciones de segundo orden Sistemas de ecuaciones de primer orden Modelo Malthusiano dp dt = rp, P(0) = P 0 donde r es la diferencia

Más detalles

Análisis de estabilidad de sistemas mediante el plano fase

Análisis de estabilidad de sistemas mediante el plano fase Análisis de estabilidad de sistemas mediante el plano fase Resumen Raúl Baeza Ornelas. Instituto Tecnológico y de Estudios Superiores de Occidente. 9-11 Julio 2009. Guadalajara, Jal., México. Se muestra

Más detalles

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE OBJETIVOS DEL APRENDIZAJE: ESTUDIAR LAS OSCILACIONES DEL PÉNDULO Y DETERMINAR LAS SIMPLIFICACIONES

Más detalles

Slide 1 / 47. Movimiento Armónico Simple Problemas de Práctica

Slide 1 / 47. Movimiento Armónico Simple Problemas de Práctica Slide 1 / 47 Movimiento Armónico Simple Problemas de Práctica Slide 2 / 47 Preguntas de Multiopcion Slide 3 / 47 1 Un bloque con una masa M está unida a un resorte con un constante k. El bloque se somete

Más detalles

Modelización por medio de sistemas

Modelización por medio de sistemas SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES. Modelización por medio de sistemas d y dy Ecuaciones autónomas de segundo orden: = f ( y, ) Una variable independiente. Una variable dependiente. La variable

Más detalles

Análisis en el plano de fases

Análisis en el plano de fases Análisis en el plano de fases Para un sistema lineal de segundo orden, ẍ + 2ξω 0 ẋ + ω0 = ω0u(t) 2 (1) Definiendo como variables de estado, 1 = Salida del sistema (posición) Velocidad = d 1 dt (velocidad)

Más detalles

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma:

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: 1.3. Oscilador armónico amortiguado 1» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: Si introducimos esta solución en

Más detalles

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna Física III (sección 1) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil Civil, Ingeniería

Más detalles

Práctico 2: Mecánica lagrangeana

Práctico 2: Mecánica lagrangeana Mecánica Anaĺıtica Curso 2016 Práctico 2: Mecánica lagrangeana 1. La polea y la cuerda de la figura son ideales y los bloques deslizan sin roce. Obtenga las aceleraciones de los bloques a partir de las

Más detalles

Introducción a la teoría de ciclos ĺımite

Introducción a la teoría de ciclos ĺımite Introducción a la teoría de ciclos ĺımite Salomón Rebollo Perdomo srebollo@inst-mat.utalca.cl Instituto de Matemática y Física 05-09 de enero, 2015. Talca, CL Contenido 1 Introducción Qué es un ciclo ĺımite?

Más detalles

Trabajo Práctico n 2. Robotización de un Puente Grúa. Presentación. Restricciones. Curso 2011

Trabajo Práctico n 2. Robotización de un Puente Grúa. Presentación. Restricciones. Curso 2011 Trabajo Práctico n 2 Robotización de un Puente Grúa Presentación Este problema consiste en desarrollar un sistema de control automático que permita robotizar la operación de un puente grúa para la carga

Más detalles

Ecología de Sistemas:

Ecología de Sistemas: Ecología de Sistemas: Aplicación de procedimientos de análisis de sistemas a la Ecología Bases para su desarrollo: Alta potencia de cálculo Simplificación formal de los ecosistemas complejos El carácter

Más detalles

Sistemas No-Lineales

Sistemas No-Lineales Sistemas No-Lineales Profesor: María Etchechoury Departamento de Matemática, Facultad de Ciencias Exactas Universidad Nacional de La Plata e-mail: marila@mate.unlp.edu.ar 3 1 1 3 3 1 1 3 1 Introducción

Más detalles

El atractor de Lorentz

El atractor de Lorentz El atractor de Lorentz Models Matemàtics i Sistemes Dinàmics, curs 2011-2012 (primavera) APMs p.1/11 Problema Consideramos un fluido (o gas) en una sección 2D ( < x

Más detalles

2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Soluciones del boletín de problemas 6

2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Soluciones del boletín de problemas 6 2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera 2003 Soluciones del boletín de problemas 6 Problema 1. Varilla deslizándose por una pared. Dado que los extremos de la varilla están forzados a permanecer

Más detalles

Proyectos de trabajos para Matemáticas

Proyectos de trabajos para Matemáticas Proyectos de trabajos para Matemáticas 14 de julio de 2011 Resumen En cada uno de los Proyectos elegidos, los estudiantes deberán completar las etapas siguientes: Comprender el problema. Tomarse el tiempo

Más detalles

Ciencia en su PC ISSN: Centro de Información y Gestión Tecnológica de Santiago de Cuba. Cuba

Ciencia en su PC ISSN: Centro de Información y Gestión Tecnológica de Santiago de Cuba. Cuba Ciencia en su PC ISSN: 7-887 cpc@megacen.ciges.inf.cu Centro de Información y Gestión Tecnológica de Santiago de Cuba Cuba Chang-Mumañ, Francisco; Mazaira-Morales, Israel CONTROL DE UN SERVOMOTOR DE CD.

Más detalles

Ondas Mecánicas. Introducción a la Física Ambiental. Tema 6. Tema 6.- Ondas Mecánicas.

Ondas Mecánicas. Introducción a la Física Ambiental. Tema 6. Tema 6.- Ondas Mecánicas. Ondas Mecánicas. Introducción a la Física Ambiental. Tema 6. IFA6. Prof. M. RAMOS Tema 6.- Ondas Mecánicas. Ondas periódicas: Definiciones. Descripción matemática. Ondas armónicas. Ecuación de ondas. Velocidad

Más detalles

ASIGNATURA: SISTEMAS DE CONTROL CÓDIGO: Teórico #4 Cursada 2015

ASIGNATURA: SISTEMAS DE CONTROL CÓDIGO: Teórico #4 Cursada 2015 ASIGNATURA: SISTEMAS DE CONTROL CÓDIGO: 0336 Teórico #4 Cursada 2015 RESUMEN CLASE ANTERIOR (Teórico #3) Capítulo 1 - Introducción 1-1. Descripción y aplicaciones de sistemas de control automático. 1-2.

Más detalles

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna Física III (sección 3) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid M. Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil, Ingeniería

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES Formas reducidas y escalonada de una matriz SISTEMAS DE ECUACIONES LINEALES ) Encuentre una sucesión de matrices elementales E, E,..., E k tal que

Más detalles

Capítulo 1 Vectores. 26 Problemas de selección - página 13 (soluciones en la página 99)

Capítulo 1 Vectores. 26 Problemas de selección - página 13 (soluciones en la página 99) Capítulo 1 Vectores 26 Problemas de selección - página 13 (soluciones en la página 99) 21 Problemas de desarrollo - página 22 (soluciones en la página 100) 11 1.A PROBLEMAS DE SELECCIÓN Sección 1.A Problemas

Más detalles

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa)

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa) Estática: leyes de Newton: equilibrio, masa, acción y reacción Primera ley de Newton (equilibrio) Un cuerpo permanece en reposo o en movimiento rectilíneo uniforme (M.R.U. = velocidad constante) si la

Más detalles

PROGRAMA DE CURSO. Código Nombre MA2601 Ecuaciones Diferenciales Ordinarias. Nombre en Inglés Ordinary Differential Equations SCT ,0 2,0 5,0

PROGRAMA DE CURSO. Código Nombre MA2601 Ecuaciones Diferenciales Ordinarias. Nombre en Inglés Ordinary Differential Equations SCT ,0 2,0 5,0 PROGRAMA DE CURSO Código Nombre MA2601 Ecuaciones Diferenciales Ordinarias Nombre en Inglés Ordinary Differential Equations es Horas de Horas Docencia Horas de Trabajo SCT Docentes Cátedra Auxiliar Personal

Más detalles

5 Estabilidad de soluciones de equilibrio

5 Estabilidad de soluciones de equilibrio Prácticas de Ecuaciones Diferenciales G. Aguilar, N. Boal, C. Clavero, F. Gaspar Estabilidad de soluciones de equilibrio Objetivos: Clasificar y analizar los puntos de equilibrio que aparecen en los sistemas

Más detalles

Métodos, Algoritmos y Herramientas

Métodos, Algoritmos y Herramientas Modelado y Simulación de Sistemas Dinámicos: Métodos, Algoritmos y Herramientas Ernesto Kofman Laboratorio de Sistemas Dinámicos y Procesamiento de la Información FCEIA - Universidad Nacional de Rosario.

Más detalles

Laboratorio de Física para Ingeniería

Laboratorio de Física para Ingeniería Laboratorio de para Ingeniería 1. Al medir la longitud de un cilindro se obtuvieron las siguientes medidas: x [cm] 8,45 8,10 8,40 8,55 8,45 8,30 Al expresar la medida en la forma x = x + x resulta: (a)

Más detalles

Aplicaciones de los S.E.D.O.

Aplicaciones de los S.E.D.O. Tema 7 Aplicaciones de los S.E.D.O. 7. Introducción Nota: APUNTES INCOMPLETOS Estudiaremos en este Tema algunos modelos de interés en las Ciencias Naturales que utilizan para su modelización sistemas de

Más detalles

Ayudantía 4. Ignacio Reyes Dinámica, Trabajo y Energía

Ayudantía 4. Ignacio Reyes Dinámica, Trabajo y Energía P. Universidad Católica de Chile Facultad de Física Estática y Dinámica Profesor Rafael Benguria Ayudantía 4 Ignacio Reyes (iareyes@uc.cl). Prob. 2/I--200 Dinámica, Trabajo y Energía Una partícula de masa

Más detalles

Línea de investigación o de trabajo: Electrónica de Potencia y Control Automático

Línea de investigación o de trabajo: Electrónica de Potencia y Control Automático ASIGNATURA: TEORÍA DE SISTEMAS LINEALES Nombre de la asignatura: TEORÍA DE SISTEMAS LINEALES Línea de investigación o de trabajo: Electrónica de Potencia y Control Automático Tiempo de dedicación del estudiante

Más detalles

Funciones de Lyapunov y Algunas Aplicaciones

Funciones de Lyapunov y Algunas Aplicaciones Universidad Veracruzana Facultad de Matemáticas Funciones de Lyapunov y Algunas Aplicaciones T E S I S que para aprobar la experiencia educativa Experiencia Recepcional correspondiente al plan de estudios

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

Robótica 4. Control de robots F. Hugo Ramírez Leyva

Robótica 4. Control de robots F. Hugo Ramírez Leyva Robótica 4. Control de robots F. Hugo Ramírez Leyva Cubículo 3 Instituto de Electrónica y Mecatrónica hugo@mixteco.utm.mx Marzo 2012 Representación en Variables de estado Un sistema dinámico no lineal

Más detalles

Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas.

Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas. Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas. Introducción y ecuaciones que rigen la propagación del oleaje. La propagación de oleaje en un fluido es un proceso no lineal. Podemos tratar

Más detalles

Nombre de la asignatura: Carrera: Clave de la asignatura: Participantes

Nombre de la asignatura: Carrera: Clave de la asignatura: Participantes 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Vibraciones Mecánicas Ingeniería Mecánica MCT - 0542 2 3 7 2.- HISTORIA DEL PROGRAMA

Más detalles

SIMULACIÓN DE UN SISMO MEDIANTE EL MOVIMIENTO DE UN PÉNDULO DOBLE

SIMULACIÓN DE UN SISMO MEDIANTE EL MOVIMIENTO DE UN PÉNDULO DOBLE INSTITUTO TECNOLÓGICO DE MATAMOROS SIMULACIÓN DE UN SISMO MEDIANTE EL MOVIMIENTO DE UN PÉNDULO DOBLE PROYECTO SEMESTRAL MATERIA HORARIO ASESOR EQUIPO 2 Análisis de vibraciones Lunes a Viernes, 17:00-18:00hrs.

Más detalles

INDICE Capitulo Primero. Número. Variable. Función Capitulo II. Límite y Continuidad de las Funciones Capitulo III. Derivada y Diferencial

INDICE Capitulo Primero. Número. Variable. Función Capitulo II. Límite y Continuidad de las Funciones Capitulo III. Derivada y Diferencial INDICE Capitulo Primero. Número. Variable. Función 1. Números reales. Representación de números reales por los puntos 1 del eje numérico 2. Valor absoluto de un número real 3 3. Magnitudes variables y

Más detalles

1. Modelos Matemáticos y Experimentales 1

1. Modelos Matemáticos y Experimentales 1 . Modelos Matemáticos y Experimentales. Modelos Matemáticos y Experimentales.. Definición.. Tipos de Procesos.3. Tipos de Modelos 3.4. Transformada de Laplace 4.5. Función de Transferencia 7.6. Función

Más detalles

Movimiento armónico simple

Movimiento armónico simple Slide 1 / 53 Movimiento armónico simple M.A.S. y movimiento circular Slide 2 / 53 Existe una conexión muy estrecha entre el movimiento armónico simple (M.A.S.) y el movimiento circular uniforme (M.C.U.).

Más detalles

Movimiento armónico simple

Movimiento armónico simple Slide 1 / 53 Slide 2 / 53 M.A.S. y movimiento circular Movimiento armónico simple Existe una conexión muy estrecha entre el movimiento armónico simple (M.A.S.) y el movimiento circular uniforme (M.C.U.).

Más detalles

Facultad de Ciencias Exactas y Tecnología Universidad Autónoma Gabriel René Moreno CARRERA DE INGENIERIA INDUSTRIAL

Facultad de Ciencias Exactas y Tecnología Universidad Autónoma Gabriel René Moreno CARRERA DE INGENIERIA INDUSTRIAL DATOS GENERALES PROGRAMA ANALITICO DE LA ASIGNATURA FISICA I (FIS- 100) ASIGNATURA:. Física I SIGLA Y CODIGO:... FIS 100 CURSO:.. Primer Semestre PREREQUISITOS: Ninguno HORAS SEMANAS:... 4 Teóricas y 4

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2012 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2012 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final Enero de 01 Problemas (Dos puntos por problema) Problem (Primer parcial): Un pescador desea cruzar un río de 1 km de ancho el cual tiene una corriente

Más detalles

EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO

EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO 1. Objetivo El objetivo de esta aplicación es ilustrar cómo se pueden integrar las ecuaciones diferenciales

Más detalles

2 Deniciones y soluciones

2 Deniciones y soluciones Deniciones y soluciones Sabemos que la derivada de una función y(x) es otra función y (x) que se determina aplicando una regla adecuada. Por ejemplo, la derivada de y = e 3x es dx = 6xe3x. Si en la última

Más detalles

Guía para oportunidades extraordinarias de Física 2

Guía para oportunidades extraordinarias de Física 2 Guía para oportunidades extraordinarias de Física 2 Capitulo 1 Vectores a) Introducción b) Cantidades vectoriales c) Métodos analíticos Capitulo 2 Dinámica a) Fuerza b) Leyes de Newton sobre el movimiento

Más detalles

Problemas propuestos y resueltos Leyes de Newton Elaborado por: profesora Pilar Cristina Barrera Silva

Problemas propuestos y resueltos Leyes de Newton Elaborado por: profesora Pilar Cristina Barrera Silva Problemas propuestos y resueltos Leyes de Newton Elaborado por: profesora Pilar Cristina Barrera Silva 5.46 Un bloque de masa 3 kg es empujado hacia arriba contra una pared por una pared con una fuerza

Más detalles

XV EVENTO NACIONAL DE CIENCIAS BÁSICAS, 2007 REACTIVOS PROPUESTOS PARA LA ETAPA REGIONAL

XV EVENTO NACIONAL DE CIENCIAS BÁSICAS, 2007 REACTIVOS PROPUESTOS PARA LA ETAPA REGIONAL Anotar el nombre del Instituto Tecnológico al que pertenece el docente que elabora el reactivo I. TECNOLÓGICO DE APIZACO FECHA 08/JUNIO/007 NOMBRE DEL PROFESOR Nombre del profesor que envía el reactivo

Más detalles

Chapter 1. Fuerzas. Por ejemplo: Si empujas una nevera, al empujarla se ejerce una fuerza. Esta fuerza se representa así:

Chapter 1. Fuerzas. Por ejemplo: Si empujas una nevera, al empujarla se ejerce una fuerza. Esta fuerza se representa así: Chapter 1 Fuerzas En Estática es muy usual tener un cuerpo u objeto que tiene varias fuerzas aplicadas. Es por esto que solucionar un problema de estática en pocas palabras quiere decir calcular cuánto

Más detalles

Promover la reflexión crítica desarrollando el pensamiento científico en sus aspectos operativos, formativos y fenomenológicos.

Promover la reflexión crítica desarrollando el pensamiento científico en sus aspectos operativos, formativos y fenomenológicos. Programas de Actividades Curriculares Plan 94A Carrera: Ingeniería Mecánica FISICA I Área: Bloque: Nivel: 1º. Ciencias Básicas Formación Básica Homogénea Tipo: Obligatoria. Modalidad: Anual Carga Horaria

Más detalles

Control de Fricción en Robots Industriales p.

Control de Fricción en Robots Industriales p. Control de Fricción en Robots Industriales p. Control de Fricción en Robots Industriales Juan C. Martínez-Rosas y Luis Alvarez-Icaza jcmtzr@yahoo.com, alvar@pumas.iingen.unam.mx Universidad Autónoma de

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

Práctica Módulo de torsión

Práctica Módulo de torsión Práctica Módulo de torsión Objetivo eterminar el módulo de torsión de varillas de distintos materiales por los métodos estático y dinámico. Material Aparato de torsión representado en la figura, varillas

Más detalles

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones.

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Movimiento de rotación. Cuerpos rígidos un cuerpo con una forma definida, que no cambia en forma que las partículas que lo componen permanecen

Más detalles

1. Estudio de la caída de un puente.

1. Estudio de la caída de un puente. 1 1. Estudio de la caída de un puente. A. Introducción Las oscilaciones de un puente bajo la acción de una fuerza externa pueden estudiarse a partir de la resolución de una ecuación a derivadas parciales

Más detalles

SOLUCION LINEAL DE LA ECUACIÓN DE ONDAS P R O P A G A C I Ó N D E L O L E A J E

SOLUCION LINEAL DE LA ECUACIÓN DE ONDAS P R O P A G A C I Ó N D E L O L E A J E SOLUCION LINEAL DE LA ECUACIÓN DE ONDAS P R O P A G A C I Ó N D E L O L E A J E T E O R Í A D E A I R Y TEMARIO INTRODUCCION CONSIDERACIONES MODELAMIENTO DE LA ECUACIÓN RESOLUCIÓN CONCLUSIÓN INTRODUCCION

Más detalles

A propósito de la Linealización

A propósito de la Linealización A propósito de la Linealización William Colmenares Universidad Simón Bolívar. Centro de Automática e Informática Resumen Unas notas muy breves sobre la linealización de sistemas no lineales 1. Una introducción

Más detalles

Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m.

Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m. Nombre: Curso:_3 Cuando un cuerpo están sometidos a una fuerzas neta nula es posible que el cuerpo este en reposo de traslación pero no en reposo de rotación, por ejemplo es posible que existan dos o más

Más detalles

Estudia las formas más generales del movimiento de la materia y sus transformaciones mutuas.

Estudia las formas más generales del movimiento de la materia y sus transformaciones mutuas. Capítulo 2 Mecánica de la partícula La Física es una ciencia exacta puesto que sus leyes están expresadas en forma matemática. Se puede enumerar algunas características de la Física como ciencia: Estudia

Más detalles

Control y Optimización de Bioreactores

Control y Optimización de Bioreactores Control y Optimización de Bioreactores Clase 1 Salomé Martínez 1 Héctor Ramírez C. 1 1 DIM & CMM, Universidad de Chile, Santiago de Chile Curso MA45C: Ecología Matemática 2010 Planificación 1 Introducción

Más detalles

ECUACIÓN DE OSCILACIONES. Tomado del texto de Ecuaciones Diferenciales de los Profesores. Norman Mercado. Luis Ignacio Ordoñéz

ECUACIÓN DE OSCILACIONES. Tomado del texto de Ecuaciones Diferenciales de los Profesores. Norman Mercado. Luis Ignacio Ordoñéz ECUACIÓN DE OSCILACIONES Tomado del texto de Ecuaciones Diferenciales de los Profesores Norman Mercado Luis Ignacio Ordoñéz Muchos de los sistemas de ingeniería están regidos por una ecuación diferencial

Más detalles

CONSIDERACIONES GENERALES SOBRE ESTÁTICA

CONSIDERACIONES GENERALES SOBRE ESTÁTICA CONSIDERACIONES GENERALES SOBRE ESTÁTICA Índice 1. CONCEPTOS ÚTILES 2 1.1. Configuración geométrica de un sistema....................... 2 1.2. Ligaduras....................................... 2 1.3. Coordenadas

Más detalles

Tema 1. Introducción al Control Automático

Tema 1. Introducción al Control Automático Tema 1. Introducción al Control Automático Automática 2º Curso del Grado en Ingeniería en Tecnología Industrial Contenido Tema 1.- Introducción al Control automático 1.1. Introducción. 1.2. Conceptos y

Más detalles

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección convección El modo de transferencia de calor por convección se compone de dos mecanismos de transporte, que son, la transferencia de energía debido al movimiento aleatorio de las moléculas (difusión térmica)

Más detalles

Estática. Equilibrio de un cuerpo rígido

Estática. Equilibrio de un cuerpo rígido Estática 5 Equilibrio de un cuerpo rígido Objectivos Escribir las ecuaciones de equilibrio de un cuerpo rígido. Concepto de diagrama de cuerpo libre para un cuerpo rígido. Resolver problemas de equilibrio

Más detalles

Estabilidad Entrada-Salida

Estabilidad Entrada-Salida Capítulo 6 Estabilidad Entrada-Salida Hasta ahora estuvimos trabajando con descripciones de sistemas en el espacio de estado. En el enfoque de espacio de estados trabajamos con ecuaciones de la forma ẋ

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE ASIGNATURA NOMBRE DE LA ASIGNATURA TRONCO COMÚN 2005-2 4348 DINÁMICA PRÁCTICA NO. DIN-09 LABORATORIO DE NOMBRE DE LA PRÁCTICA LABORATORIO DE CIENCIAS BÁSICAS PÉNDULO SIMPLE

Más detalles

Dinámica. Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos.

Dinámica. Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Dinámica Ingeniería Electromecánica EMM - 0511 3 2 8 2.- HISTORIA DEL PROGRAMA

Más detalles

Slide 1 / 71. Movimiento Armónico Simple

Slide 1 / 71. Movimiento Armónico Simple Slide 1 / 71 Movimiento Armónico Simple Slide 2 / 71 MAS y Movimiento Circular Hay una profunda conexión entre el Movimiento armónico simple (MAS) y el Movimiento Circular Uniforme (MCU). Movimiento armónico

Más detalles

Transformada de Laplace: Aplicación a vibraciones mecánicas

Transformada de Laplace: Aplicación a vibraciones mecánicas Transformada de Laplace: Aplicación a vibraciones mecánicas Santiago Gómez Jorge Estudiante de Ingeniería Electrónica Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía Blanca, Argentina thegrimreaper7@gmail.com

Más detalles

Introducción a los Sistemas de Control

Introducción a los Sistemas de Control Introducción a los Sistemas de Control Organización de la presentación - Introducción a la teoría de control y su utilidad - Ejemplo simple: modelado de un motor de continua que mueve una cinta transportadora.

Más detalles

Clasificación de sistemas

Clasificación de sistemas Capítulo 2 Clasificación de sistemas 2.1 Clasificación de sistemas La comprensión de la definición de sistema y la clasificación de los diversos sistemas, nos dan indicaciones sobre cual es la herramienta

Más detalles

Contenidos. Importancia del tema. Conocimientos previos para este tema?

Contenidos. Importancia del tema. Conocimientos previos para este tema? Transformación conforme Contenidos Unidad I: Funciones de variable compleja. Operaciones. Analiticidad, integrales, singularidades, residuos. Funciones de variable real a valores complejos. Funciones de

Más detalles

CAPITULO 11. MOVIMIENTO OSCILATORIO.

CAPITULO 11. MOVIMIENTO OSCILATORIO. CAPITULO 11. MOVIMIENTO OSCILATORIO. Los principales objetivos de los capítulos anteriores estaban orientados a describir el movimiento de un cuerpo que se puede predecir si se conocen las condiciones

Más detalles

CANTABRIA / JUNIO 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CANTABRIA / JUNIO 02. LOGSE / FÍSICA / EXAMEN COMPLETO CANTABRIA / JUNIO 0. LOGSE / FÍSICA / EXAMEN COMPLETO El alumno elegirá tres de las cinco cuestiones propuestas, así como sólo una de las dos opciones de problemas CUESTIONES ( puntos cada una) A. Se considera

Más detalles

Ecuaciones Diferenciales

Ecuaciones Diferenciales PLANIFICACIÓN 2014 Ecuaciones Diferenciales INFORMACIÓN GENERAL Carrera Ingeniería en Informática Departamento Formación Básica Plan de Estudios Plan 2006 Carácter Cuatrimestral Equipo Docente SIIO WEB

Más detalles

T9. RELATIVIDAD GENERAL (I): EL PRINCIPIO DE EQUIVALENCIA DE INERCIA Y GRAVEDAD

T9. RELATIVIDAD GENERAL (I): EL PRINCIPIO DE EQUIVALENCIA DE INERCIA Y GRAVEDAD T9. RELATIVIDAD GENERAL (I): EL PRINCIPIO DE EQUIVALENCIA DE INERCIA Y GRAVEDAD 1. Introducción 2. El principio de equivalencia A. La relatividad general B. La igualdad de masa inercial y masa gravitatoria

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago Guía dinámica. En general, los problemas de dinámica se resuelven aplicando 3 pasos: 1º Dibuje un diagrama de cuerpo libre para cada cuerpo involucrado en el sistema. Es decir, identifique todas las fuerzas

Más detalles

Tema 1 Movimiento Armónico Simple

Tema 1 Movimiento Armónico Simple Tema Movimiento Armónico Simple. Conceptos de movimiento oscilatorio: el movimiento armónico simple (MAS).. Ecuación general del MAS..3 Cinemática del MAS..4 Dinámica del MAS..5 Energía del MAS..6 Aplicación

Más detalles

Espacio afín. 1. Rectas en el espacio. Piensa y calcula. Aplica la teoría

Espacio afín. 1. Rectas en el espacio. Piensa y calcula. Aplica la teoría 6 Espacio afín 1. Rectas en el espacio Piensa y calcula Calcula las coordenadas de un vector que tenga la dirección de la recta que pasa por los puntos A2, 1, 5 y B3, 1, 4 AB 1, 2, 1 Aplica la teoría 1.

Más detalles

Tema 05: Características de un instrumento de medición

Tema 05: Características de un instrumento de medición Tema 05: Características de un instrumento de medición Solicitado: Tarea 06 Mapa conceptual: Características de un instrumento de medición M. en C. Edgardo Adrián Franco Martínez http://www.eafranco.com

Más detalles

INDICE Capítulo 1. Conversión de Energía Capítulo 2. Inductancia Capítulo 3. Transformador

INDICE Capítulo 1. Conversión de Energía Capítulo 2. Inductancia Capítulo 3. Transformador INDICE Capítulo 1. Conversión de Energía 1 1.1. Fuerza en un capacitor 2 1.2. El Toroide 5 1.3. Circuitos magnéticos en serie y paralelo 7 1.4. Otros sistemas comunes de unidades magnéticas 8 1.5. Materiales

Más detalles

IX. Análisis dinámico de fuerzas

IX. Análisis dinámico de fuerzas Objetivos: IX. Análisis dinámico de fuerzas 1. Comprender la diferencia entre masa y peso. 2. Comprender como calcular el momento de masa de inercia de un objeto. 3. Recordar el teorema de ejes paralelos.

Más detalles

Dinámica de los sistemas de partículas

Dinámica de los sistemas de partículas Dinámica de los sistemas de partículas Definiciones básicas Supongamos un sistema compuesto por partículas. Para cada una de ellas podemos definir Masa Posición Velocidad Aceleración Fuerza externa Fuerza

Más detalles

Contenidos Control y Automatización

Contenidos Control y Automatización Tema 2: Modelos Matemáticos Susana Borromeo Juan Antonio Hernández Tamames Curso 2014-2015 Contenidos 1. Conceptos básicos. 2. Modelado matemático de sistemas Físicos. Linealización. Función de Transferencia

Más detalles

Mecánica de Fluidos. Análisis Diferencial

Mecánica de Fluidos. Análisis Diferencial Mecánica de Fluidos Análisis Diferencial Análisis Diferencial: Descripción y caracterización del flujo en función de la descripción de una partícula genérica del flujo. 1. Introducción 2. Movimiento de

Más detalles

4.3 Problemas de aplicación 349

4.3 Problemas de aplicación 349 4. Problemas de aplicación 49 4. Problemas de aplicación Ejemplo 4.. Circuito Eléctrico. En la figura 4.., se muestra un circuito Eléctrico de mallas en el cual se manejan corrientes, una en cada malla.

Más detalles

TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO

TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO Temas 6 y 7 Rectas y planos en el espacio Matemáticas II - 2º Bachillerato 1 TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO RECTAS Y PLANOS EJERCICIO 1 : Halla el volumen del tetraedro determinado por los ejes

Más detalles

PROBLEMAS RESUELTOS EQUILIBRIO DE CUERPOS RÍGIDOS

PROBLEMAS RESUELTOS EQUILIBRIO DE CUERPOS RÍGIDOS PROBLEMAS RESUELTOS EQUILIBRIO DE CUERPOS RÍGIDOS 1. Una grúa móvil levanta una carga de madera que pesa W = 25 kn. El peso del mástil ABC y El peso combinado de la camioneta y el conductor son los indicados

Más detalles

TAREA 8, [ completa: incisos a), b), c), d), e) f) y g) ] CURSO FISICA I Resolver INDIVIDUALMENTE. Entregar el Martes 19 de noviembre, de 9 a 11 hrs

TAREA 8, [ completa: incisos a), b), c), d), e) f) y g) ] CURSO FISICA I Resolver INDIVIDUALMENTE. Entregar el Martes 19 de noviembre, de 9 a 11 hrs TAREA 8, [ completa: incisos a), b), c), d), e) f) y g) ] CURSO FISICA I Resolver INDIVIDUALMENTE. Entregar el Martes 19 de noviembre, de 9 a 11 hrs 1) EL PÉNDULO BALÍSTICO Se muestra un péndulo balístico,

Más detalles

1.1. Movimiento armónico simple

1.1. Movimiento armónico simple Problemas resueltos 1.1. Movimiento armónico simple 1. Un muelle cuya constante de elasticidad es k está unido a una masa puntual de valor m. Separando la masa de la posición de equilibrio el sistema comienza

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica

Más detalles

PROGRAMA DE ASIGNATURA CLAVE: 1213 SEMESTRE: 2º ESTÁTICA. HORAS SEMESTRE CARACTER GEOMETRÍA ANALÍTICA.

PROGRAMA DE ASIGNATURA CLAVE: 1213 SEMESTRE: 2º ESTÁTICA. HORAS SEMESTRE CARACTER GEOMETRÍA ANALÍTICA. UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN DIVISIÓN DE MATEMÁTICAS E INGENIERÍA LICENCIATURA EN INGENIERÍA CIVIL ACATLÁN PROGRAMA DE ASIGNATURA CLAVE: 1213 SEMESTRE:

Más detalles

Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física. Planificación FS-105 (II 2014)

Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física. Planificación FS-105 (II 2014) Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Planificación FS-105 (II 2014) Hoja de información, Física General para Arquitectura (FS-105) 1. Nombre Coordinador: Carlos

Más detalles

Aplicaciones de la Clasificación de endomorfismos Gloria Serrano Sotelo

Aplicaciones de la Clasificación de endomorfismos Gloria Serrano Sotelo Aplicaciones de la Clasificación de endomorfismos Gloria Serrano Sotelo Potencia y exponencial de una matriz Calculemos A 150 y e A siendo A 1 0 2-1 1 3 El polinomio característico de T es chxl Hx + 1L

Más detalles