1.1) Escribir la solución de elementos nitos del problema. en (0, 1) u (0) = u (1) = 0. con el valor estimado por la fórmula del error.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1.1) Escribir la solución de elementos nitos del problema. en (0, 1) u (0) = u (1) = 0. con el valor estimado por la fórmula del error."

Transcripción

1 Examen Extraordinario de Métodos Matemáticos de la Especialidad (Técnicas Energéticas). 7 de Junio de ) Escribir la solución de elementos nitos del problema d u + du + u f en (, 1) u () u (1). (1) 1.) Dividiendo el intervalo [, 1] en cuatro elementos de igual longitud, escribir el sistema de ecuaciones a que da lugar (1). Para este ejemplo tomar f (x) 1 en (, 1)..1) Sea f (x) sen (πx), x [, 1]. Aproximar f (x) por un polinomio cuadrático de Lagrange y comparar f ( ) p ( ) con el valor estimado por la fórmula del error para los polinomios cuadráticos..) Aproximar f (x) por un polinomio de Hermite H (x) y comparar f ( ) H ( ) con el valor estimado por la fórmula del error..1) Considerar un mallado del dominio D formado por triángulos. ¾Qué información relevante sobre el mallado se almacena en un código de elementos nitos?.) Decir brevemente, escribiendo un pseudocódigo, como se realiza el ensamblado de las matrices elementales para formar la matriz total del sistema de ecuaciones que se obtiene cuando se aplica el método de elementos nitos. Solución: 1.1) Escribimos primero la formulación variacional del problema: encontrar u H 1 (I) tal que para toda función v H 1 (I) du dv du v + uv donde I (, 1). Para llegar a la formulación variacional, se multiplica la ecuación en derivadas parciales for la función v, se integra en el intervalo (, 1) y se integra por partes en la integral donde aparece una segunda derivada. Denimos ahora la forma bilineal a (, ) : H 1 (I) H 1 (I) R y la aplicación lineal L : H 1 (I) R fv a (u, v) y L (v) du dv fv du v + uv 1

2 para u, v H 1 (I). De esta manera el problema puede escribirse como: encontrar u H 1 (I) tal que para toda función v H 1 (I) a (u, v) L (v). Aunque el ejercicio no lo pide, el problema admite una única solución débil pues puede demostrarse que la forma bilineal es continua y coercitiva. La solución por elementos nitos del problema pasa por denir primero el espacio de elementos nitos. Primero tomamos los nodos x i tales que x < x 1 < x <... < x N 1. Así, W h { v h C ([, 1]) : v h Ij P m (I j ), 1 j N } y V h W h H 1 (I) siendo I j [x j 1, x j ]. Por tanto, cualquier elemento v h V h se puede expresar como donde {ϕ j } 1 j N 1 es una base de V h. v h N 1 j1 v j ϕ j () De esta manera, la solución por elementos nitos será: encontrar u h V h tal que para toda función v h V h ˆ dv 1 h v h + u h v h y puesto que {ϕ j } 1 j N 1 es una base de V h, el problema es equivalente a: encontrar u h V h tal que para toda 1 i N 1 d + u h Sustituyendo u h dada por () en esta última ecuación, tenemos: Deniendo N 1 i1 u i ( d ϕ j ) fv h, f. f. a ij F i d f ϕ j esta última expresión puede escribirse como AU F

3 donde A ((a ij )) 1 i,j N 1 es una matriz cuadrada y U (u 1 u... u N 1 ) t y F (F 1 F... F N 1 ) t son vectores columna. 1.) En este caso x i i, con i, es decir, h 1, así: ϕ j d dϕ j, si i j 1 1, 6 si i j h 1 6 h, en otro caso, si i j 1 8, h si i j 1 h, en otro caso 1, si i j 1, si i j 1, si i j + 1, en otro caso Por tanto, A Además, fϕ j ϕ j h 1. Por tanto, el sistema lineal que queda, en este caso de tres ecuaciones con tres incógnitas, puede escribirse como: 196u 1 8u 6 17u u 8u 6 17u +196u 6.1) Puesto que tenemos que calcular un polinomio de interpolación de Lagrange de grado, necesitamos nodos en el intervalo [, 1], así, tomamos x, x 1 1 y x 1. Si escribimos en una tabla los valores x i frente a y i f (x i ) tenemos: x i.5 1 y i 1 El polinomio de Lagrange puede calcularse mediante los polinomios interpoladores de Lagrange o mediante el método de Newton. En este caso, y puesto que tenemos dos valores nulos, una buena alternativa es utilizar los polinomios interpoladores de Lagrange. Así, p (x) y L (x) + y 1 L 1 (x) + y L (x) L 1 (x) (x x ) (x x ) (x 1 x ) (x 1 x ) x (x 1) x + x

4 La estimación de error nos dice que ( (x x ) (x x 1 ) (x x ) o bien, puesto que hemos tomado nodos equiespaciados, (! h 9 max x [,1] f (x). Sustituyendo por los valores, h 1 y max f (x) π, obtenemos x [,1] pues ( 1 ) 9 π.86, max f (x) x [,1] En este caso podemos comprobar que efectivamente el error es menor que esta cantidad f p.89..) Calculamos un polinomio H de Hermite que aproxime la función f en [, 1] que verique que H () f (), H (1) f (1), H () f () π y H (1) f (1) π. Para ello utilizamos la tabla de diferencias divididas generalizada, que en este caso es: x f [] f () f [, ] f () π x f [] f () f [,, 1] π f [, 1] f [,, 1, 1] x 1 1 f [1] f (1) f [, 1, 1] π f [1, 1] f (1) π x 1 1 f [1] f (1) y la fórmula de Newton generalizada: H (x) + π x πx + x (x 1) π ( x + x ). La estimación de error en este caso nos dice que f H (x x ) (x x 1 )! max f iv (x). x [,1] En este caso max f iv (x) π. x [,1]

5 Además, si denimos A (x) (x x ) (x x 1 ) x (x 1), podemos comprobar fácilmente que y por tanto, max A (x) x [,1] f H ( 1 A 1 ( 1 ) π.567.! Comprobamos una vez más que efectivamente el error es menor que esta cantidad: f H π ).) En la teoría del curso. 5

Los datos necesarios para calcular la interpolación los obtenemos del enunciado del problema y son los siguientes: Ahora sustituimos:

Los datos necesarios para calcular la interpolación los obtenemos del enunciado del problema y son los siguientes: Ahora sustituimos: Problemas Sesión :INTERPOLACIÓN ) Calcula el polinomio que interpola los puntos (-,), (,), (,) y (,-) en las formas de Lagrange y diferencias divididas. Solución La expresión para el polinomio interpolador

Más detalles

Los datos necesarios para calcular la interpolación los obtenemos del enunciado del problema y son los siguientes: Ahora sustituimos:

Los datos necesarios para calcular la interpolación los obtenemos del enunciado del problema y son los siguientes: Ahora sustituimos: Problemas Sesión :INTERPOLACIÓN ) Calcula el polinomio que interpola los puntos (-,), (,), (,) y (,-) en las formas de Lagrange y diferencias divididas. Solución La expresión para el polinomio interpolador

Más detalles

Métodos Numéricos I - C.S.I. - Curso 2003/04. TEMA 2: Interpolación polinómica de funciones

Métodos Numéricos I - C.S.I. - Curso 2003/04. TEMA 2: Interpolación polinómica de funciones Ejercicios. Hoja 2.1 1. Usar la fórmula de Lagrange para obtener un polinomio cúbico que interpola los valores de la tabla siguiente. Evaluarlo luego para x = 2, 3, 5. x k 0 1 4 6 y k 1-1 1-1 [Sol.: P

Más detalles

7. Forma de Lagrange para el polinomio interpolador. 9. Forma de Newton para el polinomio interpolador

7. Forma de Lagrange para el polinomio interpolador. 9. Forma de Newton para el polinomio interpolador E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 2: Aproximación e interpolación Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Septiembre

Más detalles

E.T.S. Minas: Métodos Matemáticos Soluciones Tema 2 Aproximación e interpolación

E.T.S. Minas: Métodos Matemáticos Soluciones Tema 2 Aproximación e interpolación E.T.S. Minas: Métodos Matemáticos Soluciones Tema 2 Aproximación e interpolación Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Curso 2006/07

Más detalles

Métodos Numéricos: soluciones Tema 2 Aproximación e interpolación

Métodos Numéricos: soluciones Tema 2 Aproximación e interpolación Métodos Numéricos: soluciones Tema 2 Aproximación e interpolación Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Febrero 2008, Versión 1.3

Más detalles

Cálculo Numérico III Curso 2010/11

Cálculo Numérico III Curso 2010/11 Cálculo Numérico III Curso 2010/11 Problemas del Tema 1 1. Sean {x 0, x 1,..., x n } IR con x i x j si i j. Hoja de problemas - Parte I a) Hallar el polinomio de grado n que interpola a la función en los

Más detalles

Ampliación de Matemáticas y Métodos Numéricos

Ampliación de Matemáticas y Métodos Numéricos Ampliación de Matemáticas y Métodos Numéricos Relación de ejercicios. Introducción a los Métodos Numéricos Ej. El problema del cálculo del punto de corte de dos rectas con pendiente similar es un problema

Más detalles

Interpolación. Javier Segura. February 12, 2012

Interpolación. Javier Segura. February 12, 2012 February 12, 2012 polinómica Para cualquier conjunto de n + 1 (n 0) números distintos x 0, x 1,..., x n y cualquier conjunto de números arbitrarios y 0, y 1,..., y n, existe un único polinomio P n (x)

Más detalles

Integración numérica

Integración numérica Integración numérica Javier Segura Cálculo Numérico I. Tema 4. Javier Segura (Universidad de Cantabria) Integración numérica CNI 1 / 21 Introducción y definiciones Estructura de la presentación: 1 Introducción

Más detalles

Apellidos:... Nombre:... Examen

Apellidos:... Nombre:... Examen Cálculo Numérico I. Grado en Matemáticas. Curso 0/0. 0 de Junio de 0 Apellidos:... Nombre:... Examen. Decidir razonadamente si las siguientes afirmaciones son verdaderas o falsas, buscando un contraejemplo

Más detalles

Apellidos:... Nombre:... Examen

Apellidos:... Nombre:... Examen Cálculo Numérico I. Grado en Matemáticas y doble grado Física/Matemáticas. 16 de junio de 017 Curso 016/017. Apellidos:... Nombre:... Examen 1. Explicar razonadamente si las siguientes afirmaciones son

Más detalles

INFORMÁTICA Y PROGRAMACIÓN

INFORMÁTICA Y PROGRAMACIÓN INFORMÁTICA Y PROGRAMACIÓN Problemas de Interpolación. La tabla siguiente recoge los valores de una función f(x) en un conjunto de puntos soporte: x.5 4 f(x).4.5.4.5 Dicha función se interpola en el sentido

Más detalles

Problemas. Hoja 1. Escriba el algoritmo para N = 4 y calcule el número de operaciones que realiza.

Problemas. Hoja 1. Escriba el algoritmo para N = 4 y calcule el número de operaciones que realiza. Dpto. de Matemáticas. CÁLCULO NUMÉRICO. Curso 12/13 Problemas. Hoja 1 Problema 1. El método o algoritmo de Horner para evaluar en x 0 el polinomio P (x) = a 0 + a 1 x + + a N x N consiste formalmente en

Más detalles

TEMA 3 Aproximación de funciones: interpolación y ajuste

TEMA 3 Aproximación de funciones: interpolación y ajuste TEMA 3 Aproximación de funciones: interpolación y ajuste Chelo Ferreira González Isaac Newton (1643-1727) 1. Introducción. Modelos matemáticos 2. Métodos numéricos. Resolución de sistemas lineales y ecuaciones

Más detalles

Interpolación. Javier Segura. Cálculo Numérico I. Tema 3. Javier Segura (Universidad de Cantabria) Interpolación CNI 1 / 29

Interpolación. Javier Segura. Cálculo Numérico I. Tema 3. Javier Segura (Universidad de Cantabria) Interpolación CNI 1 / 29 Interpolación Javier Segura Cálculo Numérico I. Tema 3. Javier Segura (Universidad de Cantabria) Interpolación CNI 1 / 29 Contenidos: 1 Interpolación de Lagrange Forma de Lagrange Teorema del resto Diferencias

Más detalles

Ejercicios Temas 3 y 4: Interpolación polinomial. Ajuste de curvas.

Ejercicios Temas 3 y 4: Interpolación polinomial. Ajuste de curvas. Ejercicios Temas 3 y 4: Interpolación polinomial. Ajuste de curvas.. El número de personas afectadas por el virus contagioso que produce la gripe en una determinada población viene dado por la siguiente

Más detalles

TEMA 5: INTERPOLACION NUMERICA

TEMA 5: INTERPOLACION NUMERICA Lino Alvarez - Aurea Martinez METODOS NUMERICOS TEMA 5: INTERPOLACION NUMERICA 1 EL PROBLEMA GENERAL DE INTER- POLACION En ocasiones se plantea el problema de que se conoce una tabla de valores de una

Más detalles

Splines (funciones polinomiales por trozos)

Splines (funciones polinomiales por trozos) Splines (funciones polinomiales por trozos) Problemas para examen Interpolación lineal y cúbica 1. Fórmulas para la interpolación lineal. Dados t 1,..., t n, x 1,..., x n R tales que t 1

Más detalles

EJERCICIOS RESUELTOS DE INTERPOLACION NUMERICA. 1) *Probar que si g interpola a la función f en,,, y h interpola a f en,,,,

EJERCICIOS RESUELTOS DE INTERPOLACION NUMERICA. 1) *Probar que si g interpola a la función f en,,, y h interpola a f en,,,, Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación EJERCICIOS RESUELTOS DE INTERPOLACION NUMERICA Profesor: Jaime Álvarez Maldonado Ayudante: Rodrigo

Más detalles

Interpolación Polinomial

Interpolación Polinomial Pantoja Carhuavilca Métodos Computacionales Agenda y Interpolacion de y Interpolacion de Dado un conjunto de datos conocidos (x 0, y 0 ), (x 1, y 1 ),..., (x N, y N ) buscamos una función f : R R que satisfaga

Más detalles

Interpolación polinómica

Interpolación polinómica Interpolación polinómica Contenidos Polinomio interpolante Interpolación mediante los polinomios fundamentales de Lagrange Interpolación mediante diferencias divididas Interpolación con órdenes Matlab

Más detalles

Preliminares Interpolación INTERPOLACIÓN Y APROXIMACIÓN POLINOMIAL

Preliminares Interpolación INTERPOLACIÓN Y APROXIMACIÓN POLINOMIAL INTERPOLACIÓN Y APROXIMACIÓN POLINOMIAL Contenido Preliminares 1 Preliminares Teorema 2 Contenido Preliminares Teorema 1 Preliminares Teorema 2 Teorema Preliminares Teorema Teorema: Serie de Taylor Supongamos

Más detalles

E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 9: Sistemas de EDOs lineales

E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 9: Sistemas de EDOs lineales ETS Minas: Métodos Matemáticos Resumen y ejemplos Tema 9: Sistemas de EDOs lineales Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Noviembre

Más detalles

Interpolación. Dan Casas

Interpolación. Dan Casas Interpolación Dan Casas 1 Motivación 2 Motivación 2 Motivación 2 Motivación 3 Interpolación 1. Introducción La mayor parte de los procesos relacionados con la Animación se basan en la Interpolación. 4

Más detalles

Métodos Numéricos (SC 854) Interpolación

Métodos Numéricos (SC 854) Interpolación Interpolación c M. Valenzuela 2007 2008 (26 de febrero de 2008) 1. Definición del problema de interpolación Dada una tabla de valores (x i,f i ) se desea estimar f(x) para valores de x que no se encuentran

Más detalles

Interpolación. Dan Casas

Interpolación. Dan Casas Interpolación Dan Casas 1 Motivación 2 Motivación 3 Motivación 4 Interpolación 1. Introducción La mayor parte de los procesos relacionados con la Animación se basan en la Interpolación. Qué necesitamos?

Más detalles

Ejercicios resueltos de Examenes anteriores

Ejercicios resueltos de Examenes anteriores FACULTAD DE CIENCIAS EXACTAS DPTO. DE MATEMÁTICAS UNIVERSIDAD ANDRÉS BELLO Álgebra Lineal FMM Ejercicios resueltos de Examenes anteriores. (a) Sea A ( ) 2. Calcule las matrices P y J tal que A P JP 8 5.

Más detalles

ÁLGEBRA Algunas soluciones a la Práctica 8

ÁLGEBRA Algunas soluciones a la Práctica 8 ÁLGEBRA Algunas soluciones a la Práctica 8 Aplicaciones bilineales y formas cuadráticas (Curso 2008 2009 6. Sean a y b dos números reales. En el espacio P 1 de los polinomios de grado menor o igual que

Más detalles

1. Interpolación e Integración Numérica

1. Interpolación e Integración Numérica 1. Interpolación e Integración Numérica 1.1. Interpolación Dados n + 1 puntos en el plano: (x 0, y 0 ), (x 1, y 1 ),... (x n+1, y n+1 ) con x i x j si i j; existe un único polinomio de grado n, p n (x)

Más detalles

3. Interpolación polinomial

3. Interpolación polinomial 1 I.T.I. GESTIÓN CÁLCULO NUMÉRICO BOLETÍN CON LOS EJERCICIOS RESUELTOS CURSO 4-5 3. Interpolación polinomial 1. Obtener el polinomio interpolador de Lagrange para cierta función f de la que conocemos que:

Más detalles

Tema 5. Interpolación

Tema 5. Interpolación E.T.S. de Ingenieros de Telecomunicación Universidad de Vigo Plan Introducción Introducción Motivación Formulación 2 3 Interpolación spline Motivación Formulación Introducción Motivación Formulación 2

Más detalles

Interp r o p la l c a ió i n seccio i nal a l (S ( pl p i l n i e) Val a o l re r s pr p e r scri r t i os N (x)

Interp r o p la l c a ió i n seccio i nal a l (S ( pl p i l n i e) Val a o l re r s pr p e r scri r t i os N (x) Introducción al método de los elementos finitos Métodos Numéricos 2 Laboratori de Càlcul Numèric (LaCàN) Dep. de Matemàtica Aplicada III Universitat Politècnica de Catalunya www-lacan.upc.es Ventajas del

Más detalles

Interpolación. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Computación Numérica Interpolación 1 / 35

Interpolación. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Computación Numérica Interpolación 1 / 35 Interpolación Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Computación Numérica Interpolación 1 / 35 Contenidos 1 Introducción 2 Interpolación de Taylor Cálculo del polinomio

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

Necesitamos tener los vectores de dirección de ambas rectas. Para calcular el ángulo que forman, aplicamos la siguiente fórmula:

Necesitamos tener los vectores de dirección de ambas rectas. Para calcular el ángulo que forman, aplicamos la siguiente fórmula: PROBLEMAS MÉTRICOS ÁNGULOS ÁNGULO QUE FORMAN DOS RECTAS Necesitamos tener los vectores de dirección de ambas rectas. Para calcular el ángulo que forman, aplicamos la siguiente fórmula: cos α = ÁNGULO QUE

Más detalles

Cap ıtulo 3 Interpolaci on

Cap ıtulo 3 Interpolaci on Capítulo 3 Interpolación Capítulo 3 Interpolación Supongamos que queremos estudiar cierto fenómeno del que tenemos una serie de datos puntuales obtenidos por mediciones realizadas y que deseamos extraer

Más detalles

Complementos de Matemáticas, ITT Telemática

Complementos de Matemáticas, ITT Telemática Aproximación de funciones Interpolación Int. Segm. Complementos de Matemáticas, ITT Telemática Tema 2. Departamento de Matemáticas, Universidad de Alcalá Aproximación de funciones Interpolación Int. Segm.

Más detalles

Ejercicio 1 de la Opción A del modelo 3 de Solución

Ejercicio 1 de la Opción A del modelo 3 de Solución Ejercicio 1 de la Opción A del modelo 3 de 2004 [2 5 puntos] Calcula Para calcular determinamos primero las raíces del denominador, para descomponerlo en producto de factores y aplicarle la técnica de

Más detalles

Cuadratura de Newton-Cotes

Cuadratura de Newton-Cotes Profesor: Jaime Álvarez Maldonado Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación INTEGRACION NUMERICA Ayudante: Rodrigo Torres Aguirre INTEGRACION

Más detalles

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím

Más detalles

Formulación de Galerkin El método de los elementos finitos

Formulación de Galerkin El método de los elementos finitos Clase No. 28: MAT 251 Formulación de Galerkin El método de los elementos finitos Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato e-mail: alram@ cimat.mx web: http://www.cimat.mx/

Más detalles

Cálculo Diferencial en IR n : Ejercicios.

Cálculo Diferencial en IR n : Ejercicios. Tema 8 Cálculo Diferencial en IR n : Ejercicios. La teoría para este tema puede encontrarse en el libro Cálculo diferencial en IR n ([1] de la bibliografía), capítulos 1, 2, 3, 4, 6 7. 8.1 Funciones, límites

Más detalles

Curso Hoja 1. Análisis de errores

Curso Hoja 1. Análisis de errores Hoja 1. Análisis de errores 1 Teniendo en cuenta que MATLAB trabaja en doble precisión, calcular el número máquina inmediatamente anterior a 1 y comprobar que dista 2 53 de 1. 2 Calcular 1 2 52, 1 2 53,

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II ANDALUCÍA MODELO CURSO 009-00 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Opción A El punto de infleión es aquel en el que la derivada segunda se anula. Calculamos

Más detalles

Algunos Tipos de matrices. Matrices. Algunos Tipos de matrices. Algunos Tipos de matrices

Algunos Tipos de matrices. Matrices. Algunos Tipos de matrices. Algunos Tipos de matrices Matrices Una matriz de orden m n es un conjunto ordenado de m n números reales dispuestos en m filas y n columnas de la forma: A = a 11 a 12 a 1j a 1n a 21 a 22 a 2j a 2n a i1 a i2 a ij a in a m1 a m2

Más detalles

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 3: Solución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

Solución de ecuaciones diferenciales por el método de elementos finitos

Solución de ecuaciones diferenciales por el método de elementos finitos Solución de ecuaciones diferenciales por el método de elementos finitos Departamento de Matemáticas Método de elemento finito Un problema del método de diferencias finitas es que al aplicarlo obtenemos

Más detalles

El cuestionario virtual estara disponible los días 11, 12, 13, 14, 15 y 16 de enero.

El cuestionario virtual estara disponible los días 11, 12, 13, 14, 15 y 16 de enero. Fundamentos de Matematicas. Prueba de Evaluación a Distancia. Curso 016-17 Se debe marcar una sola respuesta correcta. Cada pregunta acertada suma 1 punto, las incorrectas restan 0.. Las preguntas en blanco

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-6-4-M--00-0 CURSO: Matemática aplicada JORNADA: SEMESTRE: Matutina do. Semestre AÑO: 0 TIPO DE EXAMEN: Examen

Más detalles

( b) No se puede ya que la matriz tiene 2 columnas y el vector tiene 3 filas x x + 2y 3z.

( b) No se puede ya que la matriz tiene 2 columnas y el vector tiene 3 filas x x + 2y 3z. Ejercicios resueltos tema : Matrices y sistemas lineales EJERCICIO : Escribir las siguientes matrices: a A (a ij 4, a ij i j. b B (b ij 4, b ij ( i+j. { si i j, c C (b ij 4, c ij si i < j. A, B + + + +

Más detalles

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores).

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores). UNIVERSIDAD REY JUAN CARLOS, MADRID PRUEBA DE ACCESO PARA MAYORES DE 25 AÑOS MATEMÁTICAS II AÑO 2010 OPCIÓN A Ejercicio 1 a) (1 punto) Hallar los valores del parámetro para los que la siguiente matriz

Más detalles

Preparando Selectividad Solución Selectividad - Modelo 03

Preparando Selectividad Solución Selectividad - Modelo 03 página 1/17 Preparando Selectividad Solución Selectividad - Modelo 03 Modelo 03. Opción A. Ejercicio 1 Sea f (x)=. x 5 x+6 a) Estudia el dominio y las asíntotas de la función. b) Estudia la monotonía c)

Más detalles

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo que te llevará al final, serán tus pasos, no el camino. Fito y los Fitipaldis

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo que te llevará al final, serán tus pasos, no el camino. Fito y los Fitipaldis MATEMÁTICAS º BACHILLERATO B 9--4 Lo que te llevará al final, serán tus pasos, no el camino Análisis Fito y los Fitipaldis OPCIÓN A.- a) Hallar las dimensiones que hacen mínimo el coste de un contenedor

Más detalles

Examen de Matemáticas 2 o de Bachillerato Junio 2002-Selectividad-Opción B Tiempo: 90 minutos

Examen de Matemáticas 2 o de Bachillerato Junio 2002-Selectividad-Opción B Tiempo: 90 minutos Eamen de Matemáticas 2 o de Bachillerato Junio 2002-Selectividad-Opción B Tiempo: 90 minutos Problema 1 (2 puntos) Hallar una ecuación cartesiana del plano que contiene a la recta r: y es perpendicular

Más detalles

Cálculo Infinitesimal y Numérico. E.T.S. de Ingeniería Informática. Universidad de Sevilla1

Cálculo Infinitesimal y Numérico. E.T.S. de Ingeniería Informática. Universidad de Sevilla1 Cálculo Infinitesimal y Numérico. E.T.S. de Ingeniería Informática. Universidad de Sevilla1 Tema 2: Interpolación. Ejercicios y Problemas 1. Ejercicios Ejercicio 1. 1. Dar, sin desarrollar, los polinomios

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES SISTEMAS DE ECUACIONES CONCEPTOS Un sistema de m ecuaciones con n incógnitas es un conjunto de m ecuaciones que se pueden escribir de la forma: f1( x1, x,..., xn) = 0 f( x1, x,..., xn) = 0... fm( x1, x,...,

Más detalles

ÁLGEBRA Algunas soluciones a la Práctica 8

ÁLGEBRA Algunas soluciones a la Práctica 8 ÁLGEBRA Algunas soluciones a la Práctica 8 Aplicaciones bilineales y formas cuadráticas (Curso 24 25 1. Comprobar si las siguientes aplicaciones son o no bilineales y en las que resulten serlo, dar la

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

AMPLIACIÓN DE MATEMÁTICAS

AMPLIACIÓN DE MATEMÁTICAS AMPLIACIÓN DE MATEMÁTICAS Examen de febrero EJECICIO ( h. 3 min.) 13 de junio de 9 1. En E 3 se considera el plano de ecuación x y z = 5. Se pide: a) Ecuaciones de la proyección ortogonal sobre dicho plano.

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II COMUNIDAD FORAL DE NAVARRA CONVOCATORIA JUNIO 009 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Grupo Opción A A El sistema es cuadrado, por lo que podemos calcular

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-0---M-00-0 CURSO: Matemática Intermedia SEMESTRE: Primero CÓDIGO DEL CURSO: 0 TIPO DE EXAMEN: Eamen Final

Más detalles

Opción de examen n o 1

Opción de examen n o 1 Septiembre-206 PAU Cantabria-Matemáticas II Opción de examen n o. a) Según el enunciado, se tiene: A B = C Ö è Ö è a b 2 c b c a = Ö è 0 Al igualar las matrices obtenidas se llega a: 2 + a + b = 2c + +

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II EXTREMADURA CONVOCATORIA JUNIO 9 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Opción A a) La matriz A tiene tres filas de las que para calcular el determinante

Más detalles

FÓRMULA DE TAYLOR Prueba de Evaluación

FÓRMULA DE TAYLOR Prueba de Evaluación FÓRMULA DE TAYLOR Prueba de Evaluación 6 11 09 Tipo 1 Ejercicio 1: Dada la función f(x) =arctan x, se pide: a. Escribir la fórmula de Taylor de la función f(x) para n=4 y a=1 b. Hallar el valor aproximado

Más detalles

Interpolación. Esta función se denomina función interpolante. con. Dado un conjunto de datos. Queremos determinar una función.

Interpolación. Esta función se denomina función interpolante. con. Dado un conjunto de datos. Queremos determinar una función. Interpolación Dado un conjunto de datos con Queremos determinar una función tal que Esta función se denomina función interpolante Interpolación Usos de la Interpolación Graficar una curva suave a través

Más detalles

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5 DETERMINANTES Determinantes Concepto de determinante A cada matriz cuadrada A se le asigna un escalar particular denominado determinante de A, denotado por A o por det (A). A = Determinante de orden uno

Más detalles

2 Obtener el término general de las siguientes sucesiones definidas por recurrencia: y0 = a > 0

2 Obtener el término general de las siguientes sucesiones definidas por recurrencia: y0 = a > 0 CÁLCULO NUMÉRICO I (Ejercicios Temas 1 y ) 1 Cuáles de los siguientes algoritmos son finitos? (a) Cálculo del producto de dos números enteros. (b) Cálculo de la división de dos números enteros. (c) Cálculo

Más detalles

EJERCICIOS PROPUESTOS: Interpolación

EJERCICIOS PROPUESTOS: Interpolación EJERCICIOS PROPUESTOS: Interpolación 1º. Determínese el polinomio de primer grado que en x = 1 toma el valor y en x 1 = toma el valor. Para ello: a) Escríbase el sistema de ecuaciones lineales que proporciona

Más detalles

Cursada Segundo Cuatrimestre 2012 Guía de Trabajos Prácticos Nro. 5

Cursada Segundo Cuatrimestre 2012 Guía de Trabajos Prácticos Nro. 5 Temas: Interpolación polinomial simple. Interpolación de Lagrange. Polinomio interpolador de Newton. Interpolación polinomial segmentada (Spline). Ajuste de curvas. Regresión por mínimos cuadrados. 1.

Más detalles

Taller de Informática I Dpto. Computación F.C.E. y N. - UBA

Taller de Informática I Dpto. Computación F.C.E. y N. - UBA Ajuste de Curvas El ajuste de curvas es un proceso mediante el cual, dado un conjunto de N pares de puntos {xi, yi} (siendo x la variable independiente e y la dependiente), se determina una función matemática

Más detalles

4.3 Aproximación por mínimos cuadrados.

4.3 Aproximación por mínimos cuadrados. 4.3 Aproximación por mínimos cuadrados. Como ya hemos dicho anteriormente la búsqueda de un modelo matemático que represente lo mejor posible a unos datos experimentales puede abordarse, entre otras, de

Más detalles

5.1. Primitiva de una función. Reglas básicas

5.1. Primitiva de una función. Reglas básicas Tema 5 Integración Indefinida 5.1. Primitiva de una función. Reglas básicas En este tema estudiaremos lo que podríamos llamar el problema inverso de la derivación, es decir, dada una función f hallar otra

Más detalles

Métodos Numéricos: Solución de los ejercicios Tema 3: Integración Numérica

Métodos Numéricos: Solución de los ejercicios Tema 3: Integración Numérica Métodos Numéricos: Solución de los ejercicios Tema : Integración Numérica Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Febrero 8, versión.4

Más detalles

III) INTERPOLACIÓN INTRODUCCIÓN

III) INTERPOLACIÓN INTRODUCCIÓN III) INTERPOLACIÓN INTRODUCCIÓN En numerosos fenómenos de la naturaleza observamos una cierta regularidad en la forma de producirse, esto nos permite sacar conclusiones de la marcha de un fenómeno en situaciones

Más detalles

Tema 1: Interpolación. Cá álculo umérico

Tema 1: Interpolación. Cá álculo umérico Tema : Interpolación Problema Dada una nube de puntos del plano Interpolación polinomial. Polinomios de Lagrange: cota del error. Método de Newton: diferencias divididas y finitas. se pretende encontrar

Más detalles

MECU 3031 ECUACIONES DE RECTAS

MECU 3031 ECUACIONES DE RECTAS MECU 3031 ECUACIONES DE RECTAS Diferentes formas de una ecuación Una ecuación en dos variables se puede expresar en más de una forma equivalente utilizando correctamente operaciones inversas para despejar

Más detalles

Interpolación. 12 Interpolación polinómica

Interpolación. 12 Interpolación polinómica El objeto de este capítulo es el estudio de técnicas que permitan manejar una función dada por medio de otra sencilla y bien determinada que la aproxime en algún sentido. El lector ya conoce la aproximación

Más detalles

f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t).

f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t). Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Álgebra Convocatoria de enero de 20 de enero de 20 (2.5 p.) ) Se considera la aplicación lineal f : R 4 R definida por: f(x y

Más detalles

Interpolación Numérica

Interpolación Numérica Interpolación Numérica Contenido Interpolación Numérica Polinomio Único de Interpolación Polinomio de Interpolación de Lagrange (Método de Ordenadas) Método de Newton (Interpolación Polinomial forma de

Más detalles

CÁLCULO NUMÉRICO I (Tema 2 - Relación 1)

CÁLCULO NUMÉRICO I (Tema 2 - Relación 1) CÁLCULO NUMÉRICO I (Tema - Relación 1) 1 Cuáles de los siguientes algoritmos son finitos? a) Cálculo del producto de dos números enteros. b) Cálculo de la división de dos números enteros. c) Cálculo de

Más detalles

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3! + x5

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3! + x5 Cálculo I (Grado en Ingeniería Informática Problemas resueltos, -, -4 y 4-5 (tercera parte Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić, Luis Guijarro (coordinadores,

Más detalles

Universidad Diego Portales Segundo Semestre 2007 Facultad de Ingeniería

Universidad Diego Portales Segundo Semestre 2007 Facultad de Ingeniería Universidad Diego Portales Segundo Semestre 007 Facultad de Ingeniería Instituto de Ciencias Básicas Asignatura: Ecuaciones Diferenciales Laboratorio Nº Ecuaciones Diferenciales Eactas, Lineales de Primer

Más detalles

1 Repaso. Cálculo I. 1 o Matemáticas. Curso 2002/2003. Cálculo de Primitivas. (5x 6) f(x) 1 2 f (x) dx, que es inmediata: + 1 x 1

1 Repaso. Cálculo I. 1 o Matemáticas. Curso 2002/2003. Cálculo de Primitivas. (5x 6) f(x) 1 2 f (x) dx, que es inmediata: + 1 x 1 Cálculo I. o Matemáticas. Curso /. Cálculo de Primitivas Repaso (5 6) d = 5 (5 6) 5 d = 5 (5 6) + C. Nota: Si f() = 5 6 su derivada es 5. En la primera igualdad multiplicamos y dividimos por 5. Así tenemos

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 8. MATRICES

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 8. MATRICES FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 8. MATRICES 1.- Introducción de vectores y matrices. Con Derive los vectores se pueden introducir de dos formas distintas: a) Mediante

Más detalles

1) Determinar qué elección de h asegurará, a priori, que la solución numérica del P.C.: con el método de diferencias centrales, existe y es única.

1) Determinar qué elección de h asegurará, a priori, que la solución numérica del P.C.: con el método de diferencias centrales, existe y es única. I. Resolución numérica de Problemas de Contorno en E.D.O.: Métodos en diferencias finitas 1) Determinar qué elección de h asegurará, a priori, que la solución numérica del P.C.: y (x) + 4 sen x y (x) 4

Más detalles

Interpolación. Tema Introducción. 8.2 Interpolación polinómica Interpolación Lineal.

Interpolación. Tema Introducción. 8.2 Interpolación polinómica Interpolación Lineal. Tema 8 Interpolación 8.1 Introducción En este tema abordaremos el problema de la aproximación de funciones por medio de la interpolación, en particular nos centraremos en interpolación polinómica estándar.

Más detalles

J. Armando Lara R. Invierno

J. Armando Lara R. Invierno Interpolación Spline J. R. Ingeniería Electrónica Instituto Tecnológico de Lázaro Cárdenas Invierno 2011-2012 Outline Interpolación Spline 1 Interpolación Spline Introducción 2 3 4 Outline Interpolación

Más detalles

Tema 5: Resolución aproximada de ecuaciones

Tema 5: Resolución aproximada de ecuaciones Métodos Numéricos: Solución de los ejercicios Tema 5: Resolución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Abril

Más detalles

1. Método de bisección

1. Método de bisección Cálculo Infinitesimal y Numérico. E.T.S. de Ingeniería Informática. Universidad de Sevilla 1 Tema 1: resolución de ecuaciones. Ejercicios y Problemas Nota: Abreviación usual en estos ejercicios: C.D.E.

Más detalles

Para verificar que el sistema converge se deberán cumplir con las siguientes condiciones en las formulas con derivadas parciales: + 1

Para verificar que el sistema converge se deberán cumplir con las siguientes condiciones en las formulas con derivadas parciales: + 1 MAT 5 B Sistemas de ecuaciones no lineales EJERCICIOS RESUELTOS. Resuelva el siguiente sistema de ecuaciones no lineales, utilizando el método de punto fijo multivariable: x cos x x SOLUCIÓN x 8 x +. +

Más detalles

5. Derivación e integración numérica

5. Derivación e integración numérica 5. Derivación e integración numérica 5.. Ejercicios Ejercicio 5. Calcular usando la fórmula del punto medio: la integral: b a ( ) f(x)dx a+b = (b a)f xdx Calcular la integral y dar el error. Dibujar el

Más detalles

1. Lección 9 - Continuidad y Derivabilidad

1. Lección 9 - Continuidad y Derivabilidad 1. Lección 9 - Continuidad y Derivabilidad 1.1. Continuidad El concepto de continuación es el mismo que el visto en el primer cuatrimestre pero generalizado al caso de los campos escalares. Así, sea la

Más detalles

Examen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos Eamen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Dadas las matrices 2 4 2 2 0 A = 1 m m ; B = 0 X = y O = 0 1 2 1 1 z 0 (1 punto). Estudiar el rango

Más detalles

2.I Introducción a la interpolación y aproximación.

2.I Introducción a la interpolación y aproximación. 2.I Introducción a la interpolación y aproximación. Manuel Palacios Departamento de Matemática Aplicada Centro Politécnico Superior - Universidad de Zaragoza Otoño 2001 Contents 1 Planteamiento general

Más detalles

Examen de Selectividad Matemáticas JUNIO Andalucía OPCIÓN A

Examen de Selectividad Matemáticas JUNIO Andalucía OPCIÓN A Eámenes de Matemáticas de Selectividad ndalucía resueltos http://qui-mi.com/ Eamen de Selectividad Matemáticas JUNIO - ndalucía OPCIÓN. Sea f : R R definida por: f ( a b c. a [7 puntos] Halla a b y c para

Más detalles