0 si dos índices coinciden 1 si jkl es permutación impar de 123. = εjkl i X l (2) = εjkl i P l (3) = εjkl i L l (4)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "0 si dos índices coinciden 1 si jkl es permutación impar de 123. = εjkl i X l (2) = εjkl i P l (3) = εjkl i L l (4)"

Transcripción

1 Momento angular

2 Operador momento angular L = R P, L j = ε jkl X k P l (1) Tensor antisimétrico ε jkl = 0 si dos índices coinciden 1 si jkl es permutación par de si jkl es permutación impar de 123 Relaciones de conmutación [ Lj, X k ] = εjkl i X l (2) [ Lj, P k ] = εjkl i P l (3) [ Lj, L k ] = εjkl i L l (4) Módulo al cuadrado L 2 = L 2 x + L 2 y + L 2 z, [ L 2, L j ] = 0 1

3 En general, un momento angular es un operador J = J x u x + J y u y + J z u z cuyas componentes verifican [ Jj, J k ] = εjkl i J l. En consecuencia, J 2 = J 2 x + J 2 y + J 2 z verifica [ J 2, J ] = 0. Por tanto, podemos buscar autovectores comunes a J 2 y J z (elegimos el eje z como eje polar) 2

4 DEFINICIONES Y NOTACIÓN Operadores escalera J + = J x + ij y J = J x ij y Conmutadores [ Jz, J + ] = J+ [J z, J ] = J [ J+, J ] = 2 Jz [ J 2, J ± ] = [ J 2, J z ] = 0 Relación con J 2 J + J = J 2 x + J 2 y i [J x, J y ] = J 2 J 2 z + J z J J + = J 2 x + J 2 y + i [J x, J y ] = J 2 J 2 z J z J 2 = 1 2 ( J+ J + J J + ) + J 2 z 3

5 AUTOVECTORES Y AUTOVALORES Es claro que, para cualquier estado ψ se tiene que J 2 0 ya que J 2 i = ψ J2 i ψ = J i ψ 2 0. Autovalores de J 2 además serán λ 2, con λ 0, y λ = 0 si y sólo si J i ψ = 0, i. Autovalores de J z serán m y los autovectores comunes a J 2 y J z los denotaremos kλm (J 2 y J z no forman en general un CCOC) J 2 kλm = λ 2 kλm (5) J z kλm = m kλm (6) 4

6 Se verifica la desigualdad entre autovalores λ m 2. (λ m 2 ) 2 = kλm (J 2 J 2 z ) kλm = kλm (J 2 x + J 2 y ) kλm 0. Utilizando que J z J ± = [J z, J ± ]+J ± J z = ± J ± +J ± J z = J ± (J z ± ) y que [ J 2 ], J ± = 0 se tiene que J z J + kλm = (m + 1) J + kλm (7) J 2 J + kλm = λ 2 J + kλm (8) J z J kλm = (m 1) J kλm (9) J 2 J kλm = λ 2 J kλm (10) 5

7 La condición λ m 2 limita la magnitud de m. Por tanto, ha de existir un valor máximo de m, llamémosle j tal que Multiplicando por J, J + kλj = 0 J J + kλj = (J 2 J 2 z J z ) kλj En consecuencia, = 2 (λ j 2 j) kλj = 0.(11) λ = j 2 + j = j(j + 1) También ha de existir un valor mínimo de m, sea j, tal que J kλj = 0. Aplicando J + se obtiene que λ = j (j 1), de lo que se deduce j = j. 6

8 Como los valores de m varían en una unidad, deber ser j j entero, esto es, j ha de ser entero o semientero, j = 0, 1 2, 1, 3 2, 2, 5 2,... y para un valor dado de j, los posibles valores de m son m = j, j + 1,..., j 1, j. CAMBIO DE NOTACIÓN: Indexamos los autovectores con j en lugar de λ = j(j + 1), escribiremos kjm. J 2 kjm = j(j + 1) 2 kjm (12) J z kjm = m kjm (13) Es sencillo demostrar que J ± kjm = = (j m)(j ± m + 1) kjm ± 1 j(j + 1) m(m ± 1) kjm ± 1. 7 (14)

9 Como consecuencia de las relaciones de conmutación, en cualquier estado ψ, J x J y 2 J z. Para poder dar con toda precisión las tres componentes del momento angular debemos tener que J = 0, pero además necesitaremos, dado que J x = J y = J z = 0, J 2 x = J 2 y = J 2 z = 0, esto es, ha de verificarse J ψ = 0, J 2 ψ = 0. El único estado en que se pueden medir con toda precisión las tres componentes del momento angular es el vector k00. Para todos los demás estados, las fluctuaciones cuánticas hacen imposible medir las tres componentes simultáneamente. 8

10 MOMENTO ANGULAR ORBITAL Coordenadas esféricas x = r sin θ cos φ y = r sin θ sin φ z = r cos φ, (15) donde r 0, 0 θ π, 0 φ < 2π. El elemento de volumen es d r = r 2 drdω dω = sin θdθdφ. (16) Expresiones de las componentes de L ( L x = i sin φ θ + cos φ tan θ φ, (17) ( L y = i cos φ θ + sin φ ) tan θ φ, (18) L z = i φ. (19) A partir de ellas, ( L 2 = 2 θ tan θ θ + 1 ) sin 2 θ φ 2 (20), L ± = e ±iφ ( ) ± θ + i cot θ φ. (21) ) 9

11 Representación de posiciones: ecuación de autovalores y autofunciones, teniendo en cuenta que L sólo actúa sobre las variables angulares L 2 Yl m (θ, φ) = l(l + 1) 2 Yl m (θ, φ), (22) L z Yl m (θ, φ) = m Yl m (θ, φ). (23) Estas ecuaciones sólo tienen una única solución linealmente independiente para cada pareja de autovalores l(l + 1) y m. Incluyendo la dependencia respecto de r, ψ klm (r, θ, φ) = f klm (r)y m l (θ, φ). (24) Normalización: dω Yl m (θ, φ) 2 = 1, (25) 0 dr r2 f klm (r) 2 = 1. (26) 10

12 Tenemos que L z Y l m (θ, φ) = i φ Yl m (θ, φ) = myl m (θ, φ), (27) por tanto, Yl m (θ, φ) = Fl m (θ)e imφ. (28) La función de onda es monovaluada: φ y φ+2π corresponden al mismo punto del espacio, e im2π = 1, m es entero, l es entero. (29) Vamos a demostrar que todos los valores enteros no negativos son posibles para el número cuántico l, L + Yl l (θ, φ) = 0. (30) 11

13 Por tanto, ( d dθ l cot θ cuya solución es ) Fl l (θ) = 0, (31) F l l (θ) = c l (sin θ) l, (32) lo que significa que existe una única función l. i. Y l l (θ, φ) = c l (sin θ) l e ilφ. (33) Actuando con L, obtenemos sucesivamente el resto de autofunciones Yl l 1,..., Yl m,..., Yl l, que también son únicas. Las autofunciones Yl m (θ, φ), con la elección de la fase para c l c l = ( 1)l (2l + 1)! 2 l, (34) l! 4π se denominan ARMÓNICOS ESFÉRICOS. 12

14 Armónicos esféricos para l = 0, 1 y 2 Y0 0 = 1 4π Y 1 ±1 (θ, φ) = 3 8π sin θe±iφ Y1 0 3 (θ, φ) = 4π cos θ Y 2 ±2 15 (θ, φ) = 32π sin2 θe ±2iφ Y 2 ±1 15 (θ, φ) = sin θ cos θe±iφ 8π Y2 0 5 (θ, φ) = ( 3 cos 2 θ 1 ) 16π 13

15 Propiedades de los armónicos esféricos (comp. A V I ) L ± Y m l (θ, φ) = Ortonormalidad 2π 0 dφ π l(l + 1) m(m ± 1) Y m±1 l (θ, φ). (35) dθ sin θ Y m l 0 Cualquier función de los ángulos f(θ, φ) = c lm = Paridad +l l=0 m= l 2π π 0 dφ 0 (θ, φ)y m l (θ, φ) = δ ll δ mm. (36) c lm Y m l (θ, φ), (37) dθ sin θ Y m l (θ, φ)f(θ, φ). (38) Yl m (θ, φ) = ( 1) l Yl m (π θ, π + φ). (39) Conjugado Yl m (θ, φ) = ( 1) m Yl m (θ, φ). (40) 14

16 Base estándar del espacio de las funciones de onda de una partícula sin espín Los operadores L 2 y L z no constituyen un CCOC para el espacio de las funciones de onda de una partícula sin espín. En general, hay que introducir un índice k para denotar la degeneración existente una vez fijados (l, m). ψ klm ( r) = R klm (r)y m l (θ, φ). (41) Por ser autofunción de L 2 y L z, L ± ψ klm ( r) = l(l + 1) m(m ± 1) ψ klm±1 ( r), (42) y como L ± sólo actúa sobre las variables angulares, L ± ψ klm ( r) = R klm (r)l ± Yl m (θ, φ) = l(l + 1) m(m ± 1) R klm (r) Yl m±1 (θ, φ). (43) Por tanto, R klm±1 (r) = R klm (r). (44) 15

17 La parte radial no puede depender de m, esto es, ψ klm ( r) = R kl (r)y m l (θ, φ). (45) Relación de ortonormalidad d rψ klm ( r)ψ k l m ( r) = δ kk δ ll δ mm. (46) En consecuencia, 0 dr r2 R kl (r)r k l (r) = δ kk, (47) ya que los armónicos esféricos son ortogonales para l l. 16

18 Predicciones físicas Sea una función de onda arbitraria ψ( r) = k donde c klm = +l l=0 m= l 0 dr r2 R kl (r) 2π 0 dφ π o c klm R kl (r)y m l (θ, φ), (48) dθ sin θ Y m l (θ, φ)ψ(r, θ, φ). (49) La probabilidad de una medida conjunta de L 2 y L z es P L 2,L z (l, m) = k c klm 2, (50) y si sólo medimos L 2 o L z las probabilidades respectivas son P L 2(l) = +l m= l P Lz (m) = l m P L 2,L z (l, m), (51) P L 2,L z (l, m). (52) 17

19 Como el momento angular sólo actúa sobre las variables (θ, φ), sólo la dependencia en éstas es relevante para los cálculos anteriores, ψ(r, θ, φ) = +l l=0 m= l a lm (r)y m l (θ, φ),(53) a lm (r) = c klm R kl (r). (54) k Debido a la ortogonalidad de las funciones radiales, 0 dr r2 a lm (r) 2 = k = k k c klm c k lm dr 0 r2 Rkl (r)r k l (r) c klm 2, (55) y a lm (r) = 2π 0 dφ π 0 dθ sin θ Y m l (θ, φ)ψ(r, θ, φ). (56) 18

El átomo de hidrógeno

El átomo de hidrógeno El átomo de hiógeno Antonio. árquez Departamento de Química Física Universidad de Sevilla Curso 017/018 Índice 1. Ecuación de Schrodinger 1. Orbitales hiogenoides 5 3. Función de distribución radial 7

Más detalles

Apuntes de la asignatura Química Física II (Licenciatura en Química) Tema 6: Momento angular

Apuntes de la asignatura Química Física II (Licenciatura en Química) Tema 6: Momento angular Apuntes de la asignatura Química Física II Licenciatura en Química) Tema 6: Momento angular Ángel José Pére Jiméne Dept. de Química Física Univ. Alicante) Índice 1. Momento angular en Mecánica Clásica.

Más detalles

1.1 DEFINICIÓN CLÁSICA DEL MOMENTO ANGU- LAR

1.1 DEFINICIÓN CLÁSICA DEL MOMENTO ANGU- LAR Chapter MOMENTO ANGULAR La teoría del momento angular en mecánica cuántica es de gran importancia tanto por el número como por la variedad de sus consecuencias. A partir de la espectroscopía rotacional,

Más detalles

FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN

FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN 1. Considere el siguiente potencial (pozo infinito): { 0 x a; y b y z c V(x)= sino Escribiendo

Más detalles

El ÁTOMO de HIDRÓGENO

El ÁTOMO de HIDRÓGENO El ÁTOMO de HIDRÓGENO Dr. Andres Ozols Dra. María Rebollo FIUBA 006 Dr. A. Ozols 1 ESPECTROS DE HIDROGENO espectros de emisión espectro de absorción Dr. A. Ozols ESPECTROS DE HIDROGENO Secuencias de las

Más detalles

EL ÁTOMO DE HIDRÓGENO

EL ÁTOMO DE HIDRÓGENO EL ÁTOMO DE HIDRÓGENO El átomo de hidrógeno constituye uno de los pocos sistemas de interés químico que admite una solución exacta de la ecuación de Schröedinger. Para todos los demás sólo es factible

Más detalles

MECANICA CUANTICA AVANZADA FIM 8440 (6)

MECANICA CUANTICA AVANZADA FIM 8440 (6) MECANICA CUANTICA AVANZADA FIM 8440 (6) Ricardo Ramírez Facultad de Física, Pontificia Universidad Católica, Chile 1er. Semestre 2012 Rotaciones y Rotaciones y Si J es el momento angular de un sistema,

Más detalles

Ayudantía 11: Resumen Mecánica Cuántica

Ayudantía 11: Resumen Mecánica Cuántica Pontificia Universidad Católica de Chile Facultad de Física FIZ03 Física Cuántica I Ayudantía 11: Resumen Mecánica Cuántica Fabián Cádiz 0.1. Principios 0.1.1. El espacio de Hilbert La primera etapa en

Más detalles

Examen de Física Cuántica I

Examen de Física Cuántica I UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS FISICAS 9 de Junio de 2017 Examen de Física Cuántica I Nombre y Apellidos: Firma y DNI: Los alumnos que se presentan a toda la asignatura tienen que

Más detalles

Matemática Avanzada. Clase Nro. 22

Matemática Avanzada. Clase Nro. 22 Matemática Avanzada Clase Nro. 22 Octavio Miloni Facultad de Cs. Astronómicas y Geofísicas - Universidad Nacional de La Plata / 28 Aplicaciones a la Física Matemática Teoria del Potencial Problema de Contorno

Más detalles

Física cuántica I Grupo C 2015/16 Examen final 22 de junio de 2016

Física cuántica I Grupo C 2015/16 Examen final 22 de junio de 2016 UNIVERSIDAD COMPLUTENSE DE MADRID DEPARTAMENTO DE FÍSICA TEÓRICA I GRADO EN FÍSICA Física cuántica I Grupo C 15/1 Examen final de junio de 1 Nombre: Soluciones Firma: Problema 1 (1 punto). Un haz de radiación

Más detalles

Estructura de la Materia. Átomo de Hidrógeno. Martha M. Flores Leonar FQ UNAM. 16 de abril de 2018

Estructura de la Materia. Átomo de Hidrógeno. Martha M. Flores Leonar FQ UNAM. 16 de abril de 2018 Estructura de la Materia Átomo de Hidrógeno Martha M. Flores Leonar FQ UNAM 16 de abril de 2018 ÁTOMO DE HIDRÓGENO z θ r φ y x Ψ (r, θ, φ) = R (r) Θ (θ) Φ (φ) (1) Ĥ = 2 2µ 2 kze2 r (2) ĤΨ (r, θ, φ) = EΨ

Más detalles

HOJA DE PROBLEMAS 1: ENUNCIADOS

HOJA DE PROBLEMAS 1: ENUNCIADOS Tema: ESTRUCTURA ELECTRÓNICA DE LOS ÁTOMOS HOJA DE PROBLEMAS 1: ENUNCIADOS 1. ( ) Para describir el estado fundamental de una partícula que se encuentra en una caja de potencial unidimensional definida

Más detalles

Problemas de Mecánica Cuántica (para el Exámen Predoctoral)

Problemas de Mecánica Cuántica (para el Exámen Predoctoral) Problemas de Mecánica Cuántica (para el Exámen Predoctoral) 1 Formalismo general 1. Problema: Consideremos un sistema cuántico que contiene sólo dos estados linealmente independientes 1 y 2, 1 = 2 = (

Más detalles

t t, r ( t) = r(t). (8.1)

t t, r ( t) = r(t). (8.1) Capítulo 8 Inversión temporal 8.1. Inversión temporal en mecánica clásica Sean x(t) y p(t) la posición y el momento lineal de una partícula en función del tiempo. La operación de inversión temporal, además

Más detalles

Funciones de Legendre - Fórmulas

Funciones de Legendre - Fórmulas Funciones de Legendre - Fórmuas Agustín Nieto Departamento de Física Universidad de Oviedo 8 de mayo de Resumen Se dan fórmuas reacionadas os poinomios de Legendre, as funciones asociadas de Legendre y

Más detalles

Respuestas de la Serie 2

Respuestas de la Serie 2 Respuestas de la Serie 2 1. N h 2 Ĥ = 2 2M I I=1 }{{} A n h 2 2 + 2m i }{{} B N N I=1 J>I kz 2 e 2 R I R J } {{ } C N n kze 2 I } i R I r i {{} D + n n ke 2 r j>i i r j }{{} E a) En el orden en el que

Más detalles

ESTRUCTURA DE LA MATERIA

ESTRUCTURA DE LA MATERIA 7/03/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 0 7/03/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 1 7/03/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 1 7/03/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 3 7/03/18 FUNDAMENTOS

Más detalles

TEMA 2. Modelo mecanocuántico. ntico del átomo de

TEMA 2. Modelo mecanocuántico. ntico del átomo de TEMA. Modelo mecanocuántico ntico del átomo de hidrógeno Aunque la teoría de Bohr y la etensión de Somerfeld conducen a resultados satisfactorios para el átomo de hidrógeno su aplicación tropezaba con

Más detalles

Física Cuántica Partículas idénticas.

Física Cuántica Partículas idénticas. Física Cuántica Partículas idénticas. José Manuel López y Luis Enrique González Universidad de Valladolid Curso 2004-2005 p. 1/18 Partículas idénticas Qué son varias partículas idénticas? Las que tienen

Más detalles

Ecuaciones diferenciales en derivadas parciales Método de separación de variables

Ecuaciones diferenciales en derivadas parciales Método de separación de variables Ecuaciones diferenciales en derivadas parciales Método de separación de variables 1. Ecuaciones diferenciales en derivadas parciales. El problema de las condiciones de contorno. 2. La ecuación de Laplace

Más detalles

Rotaciones. R es ortogonal. Esto es :RR T = 1, donde R T ij =R ji. En efecto. R T R =1, R es una matriz ortogonal

Rotaciones. R es ortogonal. Esto es :RR T = 1, donde R T ij =R ji. En efecto. R T R =1, R es una matriz ortogonal Rotaciones Convención de Einstein: Dos índices repetidos en un monomio significan la suma de esos índices de 1 a la dimensión del espacio. Las rotaciones son transformaciones lineales, definidas por la

Más detalles

Hoja de Problemas 5. Física Atómica.

Hoja de Problemas 5. Física Atómica. Hoja de Problemas 5. Física Atómica. Fundamentos de Física III. Grado en Física. Curso 25/26. Grupo 56. UAM. 3-3-26 Problema En 896 el astrónomo americano Edward Charles Pickering observó unas misteriosas

Más detalles

Apuntes de la asignatura Química Física II (Licenciatura en Química) Tema 7: El átomo de hidrógeno

Apuntes de la asignatura Química Física II (Licenciatura en Química) Tema 7: El átomo de hidrógeno Apuntes de la asignatura Química Física II (Licenciatura en Química) Tema 7: El átomo de hidrógeno Ángel José Pérez Jiménez Dept. de Química Física (Univ. Alicante) Índice 1. Partícula sometida a un potencial

Más detalles

4 Momentos Angulares

4 Momentos Angulares 4 Momentos Angulares Estudiaremos en este capítulo la forma como se hace la adición de dos momentos angulares independientes en mecánica cuántica. Introduciremos los llamados coeficientes de Clebsh-Gordan

Más detalles

Vibración y rotación en mecánica cuántica

Vibración y rotación en mecánica cuántica Vibración y rotación en mecánica cuántica Antonio M. Márquez Departamento de Química Física Universidad de Sevilla Ultima actualización de marzo de 017 Índice 1. Oscilador armónico monodimensional 1. Cuantización

Más detalles

Átomos Hidrogenoides

Átomos Hidrogenoides Átomos Hidrogenoides Gonzalo Abal Instituto de Física Facultad de Ingeniería Montevideo, Uruguay August 18, 2004 Contents 1 Introducción 1 2 Potenciales con simetría esférica 2 2.1 Armónicos Esféricos.........................

Más detalles

Química Física II. Tema II

Química Física II. Tema II Química Física II. Tema II TEMA II: LA ECUACIÓN DE SCHRÖDINGER 1. La ecuación de Schrödinger independiente del tiempo 2. La ecuación de Schrödinger dependiente del tiempo 3. Principio de incertidumbre

Más detalles

El átomo de hidrógeno

El átomo de hidrógeno El átomo de hiógeno Antonio M. Márquez Departamento de Química Física Universidad de Sevilla Curso 15-16 Problema 1 Calcule la probabilidad de que un electrón 1s del H se encuentre entre r r. La probabilidad

Más detalles

LOS POSTULADOS DE LA MECÁNICA CUÁNTICA

LOS POSTULADOS DE LA MECÁNICA CUÁNTICA LOS POSTULADOS DE LA MECÁNICA CUÁNTICA POSTULADO I Cualquier estado de un sistema dinámico de N partículas puede ser descrito por una función de las 3N coordenadas y del tiempo: La cantidad Ψ(q 1, q 2,...,

Más detalles

El átomo de hidrógeno

El átomo de hidrógeno El átomo de hiógeno Antonio M. Márquez Departamento de Química Física Universidad de Sevilla Curso 16-17 Problema 1 Calcule la probabilidad de que un electrón 1s del H se encuentre entre r y r. Solución

Más detalles

Capítulo 3. Átomos Hidrogenoides.

Capítulo 3. Átomos Hidrogenoides. Capítulo 3. Átomos Hidrogenoides. Objetivos: Introducción del concepto de orbital atómico Descripción de los números cuánticos en los orbitales atómicos Justificación cualitativa de la cuantización de

Más detalles

Lección: Modelos cuánticos útiles en Química

Lección: Modelos cuánticos útiles en Química Lección: Modelos cuánticos útiles en Química TEMA: Introducción 1 Adolfo Bastida Pascual Universidad de Murcia. España. I. La partícula en una caja de potencial.. 2 I.A. Ecuación de Schrödinger...........

Más detalles

Física cuántica I - Colección de ejercicios cortos

Física cuántica I - Colección de ejercicios cortos Física cuántica I - Colección de ejercicios cortos http://teorica.fis.ucm.es En las siguientes cuestiones una y sólo una de las cuatro respuestas ofrecidas es correcta. Dígase cuál. Es conveniente hacer

Más detalles

Gráficas de las partes angulares En la figura presentamos la gráfica de la función s: (1/4π) 1/2

Gráficas de las partes angulares En la figura presentamos la gráfica de la función s: (1/4π) 1/2 Gráficas de las partes angulares En la figura presentamos la gráfica de la función s: (1/4π) 1/2 La función s es un círculo porque siempre vale (1/4π) 1/2 independientemente del valor de los ángulos θ

Más detalles

Métodos Matemáticos en Física Lección 7A: Coordenadas curvilíneas (app_d_apl)

Métodos Matemáticos en Física Lección 7A: Coordenadas curvilíneas (app_d_apl) Lección 7A: Coordenadas curvilíneas (app_d_apl) Operadores diferenciales: gradiente, divergencia y laplaciano Recordatorio: Coordenadas cartesianas Gradiente 1 Divergencia 2 1 Leccion: Coordenadas curvilíneas

Más detalles

Orbitas tridimensionales y cuanticas a partir de la teoria ECE2: Mecanica Cuantica Lagrangiana.

Orbitas tridimensionales y cuanticas a partir de la teoria ECE2: Mecanica Cuantica Lagrangiana. Orbitas tridimensionales y cuanticas a partir de la teoria ECE2: Mecanica Cuantica Lagrangiana. por M. W. Evans y H. Eckardt Civil List YAlAS / UPlTEC (www.aias.us, www.upitec.org, www.archive.org, www.webarchive.org.uk,

Más detalles

Apuntes de la asignatura Química Física II (Licenciatura en Química) Tema 4: Postulados de la Mecánica Cuántica

Apuntes de la asignatura Química Física II (Licenciatura en Química) Tema 4: Postulados de la Mecánica Cuántica Apuntes de la asignatura Química Física II (Licenciatura en Química) Tema 4: Postulados de la Mecánica Cuántica Ángel José Pérez Jiménez Dept. de Química Física (Univ. Alicante) Índice 1. Descripción de

Más detalles

Estructura electrónica de los átomos

Estructura electrónica de los átomos Estructura electrónica de los átomos Partículas subatómicas Protón (p) 1,673 10-27 Kg + 1,602 10-19 C Goldstein (1886) Electrón (e) 9,109 10-31 Kg - 1,602 10-19 C Thomson (1897) Neutrón (n) 1,673 10-27

Más detalles

Serie de problemas para el curso. Química Cuantica I

Serie de problemas para el curso. Química Cuantica I erie de problemas para el curso Química Cuantica I Matemáticas Tema Resuelva todos los problemas del capítulo de la referencia B6 y compare sus resultados con las soluciones que se incluyen al final de

Más detalles

Simetría de funciones de onda y Principio de Pauli. Rueda Carlos Alberto Tinajero Verónica Tavera Hernández Rosario

Simetría de funciones de onda y Principio de Pauli. Rueda Carlos Alberto Tinajero Verónica Tavera Hernández Rosario Simetría de funciones de onda y Principio de Pauli Rueda Carlos Alberto Tinajero Verónica Tavera Hernández Rosario Introducción. En el espectro de emisión del sodio la línea amarilla es la más intensa

Más detalles

= r t r. r t r. x y z = senφ cos φ. z por lo que la representacion matricial de esta rotación es

= r t r. r t r. x y z = senφ cos φ. z por lo que la representacion matricial de esta rotación es Introducción 1. CARACTERIZACION DE UN SISTEMA CUANTICO Y SIMETRIAS En Mecánica Cuántica, las propiedades de los sistemas físicos están contenidas en el vector de estado ψ que vive en un espacio lineal

Más detalles

Síntesis de problemas con simetría esférica.

Síntesis de problemas con simetría esférica. Síntesis de problemas con simetría esférica. 1. Ondas esféricas. Supongamos que tenemos la ecuación de ondas en d = 3 u tt = c u (1) y vamos a buscar soluciones que espacialmente, solo dependen de la variable

Más detalles

9. Observables de dispersión en el formalismo de matriz S.

9. Observables de dispersión en el formalismo de matriz S. Mecánica Cuántica Avanzada Carlos Pena 9-9. Observables de dispersión en el formalismo de matriz S. [Ros XI.7, Sch 8.2, Ynd 22.3] Probabilidades de transición: regla de oro de Fermi generalizada En términos

Más detalles

Métodos Matemáticos en Física

Métodos Matemáticos en Física Lección 7A: Coordenadas curvilíneas (app_d_apl) Operadores diferenciales: gradiente, divergencia y laplaciano Recordatorio: Coordenadas cartesianas Gradiente 1 Divergencia 2 1 Leccion: Coordenadas curvilíneas

Más detalles

Química Física II. Curso Serie L02. Problemas de una partícula

Química Física II. Curso Serie L02. Problemas de una partícula Química Física II. Curso 009-00. Serie L0. Problemas de una partícula. La función de onda de una partícula libre que se mueve en una dimensión con energía constante es Ψ k (x, t) = ψ k (x)e iωt = Ae ikx

Más detalles

Sistemas de coordenadas

Sistemas de coordenadas Sistemas de coordenadas. Introducción En un sistema de coordenadas un punto se representa como la intersección de tres superficies ortogonales llamadas superficies coordenadas del sistema: u u u = cte

Más detalles

2. Método de separación de variables

2. Método de separación de variables APUNTES DE AMPIACIÓN DE MATEMÁTICAS II PARA INGENIEROS DE TEECOMUNICACIONES Elaborados por Arturo de Pablo, Domingo Pestana y José Manuel Rodríguez 2. Método de separación de variables 2.1. Separación

Más detalles

Matemática Avanzada. Clase Nro. 20

Matemática Avanzada. Clase Nro. 20 Matemática Avanzada Clase Nro. 20 Octavio Miloni Facultad de Cs. Astronómicas y Geofísicas - Universidad Nacional de La Plata / 2 Ecuación de Legendre Polinomios de Legendre Ecuación Diferencial de Legendre

Más detalles

Colominas I., Gómez H. Problemas de EDPs en la matemática aplicada 63/117

Colominas I., Gómez H. Problemas de EDPs en la matemática aplicada 63/117 Colominas I., Gómez H. Problemas de EDPs en la matemática aplicada 63/117 5. Se desea estudiar la distribución estacionaria de temperaturas en el interior de una esfera homogénea de radio R, centrada en

Más detalles

2. MECANICA CUANTICA DE SISTEMAS ELEMENTALES.

2. MECANICA CUANTICA DE SISTEMAS ELEMENTALES. . MECANICA CUANTICA DE SISTEMAS EEMENTAES... MOVIMIENTO TRASACIONA. A PARTÍCUA IBRE. Partícula de masa m moviéndose en la dimensión no sometida a fueras eternas: V( 0 Operador amiltoniano del sistema:

Más detalles

Anarmonicidad y resonancias en vibraciones de moléculas

Anarmonicidad y resonancias en vibraciones de moléculas Anarmonicidad y resonancias en vibraciones de moléculas PRINCIPIOS DE ESTRUCTURA DE LA MATERIA DR. LUIS ALBERTO VICENTE HINESTROZA WILLIAM GARCÍA SANTOS ARMANDO MARTÍNEZ DE LA PEÑA ELIA MÉNDEZ VARGAS Ciencia

Más detalles

Rotación y vibración de moléculas poliatómicas

Rotación y vibración de moléculas poliatómicas Rotación y vibración de moléculas poliatómicas Química Física Aplicada, UAM (Química Física Aplicada, UAM) Rotación y vibración de moléculas poliatómicas 1 / 1 Movimiento de rotación en moléculas poliatómicas

Más detalles

TEORIA ELECTROMAGNETICA FIZ 0321 (2)

TEORIA ELECTROMAGNETICA FIZ 0321 (2) TEORIA ELECTROMAGNETICA FIZ 0321 (2) Ricardo Ramírez Facultad de Física, Pontificia Universidad Católica, Chile 2do. Semestre 2006 Solución de problemas de electrostática Ecuación de Laplace Coordenadas

Más detalles

Polinomios de Legendre.

Polinomios de Legendre. . Introducción. Polinomios de Legendre. Los polinomios de Legendre constituyen una base ortogonal en el espacio de funciones definidas entre [, ]. Son soluciones de la familia de ecuaciones diferenciales

Más detalles

Teorema 1 (Cambio de Variable en R n ).

Teorema 1 (Cambio de Variable en R n ). Vamos a estudiar en este segundo capítulo sobre los cambios de variable para funciones de varias variables, algunos de los más habituales: los cambios de coordenadas a coordenadas polares en el plano,

Más detalles

Física Cuántica Atomos multielectrónicos.

Física Cuántica Atomos multielectrónicos. Física Cuántica Atomos multielectrónicos. José Manuel López y Luis Enrique González Universidad de Valladolid Curso 2004-2005 p. 1/19 Atomos multielectrónicos. Tenemos un sistema formado por un núcleo

Más detalles

MATEMÁTICA D y D 1 Módulo I: Análisis de Variable Compleja

MATEMÁTICA D y D 1 Módulo I: Análisis de Variable Compleja Matemática D y D MATEMÁTICA D y D Módulo I: Análisis de Variable Compleja Unidad 0 Números Complejos Mag. María Inés Baragatti Números complejos. Generalidades Un número complejo es un par ordenado de

Más detalles

Física Teórica 2. Primer cuatrimestre de Guía 4: Dinámica cuántica

Física Teórica 2. Primer cuatrimestre de Guía 4: Dinámica cuántica Física Teórica Primer cuatrimestre de 018 Guía 4: Dinámica cuántica 1. La representación matricial del Hamiltoniano correspondiente a un fotón propagándose en dirección del eje óptico de un cristal de

Más detalles

Física Teórica II Práctica 8: Teoría de Perturbaciones Parte I: Perturbaciones Independientes del Tiempo

Física Teórica II Práctica 8: Teoría de Perturbaciones Parte I: Perturbaciones Independientes del Tiempo Física Teórica II Parte I: Perturbaciones Independientes del Tiempo 1. Si los estados vibracionales de una molécula diatómica dipolar pueden ser descriptos adecuadamente por un potencial armónico unidimensional,

Más detalles

Por otra parte, una función es antisimétrica o impar cuando f(x) = -f(-x), por lo que, en este caso:

Por otra parte, una función es antisimétrica o impar cuando f(x) = -f(-x), por lo que, en este caso: Problemas de la Lección.) Justifíquese la simetría o asimetría de las funciones: a) Ψ () = cos() b) Ψ() = /sen() c) Ψ() = ( + )( - ) d) Ψ() = ep(-a ) e) Ψ() = F()F(-) f) Ψ() = ( - 4). Se dice que una función

Más detalles

Ejemplos de interferencia

Ejemplos de interferencia Tema 2_2 Ejemplos de interferencia El efecto fotoeléctrico Hipótesis de Plank: Sólo fotones con frecuencia mayor que un umbral Energía cinética del electrón emitido Qué tipo de partícula es el fotón?

Más detalles

Fotones, electrones, y. Dualidad onda partícula. Dualidad onda partícula. Ventaja de los electrones. Fotos enviadas por Sebastián Gómez (curso 2007)

Fotones, electrones, y. Dualidad onda partícula. Dualidad onda partícula. Ventaja de los electrones. Fotos enviadas por Sebastián Gómez (curso 2007) Fotones, electrones, y. Dualidad onda partícula partículas cuánticas ó paquetes de onda Se difractan si interactúan con objetos de tamaño comparable con su λ. Es decir en ese caso se comportan como ondas.

Más detalles

Producto tensorial entre tensores

Producto tensorial entre tensores Tensores cartesianos Producto tensorial entre tensores Producto tensorial entre tensores Se define el producto tensorial entre los tensores S CT(m) y T CT(n) como el tensor S T CT(n + m): S T = S i1...i

Más detalles

El campo magnético de las corrientes estacionarias

El campo magnético de las corrientes estacionarias El campo magnético de las corrientes estacionarias Introducción Propiedades diferenciales del campo magnético Propiedades integrales del campo magnético Teorema de Ampère El potencial vector Ecuaciones

Más detalles

dx = x El tensor x/ X se denomina tensor gradiente de la deformación F = x

dx = x El tensor x/ X se denomina tensor gradiente de la deformación F = x Capítulo 2 Cinemática El desarrollo de las expresiones contenidas en este capítulo se lleva a cabo en un sistema de referencia general cartesiano {I 1 I 2 I 3 }. La notación es, con algunas diferencias,

Más detalles

Mecánica Cuántica. Curso propedéutico Mauricio Fortes 21/10/09 IFUNAM. mfb (IFUNAM) MQ-3 21/10/09 1 / 30

Mecánica Cuántica. Curso propedéutico Mauricio Fortes 21/10/09 IFUNAM. mfb (IFUNAM) MQ-3 21/10/09 1 / 30 Mecánica Cuántica Curso propedéutico 2009 Mauricio Fortes IFUNAM 21/10/09 mfb (IFUNAM) MQ-3 21/10/09 1 / 30 Sitio web http://www.fisica.unam.mx/personales/fortes mfb (IFUNAM) MQ-3 21/10/09 2 / 30 Postulados

Más detalles

Definición 13.1 Definimos el conjunto de los polinomios de Laguerre {L n (t)} n N 0 mediante una cualquiera de las siguientes ecuaciones:

Definición 13.1 Definimos el conjunto de los polinomios de Laguerre {L n (t)} n N 0 mediante una cualquiera de las siguientes ecuaciones: Capítulo 13 Polinomios de Laguerre 13.1 Definición Definición 13.1 Definimos el conjunto de los polinomios de Laguerre {} n N mediante una cualquiera de las siguientes ecuaciones: = e t dn ( t n e t) =

Más detalles

EJERCICIOS PAU MATEMÁTICAS II ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU MATEMÁTICAS II ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com GEOMETRÍA 1- Dados el punto P(1,-1,0) y la recta : 1 0 3 3 0 a) Determine la ecuación general del plano (Ax+By+Cz+D=0) que contiene al punto P y a la recta s. b) Determine el ángulo que forman el plano

Más detalles

1. Clasifica las siguientes cónicas dando su ecuación reducida, centro o vértice y ejes (si es posible): (1.d) x 2 + y 2 + 2x + 1 = 0

1. Clasifica las siguientes cónicas dando su ecuación reducida, centro o vértice y ejes (si es posible): (1.d) x 2 + y 2 + 2x + 1 = 0 Clasificación de cónicas.. Clasifica las siguientes cónicas dando su ecuación reducida, centro o vértice y ejes si es posible:.a x xy + y + x y + 0.b x + xy y 6x + y 0.c x + xy + y x y 0.d x + y + x +

Más detalles

25 1. Conceptos fundamentales

25 1. Conceptos fundamentales 25 1. Conceptos fundamentales Problemas propuestos Problema 1.1. Si X,Y,Z son operadores, demostrad las propiedades siguientes utilizando la notación de bras y kets. a)(xy) = Y X y más generalmente(xy

Más detalles

1. ESPACIO EUCLÍDEO. ISOMETRÍAS

1. ESPACIO EUCLÍDEO. ISOMETRÍAS 1 1. ESPACIO EUCLÍDEO. ISOMETRÍAS Muchos de los fenómenos que se investigan en la geometría utilizan nociones como las de longitud de un vector y ángulo entre vectores. Para introducir estos dos conceptos

Más detalles

Campo de un hilo infinito. Fuerzas magnéticas. Teorema de Ampère. Campo magnético de una espira circular

Campo de un hilo infinito. Fuerzas magnéticas. Teorema de Ampère. Campo magnético de una espira circular El campo magnético de las corrientes estacionarias ntroducción Propiedades diferenciales del campo magnético Propiedades integrales del campo magnético Teorema de Ampère El potencial vector Ecuaciones

Más detalles

Ayudantía 13: Potencial central y primera descripción de átomos

Ayudantía 13: Potencial central y primera descripción de átomos Pontificia Universidad Católica de Chile Facultad de Física FIZ3 Física Cuántica I Ayudantía 13: Potencial central y primera descripción de átomos Fabián Cádiz.1. Movimiento en un potencial central Consideremos

Más detalles

Métodos Matemáticos para Físicos II

Métodos Matemáticos para Físicos II Métodos Matemáticos para Físicos II Profesor: Federico Pardo Casas Facultad de Ciencias Universidad Nacional de Ingeniería Lima, PERÚ Pardo Casas, Federico UNI Ciencias Física) CF391 Ciclo 2013 I 1 / 22

Más detalles

Procesamiento Cuántico de Datos. Miguel Arizmendi, Gustavo Zabaleta. 17 de noviembre de Sitio web: www3..mdp.edu.ar/fes/procq.

Procesamiento Cuántico de Datos. Miguel Arizmendi, Gustavo Zabaleta. 17 de noviembre de Sitio web: www3..mdp.edu.ar/fes/procq. Procesamiento Cuántico de Datos Miguel Arizmendi, Gustavo Zabaleta 17 de noviembre de 2016 Sitio web: www3..mdp.edu.ar/fes/procq.html Mecánica Cuántica y Qubits Qubits El qubit o bit cuántico es la unidad

Más detalles

2. El conjunto de los números complejos

2. El conjunto de los números complejos Números complejos 1 Introducción El nacimiento de los números complejos se debió a la necesidad de dar solución a un problema: no todas las ecuaciones polinómicas poseen una solución real El ejemplo más

Más detalles

Problemas. a a 0 a 0 A =

Problemas. a a 0 a 0 A = Problemas 1. La representación matricial del Hamiltoniano correspondiente a un fotón propagandose en dirección del eje óptico de un cristal de cuarzo usando como base los estados de polarización lineal

Más detalles

π, los niveles de energía que existen y la degeneración, o número de

π, los niveles de energía que existen y la degeneración, o número de EXAMEN DE SEPTIEMBRE DE QUÍMICA FÍSICA (3º Curso de Químicas): 9/9/8. ) a) Que propiedades poseen las funciones propias de un operador hermítico. b) Indicar para una configuración π, los nieles de energía

Más detalles

Tema 14 11/02/2005. Tema 8. Mecánica Cuántica. 8.1 Fundamentos de la mecánica cuántica

Tema 14 11/02/2005. Tema 8. Mecánica Cuántica. 8.1 Fundamentos de la mecánica cuántica Tema 14 11/0/005 Tema 8 Mecánica Cuántica 8.1 Fundamentos de la mecánica cuántica 8. La ecuación de Schrödinger 8.3 Significado físico de la función de onda 8.4 Soluciones de la ecuación de Schrödinger

Más detalles

+V(x,y,z).ψ(x,y,z,t) = i.h

+V(x,y,z).ψ(x,y,z,t) = i.h Ecuación n de Schrödinger -h ( Ψ Ψ Ψ ) m Ψ +V(x,y,z).ψ(x,y,z,t) = i.h x y z t h = h / π i = (-1) 1/ ψ(x,y,z,t)... función (compleja) de onda V(x,y,z)... función de energía potencial ψ (x,y,z,t)... puede

Más detalles

Electromagnetismo. Introducción. Líneas de campo magnético. Experimento de Oersted. El campo magnético de las corrientes estacionarias

Electromagnetismo. Introducción. Líneas de campo magnético. Experimento de Oersted. El campo magnético de las corrientes estacionarias El campo magnético de las corrientes estacionarias Electromagnetismo Andrés Cantarero Sáez Curso 25-26 Grupo C ntroducción Propiedades diferenciales del campo magnético Propiedades integrales del campo

Más detalles

Deformaciones. Contenidos

Deformaciones. Contenidos Lección 2 Deformaciones Contenidos 2.1. Concepto de deformación................... 14 2.2. Deformación en el entorno de un punto.......... 15 2.2.1. Vector deformación. Componentes intrínsecas........

Más detalles

UNIVERSIDAD SANTO TOMAS SECCIONAL BUCARAMANGA. División de Ingenierías - Facultad de Química Ambiental

UNIVERSIDAD SANTO TOMAS SECCIONAL BUCARAMANGA. División de Ingenierías - Facultad de Química Ambiental UNIVERSIDAD SANTO TOMAS SECCIONAL BUCARAMANGA División de Ingeniería Facultad de Química Ambiental Nombre de Asignatura: QUÍMICA CUÁNTICA Àrea: Básicas de Química Fisicoquímica Créditos: 3 Modalidad: Teórica

Más detalles

El espacio R n. Tema El conjunto R n El espacio vectorial R n

El espacio R n. Tema El conjunto R n El espacio vectorial R n Tema 1 El espacio R n En este primer tema de la asignatura recordaremos algunos conceptos ya estudiados acerca del conjunto R n y las estructuras sobre él definidas. Se presentarán por tanto bastantes

Más detalles

Espectroscopía atómica

Espectroscopía atómica C A P Í T U L O 6 Espectroscopía atómica 6.. ENUNCIADOS Y SOLUCIONES DE LOS PROBLEMAS PROBLEMAS 6. Demuestre la regla de selección angular del átomo hidrogenoide m = 0, ±. Para m m 2π 0 e im Φ e imφ dφ

Más detalles

Apuntes del Modelo del átomo hidrogenoide.

Apuntes del Modelo del átomo hidrogenoide. Apuntes del Modelo del átomo hidrogenoide. Dr. Andrés Soto Bubert Un átomo hidrogenoide es aquel que tiene un solo electrón de carga e, rodeando un núcleo de carga +Ze. Átomos que cumplen esta descripción

Más detalles

SEMINARIO 1: ELEMENTOS DIFERENCIALES DE LÍNEA, SUPERFICIE Y VOLUMEN

SEMINARIO 1: ELEMENTOS DIFERENCIALES DE LÍNEA, SUPERFICIE Y VOLUMEN SEMINARIO 1: ELEMENTOS DIFERENCIALES DE LÍNEA, SUPERFICIE Y VOLUMEN Sistemas de coordenadas 3D Transformaciones entre sistemas Integrales de línea y superficie SISTEMA COORDENADO CARTESIANO O RECTANGULAR

Más detalles

Anuladores. Objetivos. Definir el concepto de anuladores y estudiar sus propiedades principales.

Anuladores. Objetivos. Definir el concepto de anuladores y estudiar sus propiedades principales. Anuladores Objetivos. Definir el concepto de anuladores y estudiar sus propiedades principales. Requisitos. Espacio dual, espacio bidual, base dual.. Definición (anulador de un subconjunto de un espacio

Más detalles

Tema 14 Mecánica Cuántica

Tema 14 Mecánica Cuántica Tema 14 Mecánica Cuántica 1 14.1 Fundamentos de la mecánica cuántica 14. La ecuación de Schrödinger 14.3 Significado físico de la función de onda 14.4 Soluciones de la ecuación de Schrödinger para el átomo

Más detalles

Fotones, electrones, y. partículas cuánticas ó paquetes de onda

Fotones, electrones, y. partículas cuánticas ó paquetes de onda Fotones, electrones, y. partículas cuánticas ó paquetes de onda Larrondo 2009 Dualidad onda partícula Se difractan si interactúan con objetos de tamaño comparable con su λ. Es decir en ese caso se comportan

Más detalles

Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1. Se llama producto escalar sobre un espacio vectorial real V a cualquier aplicación

Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1. Se llama producto escalar sobre un espacio vectorial real V a cualquier aplicación Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 6 Espacios euclídeos 6.1 Producto escalar. Espacio euclídeo Se llama producto escalar sobre un espacio vectorial real V a cualquier aplicación

Más detalles

Universidad Nacional Autónoma de México Facultad de Ciencias Geometría Analítica II Tarea 1

Universidad Nacional Autónoma de México Facultad de Ciencias Geometría Analítica II Tarea 1 Universidad Nacional Autónoma de México Facultad de Ciencias Geometría Analítica II Tarea. Completa las igualdades usando el dibujo. γ β = α β = β + θ = θ + ε + ω = θ + ε = β + θ + ω = α + ε = β + δ =.

Más detalles

Rotación de moléculas diatómicas

Rotación de moléculas diatómicas Rotación de moléculas diatómicas Química Física Aplicada, UAM 23 de enero de 2011 (Química Física Aplicada, UAM) Rotación de moléculas diatómicas 23 de enero de 2011 1 / 29 Movimiento nuclear en moléculas

Más detalles

, SZ } como. i de estados propios de { ˆ s

, SZ } como. i de estados propios de { ˆ s Función de onda de spin de una partícula de spin S Si ψ es la función de onda de spin de una partícula de spin S, puede expandirse en la base Sσ de estados propios de {ˆ S, SZ } como ψ = S σ= S C σ Sσ.

Más detalles

Principios de Estructura de la Materia Equipo 4. Solución de la ecuación de Schrödinger para un rotor rígido

Principios de Estructura de la Materia Equipo 4. Solución de la ecuación de Schrödinger para un rotor rígido Principios de Estructura de la Materia Equipo 4 Ramírez Palma Lillian Gisela Rendón Gaytán Fernando Torres Alcalá Andrea Villanueva Sánchez Luis Felipe Solución de la ecuación de Schrödinger para un rotor

Más detalles

FÍSICA MODERNA FÍSICA CUÁNTICA. José Luis Rodríguez Blanco

FÍSICA MODERNA FÍSICA CUÁNTICA. José Luis Rodríguez Blanco FÍSICA MODERNA FÍSICA CUÁNTICA José Luis Rodríguez Blanco CRISIS DE LA FÍSICA CLÁSICA Problemas de la Física Clásica a finales del siglo XIX, principios del XX Espectros discontinuos de gases Efecto fotoeléctrico

Más detalles

Cálculo diferencial e integral 3

Cálculo diferencial e integral 3 Cálculo diferencial e integral 3 Guía 1 1. Sean a 1,..., a n R n. Demuestra que el conjunto { W = x = (x 1,..., x n ) R n es un subespacio vectorial de R n. } n a i x i = 0 i=1 2. Sean W y V subespacios

Más detalles