RESUMEN MÉTODOS 2: PARCIAL 3. Esta restricción expresa que las unidades de producción no pueden ser negativas.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "RESUMEN MÉTODOS 2: PARCIAL 3. Esta restricción expresa que las unidades de producción no pueden ser negativas."

Transcripción

1 RESUMEN MÉTODOS : PARCIAL PROGRAMACIÓN LINEAL Es el campo de la optimización matemática dedicado a maimizar o minimizar (optimizar) una función lineal, denominada función ojetivo, de tal forma que las variales de dicha función estén sujetas a una serie de restricciones epresadas mediante un sistema de ecuaciones o inecuaciones tamién lineales. Esta restricción epresa que las unidades de producción no pueden ser negativas. Por otra parte deemos de maimizar el ingreso, con las restricciones e materiales. Las posiles soluciones son infinitas, pero solo una es la máima. Usando el método grafico graficamos las dos restricción: Métodos de solución Eisten dos métodos de solución de prolemas de programación lineal: Método gráfico: En dos dimensiones: En este caso la función ojetivo puede ser: ZF(,y) + 4y En este caso epresa que el ingreso total de ventas al producir los productos camisas() y pantalones (y) se otiene multiplicando el precio de venta de por la cantidad de y el precio de 4 por la cantidad de y. La producción esta sometida a las siguientes restricciones: + y< Esta restricción epresa que para producir una camisa se ocupa unidades de algodón y para producir un pantalón se requieren unidades de algodón, y la empresa solo cuenta con unidades. + y < Esta restricción epresa que para producir una camisa se ocupan unidades de poliéster, y y para producir un pantalón se ocupan unidad de poliéster, y la empresa solo cuenta con unidades Oservamos que la restricción del poliéster se indica con líneas verticales la restricción del algodón se indica con líneas horizontales. La zona donde coinciden es la zona somreada que se llama REGIÓN FACTIBLE. Cualquier punto en esa zona cumple las restricción Se sae que la solución máima ocurre en el perímetro de la zona factile, y ocurre en los vértices o puntos donde se cruzan las restricción Y las restricciones ovias: > ; y>

2 Paso : Graficamos las líneas Los posiles puntos donde puede ocurrir la maimización son los vértices (esquinas): Y Y y punto Z+4y (,) (,) 4 7 (7,) 7 7 (7,) 7 7 (7,) 87 ma En esta tala vemos fácilmente que la solución que maimiza z es la esquina donde 76 y y6, se otiene un ingreso máimo de 9, lps PASOS PARA EL MÉTODO GRAFICO: Paso : Graficamos las desigualdades. Despejamos para esto y. Recta : y < - y < recta Recta : y < - y < recta Y recordamos las condiciones > Y> Tecnica ; somreado al lado de la recta y flecha Paso : Graficar las líneas de las condiciones: Para esto averiguamos los intercepto linea Iy Y I +y (, ) 7 (7, ) +y (, ) (, ) Ordenamos Puntos linea y punto Z+4y (,) 7 (7,) 7 (,) 4 (,)

3 Técnica : Rayado En amos caso la región de factiilidad es: Intercepto por suma y restas ()( + y ) (-)( + y ) y y - 4 y y Sustituimos en condicion + () 7 7 Intercepto (7,) Paso : Elaorar tala de puntos y elegir el máimo o mínimo según se requiera: linea y punto Z+4y (,) min 7 (7,) 7 (,) 4 (,) y 7 (7,) 87 ma PASO 6: La respuesta redactada es: Para una producción de 7 unidades del producto, y una producción de unidades del producto y se otiene el ingreso máimo de Z8,7 lempiras La región de factiilidad es donde se cumplen todas las condiciones, o dicho de otra manera donde se interceptan o coinciden las rectas de todas las condiciones. Los vértices son las esquinas que limitan dicha región Paso 4: Calculamos los vértices requeridos: En este caso la interceptación entre línea y línea.

4 TEORÍA DE EXPONENTES Introducción: Las operaciones de potencia, multiplicación y suma están relacionadas. Toda potencia puede convertirse en una multiplicación y toda multiplicación puede convertirse en una suma. Ejemplo: i i () i + () i (+ ) + (+ ) 8 Esto es cierto porque es una multiplicación simplificada y es igual a multiplicar tres veces así i i. Por otro lado la multiplicación i significa que el número se dee sumar dos veces i +, en una multiplicación el primer número indica el número de veces que se repite el segundo número es por eso que () i i () i + () i. Al hacer este proceso descurimos varias propiedades de los eponentes Propiedad Ejemplo n i i... n i i veces n /n toda raíz se epresa como un eponente fraccionario n m m/ n siempre el número de la raíz va aajo m n m n i + m ( ) n m n n n a a n / () Y se cumple / ().99. Y se cumple que.99*.99* i ( ) / 8 i ()() ii i i + ()() ii i ii i 6 i i i n n ( a ) ( a) n ( i ) iii ()() i i i a iii ()() i i i ( i ) a a n n n a a 9 TEORÍA DE LOGARITMOS Un aritmo se puede interpretar como el eponente que ra el argumento del aritmo al elevar la ase del mismo, se epresa formalmente. Si tenemos 8 Entonces se cumple que 8 En amos caso el número se le llama ase, el número es el eponente, y tamién es el aritmo de 8 con ase. Ejemplos Forma eponencial Forma arítmica i i iii i i Numero e o numero natural Eiste un número especial que se usa mucho en aritmos y formulas eponenciales el cual es el numero e Este número se calcula con la formula / e ( + ) Siempre que sea un número muy pequeño, si tomamos varios valore seste será el resultado. e Al igual que los eponentes los aritmos tienen sus propias reglas. Propiedad Ejemplo 4

5 9 n a ni a ( a i ) ( a) + ( ) ( a/ ) ( a) ( ) Propiedad a i ( a) + cd i + ( ) ( c) ( d) ln( a) e a ln( e ) ca a, c> c ln( a) a ln( ) a a 9 9 i ( ) i + 9/ ( ) 9 i } Ejemplo i ( ) + 67 i ( ) ln() ln() EJERCICIO DE SEPARACION DELOGARITMOS iiy 4 ziw Primero convertimos radicales en eponentes i i ziw y 4 / / Luego simplificamos eponentes / / / / i iy z iw / / / / + i iy z iw / 7/ / / i iy z iw 4/ / 4/ / 4/ / i iy z iw /6 7/6 /6 4/6 /6 Aplicamos la propiedad a i a + ( ) /6 7/6 /6 ( ) ( ) ( y ) 4/6 /6 ( z ) ( w ) + + Aplicamos la propiedad n a ni a ( z) ( w) 6 6 ( ) ( ) ( y) Para verificar asumimos X, y, z4,w Sustituimos primero en la original i i 4 4 i 9

6 .77 i [. 7 ] ln(.7).66 [.7] ln() Sustituimos en la respuesta 7 ( ) + ( ) + ( y) ( z) ( w) ( ) + ( ) + ( ) ( 4) ( ) Con lo cual se verifica la respuesta Ejercicios con verificación de ecuaciones eponenciales con verificación Aplicamos aritmo natural amos lados ( ) ( ) ln ln Pasamos eponente al frente i ln ln Despejamos i ln ln ln( ) ln( ) Verificamos (.9) EJEMPLO : + Aplicamos aritmo natural amos lados + ln ln Pasamos eponente al frente + i ln ln ( ) Operamos iln + ln i ln ( ) Juntamos las iln ln ln i ( ) ( ln i ( ) ln( ) ) ln i ( ) ln i ( ) ln i ( ) ln( ) Calculamos el valor Verificamos (.6).6 + (.6) Fusionamos el aritmo, quitamos primero los números al frente ln i ( ) ln i ln ln i ( ) ln ln ( ) ( ) ( ) ln i ln ln().69.6 ln(8/).4 Con lo cual se confirma el resultado Esta técnica es la misma para cualquier ecuación eponencial. (7) (7) EJEMPLO : ( )() i 4 i Primero aplicamos aritmo natural a amos lados (7) (7) ln ln 4 (( )() i ) i Separamos los aritmos ln(7) + ln(7) ln ln ln + ln() Pasamos los eponentes al frente ( )ln(7) + ( )ln(7) (4 )ln ( )ln 4 ln + ( )ln() ( )ln(7) + ( )ln(7) (4 )ln ( )ln ln + ( )ln() ()ln() Pasamos las a un solo lado ( )ln(7) (4 )ln ( )ln ( )ln() ln ()ln() ( )ln(7) 6

7 Sacamos de factor común ( ) ()ln(7) (4)ln ()ln ()ln() [ ] ln ln() + ln(7) ln ln() + ln(7) ( ) ln(7) 4ln ln ln() Calculamos la ( ) ( ) Para verificar sustituimos en la original (7) (7) ( )() i 4 i.7949e+ ( 9) i La diferencia se dee a los decimales de la variale EJEMPLO 4 (+ ) + (+ 4) Primero aplicamos las propiedades a + a i ( ) Y nos queda (+ )(+ 4) [ ] Pasamos el numero al rente como eponente (+ )(+ 4) [ ] Igualamos argumentos (+ )(+ 4) Operamos y simplificamos el polinomio (+ 4) + (+ 4) Aplicamos la formula cuadrática a 9 c- 4ac 9 4()( ) 47 (9) ± 47, () (9) ±. 479, () (9) ±.479, Calculamos y verificamos los valores X.749 ((.749) + ) + ((.749) + 4) ( 8.74) + (.47) ln( 8.74) ln(.47) + ln() ln() X -.8 ((.8) + ) + ((.8) + 4) (.4) + (.49) No es válida la solución -.8 Final ente definimos el conjunto solución C.s{.749} FUNCIÓN EXPONENCIAL Es una función de la forma m+ f( ) ab i + c Donde B es un número positivo EJEMPLO : + f( ) i + a) Su grafica es ) Asíntota horizontal: esto es lo que primero se dee determinar (línea horizontal de la gráfica) que ocurre cuando yc en el caso del ejemplo es AH: y 7

8 c) Tala de valores: Para esozar la gráfica elaoramos esta tala: Tipo X Y - i Iy i i otro i Con estos valores procedemos a elaorar la gráfica anterior, los valores que representan a menos infinito y más infinito pueden ser cualquier valor, elegimos porque números mayores se alejan demasiado, cuando uno de los valores es muy grande elegimos otro mas pegado al, como el para rar graficar d) Determinamos el intercepto en, I(, ) + i + Despejamos el término con el eponente i + + Revisamos los signos, porque recordemos que jamás un número con variale eponencial será cero i i.676i + Por tanto no hay solución para el intercepto en, + e) Dominio reales] [ f) Rango ],+ [ Notas: para elaorar la gráfica se requieren siempre puntos La grafica eponencial siempre tiene intercepto en y 8

9 EJEMPLO : Y EJEMPLO : 9

10 FUNCIÓN LOGARÍTMICA Es una función de la forma f( ) ai B ( m+ ) + c Donde B es un número positivo EJEMPLO : f( ) i + + ( ) g) Su grafica es ( ) i + + ( + ) Ponemos todo como potencia de la misma ase del aritmo ( + ) Aplicamos la propiedad ( ) + Despejamos.99 I (-.99, ) h) Asíntota vertical: esto es lo que primero se dee determinar (línea vertical de la gráfica) que ocurre cuando m+ AH:-/m i) Dominio: un aritmo no puede tener argumento negativo ni cero por lo tanto m+>: + > > Dominio ], + [ j) Con el dominio definido procedemos a determinar el intercepto en que siempre eiste I(,)

11 k) Calculamos ahora el Iy (, ) si es que eiste f () i + + () + ( ) Iy (,) l) Procedemos a elaorar una tala de valores, que dee tener al menos puntos Tipo X Y AH - No aplica I -.99 Iy otro i ( ) f () + + Con estos valores procedemos a elaorar la gráfica e indicar los intercepto, + Re ales m) Rango ] [ Notas: para elaorar la gráfica se requieren siempre puntos La grafica eponencial siempre tiene intercepto en

12 EJEMPLOS Y EJEMPLO Y

13 EJERCICIOS VARIOS ) Calcule y verifique 8 ln(8) ln( ). 986 Verificación ) epanda y verifique con, y, z4 iy z iy z ( ) + ( y ) ( z ) ( ) + ( ) ( ) y z Verificación X, y, z4 i ln(9/4) ln().986 Y evaluamos separados l og + 4 ( ) Como amas respuestas son iguales esta correcto )Determine el conjunto solución ( ) ( ) + l + l + l i + () Igualamos argumentos Verificación (oligatoria) () + l ( ) ( ) l l 4) Resuelva por el método grafico la siguiente prolema Min z+y y + 4 y +, y Las ecuaciones se pueden epersar asi tamine 4+ y Iy(, /)(,4) I(/4,)(,) + y Iy(, /)(,) I(/,)(,) Y Z+y ()+()6 ()+() ()+()6 La respuestas posiles son dos Respuesta : y z 6 Respuesta : y z 6

m=negativa a =negativa

m=negativa a =negativa Nombre Lineal m=positiva. a =positiva m=negativa a =negativa Ecuación y = m + b H de (vertice, punto máimo, mínimo) m= pendiente b= intercepto en Y K k = f( h) Cuadrática 0-3 - - 0 3 - - -3 - -5 y = a

Más detalles

MÉTODOS CUANTITATIVOS ii 2018 PERIODO 2 PARCIAL ii. Y las resctricciones obvias: x>0 ; y>0. Nombre: Cuenta:

MÉTODOS CUANTITATIVOS ii 2018 PERIODO 2 PARCIAL ii. Y las resctricciones obvias: x>0 ; y>0. Nombre: Cuenta: MÉTODOS CUANTITATIVOS ii 2018 PERIODO 2 PARCIAL ii Nombre: Cuenta: PROGRAMACIÓN LINEAL es el campo de la optimización matemática dedicado a maximizar o minimizar (optimizar) una función lineal, denominada

Más detalles

Paso 1: determinar vértice. (h, k) 3x-6=0 X=6/3=2 X=2. (h,k)=(2,3) Paso 2: determinar intercepto en y Iy(0,?) X=0

Paso 1: determinar vértice. (h, k) 3x-6=0 X=6/3=2 X=2. (h,k)=(2,3) Paso 2: determinar intercepto en y Iy(0,?) X=0 TAREA 4: MÉTODOS CUANTITATIVOS 2 Cuenta: Nombre: FUNCIÓN RADICAL Ecuación y a mx b c Si g( x) mx b Forma de la grafica SI a es positivo y m positivo Intercepto en y = Iy =(0,?) Intercepto en x = Ix =(?,0)

Más detalles

1º BACH MATEMÁTICAS I

1º BACH MATEMÁTICAS I 1º BACH MATEMÁTICAS I Ecuaciones, inecuaciones y sistemas Trigonometría Vectores Nº complejos Geometría Funciones. Límites. Continuidad. Derivadas Repaso en casa Potencias Radicales. Racionalización. (pag.

Más detalles

Podemos calcular el valor de y sustituyendo en ( 2 3) 1 y f( x) Nos queda

Podemos calcular el valor de y sustituyendo en ( 2 3) 1 y f( x) Nos queda TAREA 5: MÉTODOS CUANTITATIVOS Cuenta: Nombre: DADA LA ECUACIÓN RACIONAL (NIVEL ): p( x) y f( x), q( x) 0 q( x) A continuación haremos ejemplos con puntos faltantes Dada la grafica ( x 5x 6) y f( x) (

Más detalles

tiene por límite L cuando la variable independiente x tiende a x , y se nota por L, cuando al acercarnos todo lo que queramos a x lím( x

tiene por límite L cuando la variable independiente x tiende a x , y se nota por L, cuando al acercarnos todo lo que queramos a x lím( x UNIDAD 8: LÍMITES DE FUNCIONES. CONTINUIDAD. LÍMITE DE UNA FUNCIÓN Diremos que una función y f () tiene por ite L cuando la variable independiente tiende a, y se nota por f ( ) L, cuando al acercarnos

Más detalles

MÉTODOS CUANTITATIVOS

MÉTODOS CUANTITATIVOS MÉTODOS CUANTITATIVOS ii PARCIAL ii MATRICES Definición de matrices: Una matriz es un conjunto ordenado en una estructura de filas y columnas. Los elementos de este conjunto pueden ser objetos matemáticos

Más detalles

Las soluciones son los valores que deben tomar las letras para que la igualdad sea cierta.

Las soluciones son los valores que deben tomar las letras para que la igualdad sea cierta. TEMA ECUACIONES, INECUACIONES Y SISTEMAS- 1. ECUACIONES Una ecuación es una igualdad matemática entre dos epresiones algebraicas, denominadas miembros, en las que aparecen valores conocidos o datos, desconocidos

Más detalles

Soluciones de las actividades. d) 2x 2 3x + 1 = 0 Δ = 9 8 = 1 > 0 Dos soluciones distintas. 6. Las soluciones son: a) z = b) z = c) z = d) z = e) z =

Soluciones de las actividades. d) 2x 2 3x + 1 = 0 Δ = 9 8 = 1 > 0 Dos soluciones distintas. 6. Las soluciones son: a) z = b) z = c) z = d) z = e) z = Soluciones de las actividades Página 7. Si a 0 y b 0, no tiene solución. Si a 0 y b 0, tiene infinitas soluciones. Si a 0, tiene una única solución, -b / a.. Las soluciones son a) 0 + 8; ; / b) + 8 ; ;

Más detalles

Simplificando los cuadrados con las raíces y sumando términos semejantes y elevando al cuadrado nuevamente:

Simplificando los cuadrados con las raíces y sumando términos semejantes y elevando al cuadrado nuevamente: . Resolver la siguiente ecuación irracional 6 7 0 Solución: llevando el término con signo negativo al segundo miemro de la ecuación y elevando al cuadrado: 6 7 6 6 7 7 Simplificando los cuadrados con las

Más detalles

ln( = x, como x = f -1 (y), cambiamos y por x, entonces Ej 1. (2 puntos) Sea f ( x ) = 2e + 8, entonces: a) La función inversa de f es:

ln( = x, como x = f -1 (y), cambiamos y por x, entonces Ej 1. (2 puntos) Sea f ( x ) = 2e + 8, entonces: a) La función inversa de f es: ANÁLIS. MAT. ING. - EXACTAS C 7 APELLIDO: NOMBRES: SOBRE Nº: Duración del eamen: hs DNI/CI/LC/LE/PAS. Nº: E-MAIL: CALIFICACIÓN: TEMA - --7 TELÉFONOS part: cel: Apellido del evaluador: + Ej. ( puntos) Sea

Más detalles

EXAMEN DE JUNIO DE MAS I

EXAMEN DE JUNIO DE MAS I EXAMEN DE JUNIO DE MAS I Se recomienda: a) Antes de hacer algo, lee todo el eamen. b) Resuelve antes las preguntas que se te den mejor. c) Responde a cada parte del eamen en una hoja distinta. d) Es una

Más detalles

TEORÍA MÉTODOS 2, PARCIAL 1, VERSIÓN 2 FUNCIÓN

TEORÍA MÉTODOS 2, PARCIAL 1, VERSIÓN 2 FUNCIÓN TEORÍA MÉTODOS, PARCIAL, VERSIÓN FUNCIÓN Explicación General: Si podemos expresar un variable en términos de uno o más variables diremos que una variable es función o depende de una o más variables. Por

Más detalles

Ecuaciones inecuaciones

Ecuaciones inecuaciones 4 Ecuaciones e inecuaciones LECTURA INICIAL ESQUEMA INTERNET ACTIVIDAD En muchas ocasiones el modelo óptimo se consigue mediante sistemas de ecuaciones. Adivina números Busca en la web Adivina números

Más detalles

LOGARITMOS. log. Práctica. 1. log 64 4 = 1/3. 2. log 13 13 = 1. 3. log 1/3 27 = -3 1. 4 3 = 64 2. 8-2 = 1/64 3. 25 1/2 = 5. 1. log 8 8 = 2.

LOGARITMOS. log. Práctica. 1. log 64 4 = 1/3. 2. log 13 13 = 1. 3. log 1/3 27 = -3 1. 4 3 = 64 2. 8-2 = 1/64 3. 25 1/2 = 5. 1. log 8 8 = 2. Preparado por: Prof. Eveln Dávila LOGARITMOS DEFIICIO DE LOGARITMOS a = a = Propiedades de los arítmos: 1 1 0 1, 0, a 0 n n Ejemplos 1. = si =. 1/9 = - si - = 1/9. 10 1000 = si 10 = 1000 4. = 1 si 1 =.

Más detalles

TEMA 2: ÁLGEBRA 1. TEOREMA DEL RESTO Y APLICACIONES

TEMA 2: ÁLGEBRA 1. TEOREMA DEL RESTO Y APLICACIONES TEMA 2: ÁLGEBRA 1. TEOREMA DEL RESTO Y APLICACIONES Dado un polinomio P(x) y un número real a, el resto de la división de P(x) entre (x a) es P(a) (es decir, el resultado de sustituir el valor de x por

Más detalles

Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice

Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice 1. ECUACIONES... 2 1.1. Ecuaciones de primer grado... 2 1.2. Ecuaciones de segundo grado... 3 1.2.1. Ecuación de segundo grado completa...

Más detalles

Tema 5: Funciones. Límites de funciones

Tema 5: Funciones. Límites de funciones Tema 5: Funciones. Límites de funciones El concepto de función es un elemento fundamental dentro del análisis matemático, así como en sus aplicaciones. Esta idea se introdujo con el objetivo de matematizar

Más detalles

Tema 5 Inecuaciones y sistemas de inecuaciones

Tema 5 Inecuaciones y sistemas de inecuaciones Tema Inecuaciones y sistemas de inecuaciones. Inecuaciones lineales PÁGINA 9 EJERCICIOS. Comprueba en cada caso si el valor indicado forma parte de la solución de la inecuación. b de la inecuación Sustituimos

Más detalles

Un i d a d 2. Co n t i n U i da d. Objetivos. Al inalizar la unidad, el alumno:

Un i d a d 2. Co n t i n U i da d. Objetivos. Al inalizar la unidad, el alumno: Un i d a d Co n t i n U i da d Objetivos Al inalizar la unidad, el alumno: Identificará cuándo una función es continua en un punto y en un intervalo. Aplicará las operaciones de las funciones continuas

Más detalles

Parciales Matemática CBC Parciales Resueltos - Exapuni.

Parciales Matemática CBC Parciales Resueltos - Exapuni. Parciales Matemática CBC 2012 Parciales Resueltos - Exapuni www.exapuni.com.ar Compilado de primeros parciales del 2012 Parcial 1 1) Sea. Hallar todos los puntos de la forma, tales que la distancia entre

Más detalles

Alonso Fernández Galián

Alonso Fernández Galián Alonso Fernández Galián TEMA 3: ESTUDIO Y REPRESENTACIÓN DE FUNCIONES Para representar gráficamente una función deben estudiarse los siguientes aspectos: i) Dominio. ii) Puntos de corte con los ejes de

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II ARAGÓN CONVOCATORIA JUNIO 009 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz. Algebra Opción A a) Las matrices correspondientes son: A m m m m m m A* El determinante

Más detalles

Contenidos. Función cuadrática y = a x 2 + b x + c

Contenidos. Función cuadrática y = a x 2 + b x + c Contenidos Ecuaciones de º grado- Función cuadrática Ecuaciones de º grado Ecuaciones que se relacionan con las de º grado Sistemas de ecuaciones. Resolución analítica y gráfica. Inecuaciones con una y

Más detalles

En este tipo de ecuaciones la incógnita se encuentra formando parte del EXPONENTE DE UNA POTENCIA. Su método de resolución se basa en que si

En este tipo de ecuaciones la incógnita se encuentra formando parte del EXPONENTE DE UNA POTENCIA. Su método de resolución se basa en que si CAPÍTULO XI ECUACIONES EXPONENCIALES E IRRACIONALES.. ECUACIONES EXPONENCIALES En este tipo de ecuaciones la incógnita se encuentra formando parte del EXPONENTE DE UNA POTENCIA. Su método de resolución

Más detalles

Límites DEFINICIÓN. una función de dos variables. Si z se aproxima a un valor fijo L cuando x,

Límites DEFINICIÓN. una función de dos variables. Si z se aproxima a un valor fijo L cuando x, Límites DEFINICIÓN Sea z f ( y) una función de dos variales. Si z se aproima a un valor fijo L cuando y se aproima a un punto fijo a entonces el límite de f ( y ) cuando y a es L y se escrie como: y a

Más detalles

ECUACIONES Y SISTEMAS

ECUACIONES Y SISTEMAS Colegio Vicaa UNIDAD DIDÁCTICA : ECUACIONES Y SISTEMAS º BACHILLER 7 Colegio Vicaa OBJETIVOS DIDÁCTICOS:. Resolver ecuaciones de primer segundo grado de forma analítica, e interpretar gráficamente las

Más detalles

Matemáticas. para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul

Matemáticas. para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul Matemáticas para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul Unidad I (Capítulos 3 y 5 del texto) Funciones y Gráficas 1.1 Definición y notación de función. 1.2 Dominio y rango

Más detalles

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 01 - Problemas 8, 9

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 01 - Problemas 8, 9 Asignatura: Matemáticas II ºBachillerato página 1/8 Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 01 - Problemas 8, 9 Hoja 1. Problema 9 Resuelto por José Antonio Álvarez

Más detalles

Inecuaciones. Inecuaciones polinómicas de 1º grado, con una incógnita. Estas inecuaciones, se pueden llegar a escribir de la forma:

Inecuaciones. Inecuaciones polinómicas de 1º grado, con una incógnita. Estas inecuaciones, se pueden llegar a escribir de la forma: Inecuaciones Una inecuación es una desigualdad matemática que presenta al menos una variable en alguno de sus miembros, por eso también se le conoce como desigualdad algebraica. Los signos de desigualdad

Más detalles

Funciones polinómicas

Funciones polinómicas Funciones polinómicas Polinomios Un polinomio es una epresión algebraica de la forma P() = a n n + a n - 1 n - 1 + a n - n - +... + a 1 + a 0 a n, a n -1... a 1, a o son números, llamados coeficientes.

Más detalles

LÍMITES Y CONTINUIDAD

LÍMITES Y CONTINUIDAD LÍMITES Y CONTINUIDAD Tema 4: LÍMITES Y CONTINUIDAD. Índice:. Límite de una función en un punto. Límites laterales.. Límites en el infinito.. Cálculo de límites... Propiedades de los límites... Límites

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 7: FUNCIONES 1º BACHILLERATO 1 ÍNDICE 1. INTRODUCCIÓN...3 1.1. CONCEPTO DE FUNCIÓN...3. Definición de Dominio...3.1. CÁLCULOS DE DOMINIOS...3 3. Composición de funciones...4

Más detalles

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA PÁGINA: 1 de 8 Nombres y Apellidos del Estudiante: Docente: Área: Matemáticas Grado:9º Periodo: 3º GUIA # 2 Duración: 10 HORAS Asignatura: Matemáticas ESTÁNDAR: Identifico y utilizo la potenciación, la

Más detalles

COL LECCIÓ DE PROBLEMES RESOLTS

COL LECCIÓ DE PROBLEMES RESOLTS DEPARTAMENT DE MATEMÀTICA ECONOMICOEMPRESARIAL DEPARTAMENT D ECONOMIA FINANCERA UNIVERSITAT DE VALÈNCIA LLICENCIATURA EN ECONOMIA LLICENCIATURA EN ADMINISTRACIÓ I DIRECCIÓ D EMPRESES DIPLOMATURA EN CIÈNCIES

Más detalles

EXAMEN DE PROGRAMACIÓN LINEAL

EXAMEN DE PROGRAMACIÓN LINEAL EXAMEN DE PROGRAMACIÓN LINEAL Se recomienda: a) Antes de hacer algo, leer todo el eamen. b) Resolver antes las preguntas que se te den mejor. c) Responde a cada parte del eamen en una hoja distinta. d)

Más detalles

UNIDAD 7.- FUNCIONES ELEMENTALES (tema 10 del libro)

UNIDAD 7.- FUNCIONES ELEMENTALES (tema 10 del libro) UNIDAD 7.- FUNCIONES ELEMENTALES (tema 10 del libro) 1. FUNCIONES AFINES Y LINEALES Son funciones cuya gráfica es una recta (como ya vimos en geometría). De manera general son de la forma f ( ) = m + n

Más detalles

Las propiedades generales de la función logarítmica se deducen a partir de las de su inversa, la función exponencial. Así, se tiene que:

Las propiedades generales de la función logarítmica se deducen a partir de las de su inversa, la función exponencial. Así, se tiene que: FUNCIÓN LOGARITMICA Marco Teórico Una función logarítmica es aquella que genéricamente se expresa como f (x) =log a x, siendo a la base de esta función, que ha de ser positiva y distinta de 1. La función

Más detalles

3 LÍMITE - Teoría y Ejemplos

3 LÍMITE - Teoría y Ejemplos 3 LÍMITE - Teoría y Ejemplos Introducción A partir del concepto de ite, podemos analizar el comportamiento de una función tanto en intervalos muy pequeños alrededor de un número real como cuando los valores

Más detalles

UNIDAD 2: ECUACIONES E INECUACIONES. SISTEMAS DE ECUACIONES

UNIDAD 2: ECUACIONES E INECUACIONES. SISTEMAS DE ECUACIONES UNIDAD 2: ECUACIONES E INECUACIONES. SISTEMAS DE ECUACIONES 1. IDENTIDADES Y ECUACIONES 2. ECUACIONES POLINÓMICAS 3. ECUACIONES BICUADRADAS 4. ECUACIONES RACIONALES 5. ECUACIONES IRRACIONALES 6. ECUACIONES

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.2. LÍMITES Y CONTINUIDAD

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.2. LÍMITES Y CONTINUIDAD TEMA. FUNCIONES REALES DE VARIABLE REAL.. LÍMITES Y CONTINUIDAD . FUNCIONES REALES DE VARIABLE REAL.. LÍMITES Y CONTINUIDAD... LÍMITE DE UNA FUNCIÓN EN UN PUNTO... LÍMITES INFINITOS... LÍMITES EN EL INFINITO..4.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Apuntes de Límites de funciones

Apuntes de Límites de funciones Apuntes de Límites de funciones En el tema anterior estudiamos el concepto de función real de variable real y sus principales características. En este tema, introducimos la idea intuitiva de límite de

Más detalles

Apuntes de Límites de funciones

Apuntes de Límites de funciones Apuntes de Límites de funciones En el tema anterior estudiamos el concepto de función real de variable real y sus principales características. En este tema, introducimos la idea intuitiva de límite de

Más detalles

FUNCIONES: DOMINIO, RANGO Y GRAFICA

FUNCIONES: DOMINIO, RANGO Y GRAFICA FUNCIONES: DOMINIO, RANGO Y GRAFICA Dominio, Codominio y Rango de una función Dominio El dominio de una función son todos los valores reales que la variable X puede tomar y la gráfica queda bien definida,

Más detalles

Métodos Numéricos: Ejercicios Resueltos Tema 1: Preliminares

Métodos Numéricos: Ejercicios Resueltos Tema 1: Preliminares Métodos Numéricos: Ejercicios Resueltos Tema : Preliminares Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Curso 2006/07 Febrero 2007, versión.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 03 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Matemáticas.

Matemáticas. euresti@itesm.mx El método gráfico de solución de problemas de programación lineal (PL) sólo aplica a problemas con dos variables de decisión; sin embargo, ilustra adecuadamente los conceptos que nos permitirán

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Crecimiento y decrecimiento. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto: Una función f() es creciente en un punto

Más detalles

TEMA 3. Algebra. Teoría. Matemáticas

TEMA 3. Algebra. Teoría. Matemáticas 1 1 Las expresiones algebraicas Las expresiones algebraicas son operaciones aritméticas, de suma, resta, multiplicación y división, en las que se combinan letras y números. Para entenderlo mejor, vamos

Más detalles

tiene por límite L cuando la variable independiente x tiende a x , y se nota por L, cuando al acercarnos todo lo que queramos a x lím ( x

tiene por límite L cuando la variable independiente x tiende a x , y se nota por L, cuando al acercarnos todo lo que queramos a x lím ( x UNIDAD.- ímite de funciones. Continuidad (tema del libro). ÍMITE DE UNA FUNCIÓN Diremos que una función y f () tiene por ite cuando la variable independiente tiende a, y se nota por f ( ), cuando al acercarnos

Más detalles

L O G A R I T M O S, E C U A C I O N E S E I N E C U A C I O N E S

L O G A R I T M O S, E C U A C I O N E S E I N E C U A C I O N E S L O G A R I T M O S, E C U A C I O N E S E I N E C U A C I O N E S. L O G A R I T M O S En los cálculos con potencias se pueden dar situaciones en las que se conozcan la base de la potencia y el resultado,

Más detalles

PROPUESTA A., se pide: a) Calcula las asíntotas verticales y oblicuas de f(x). (1,25 puntos)

PROPUESTA A., se pide: a) Calcula las asíntotas verticales y oblicuas de f(x). (1,25 puntos) PROPUEST. Dada la función f ( ), se pide: a) Calcula las asíntotas verticales y oblicuas de f(). (, puntos) b) Coordenadas de los máimos y mínimos relativos de f(). (, puntos). Calcula las siguientes integrales:

Más detalles

log1 Determine: Asíntota Horizontal, Intercepto con los ejes, Dominio y Rango, Grafica.

log1 Determine: Asíntota Horizontal, Intercepto con los ejes, Dominio y Rango, Grafica. EXAMEN III PARCIAL /4/16 Nombre: Número Cuenta: # Lista: PARTE PRÁCTICA: 6) Resuelva utilizando el método grafico Valor 15% F O. Min z= 5x+7y Sujeta a x + 6y 180 x + y 80 x 10 x, y 0 4 x y ( x 1) 7) Aplique

Más detalles

+ 5x. Objetivos Simplificar expresiones algebraicas racionales. Sumar, restar, multiplicar y dividir expresiones algebraicas racionales.

+ 5x. Objetivos Simplificar expresiones algebraicas racionales. Sumar, restar, multiplicar y dividir expresiones algebraicas racionales. COLEGIO SECUNDARIO LA PLATA Colegio Secundario La Plata Educar para un mundo mejor Epresiones algebraicas racionales Objetivos Simplificar epresiones algebraicas racionales Sumar, restar, multiplicar y

Más detalles

TEMA 1.- LÍMITES DE FUNCIONES Y CONTINUIDAD.

TEMA 1.- LÍMITES DE FUNCIONES Y CONTINUIDAD. TEMA 1.- LÍMITES DE FUNCIONES Y CONTINUIDAD. 1.LÍMITE DE UNA FUNCIÓN EN UN PUNTO El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes por f de puntos x, cuando los originales

Más detalles

La forma de una ecuación de primer grado puede ser de la siguiente:

La forma de una ecuación de primer grado puede ser de la siguiente: Primer Grado La forma de una ecuación de primer grado puede ser de la siguiente: a b a b a b a b La solución de una inecuación no va a ser un número concreto, sino un intervalo, es por lo que, debemos

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II 2 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Bloque. Álgera lineal Prolema.. 2 2 a) A() 4 2 8 44 2 8 6 2 648 2 2 0 ) El determinante de la matriz inversa

Más detalles

a) log3 81 = b) log = c) loga 27 = 3 d) log2 P = 4 e) El logaritmo de un número en cierta base, puede ser un número negativo?

a) log3 81 = b) log = c) loga 27 = 3 d) log2 P = 4 e) El logaritmo de un número en cierta base, puede ser un número negativo? Durante el siglo XVII fue mu popular el invento del escocés John Néper (550-67) para multiplicar, conocido con el nombre de "rodillos de Néper". Pero mucho más importante para las matemáticas fue lo que

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

2 x. log = logaritmo, por definición, debe ser positiva, es decir, x > 0. Luego x=2. 8 no es exacto, pues

2 x. log = logaritmo, por definición, debe ser positiva, es decir, x > 0. Luego x=2. 8 no es exacto, pues EXPONENCIALES Y LOGARÍTMICAS PROFESOR: ANTONIO PIZARRO http://ficuspnticmeces/apis000 ) Hallar el eponente al que ha que elevar 7 para obtener 0 Piden hallar para que 7 0 7 7 7 7 ) Calcular el aritmo en

Más detalles

Matemáticas aplicadas a las Ciencias Sociales II. ANAYA

Matemáticas aplicadas a las Ciencias Sociales II. ANAYA Unidad 5 / Límites de funciones Continuidad! PARA RESOLVER a)) Calcula el límite de la función f() cuando,,,, - : f() (-)/( -5) b)) Representa gráficamente los resultados obtenidos. a))! 5! 5 indeterminado,

Más detalles

Estudio de una función. Un resumen de los contenidos que aplicamos en el estudio de una función, que se encuentran en el módulo:

Estudio de una función. Un resumen de los contenidos que aplicamos en el estudio de una función, que se encuentran en el módulo: Estudio de una función Un resumen de los contenidos que aplicamos en el estudio de una función, que se encuentran en el módulo: Una función f () tiene asíntota vertical en asi f () a Una función f () tiene

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio A-09 - Incorporado a la Enseñanza Oficial COLEGIO SAN PATRICIO - 0 - Prof. Celia R. Sánchez MATEMÁTICA - TRABAJO PRÁCTICO Nº 8 AÑO FUNCIÓN EXPONENCIAL Y LOGARÍTMICA - ECUACIONES POTENCIACIÓN: Ejercicio

Más detalles

2 x 3y 5 y. Luego el. 5 4x y 5 4x 5 x Así el segundo punto será: (5/4, 0). Por tanto, el sistema quedaría graficado así: 2x 3y 5

2 x 3y 5 y. Luego el. 5 4x y 5 4x 5 x Así el segundo punto será: (5/4, 0). Por tanto, el sistema quedaría graficado así: 2x 3y 5 SISTEMAS DE ECUACIONES LINEALES, PROBLEMAS DE APLICACIÓN, NUMEROS COMPLEJOS Y ECUACION CUADRATICA. SISTEMAS DE ECUACIONES LINEALES Un conjunto de ecuaciones lineales recibe el nombre de sistema de ecuaciones

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 007 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción

Más detalles

Problemas de continuidad y límites resueltos

Problemas de continuidad y límites resueltos Problemas de continuidad y límites resueltos Razona de manera justificada el dominio de la siguientes funciones. a) f ()=ln( ) b) f ()= ( )( 3) c) f ()= cos( ) a) La raíz cuadrada solo admite discriminantes

Más detalles

Problemas Tema 1 Solución a problemas de Repaso de Matemáticas I - Hoja 26 - Todos resueltos

Problemas Tema 1 Solución a problemas de Repaso de Matemáticas I - Hoja 26 - Todos resueltos página 1/12 Problemas Tema 1 Solución a problemas de Repaso de Matemáticas I - Hoja 26 - Todos resueltos Hoja 26. Problema 1 1. a) Calcula el número real m que cumple lim 0 ln(1+m ) sen(2 ) =. b) Obtener

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 003 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A Reserva, Ejercicio 1, Opción A

Más detalles

Manual de teoría: Funciones Matemática Bachillerato

Manual de teoría: Funciones Matemática Bachillerato Manual de teoría: Funciones Matemática Bachillerato Realizado por José Pablo Flores Zúñiga Funciones: José Pablo Flores Zúñiga Página 1 Contenido: ) Funciones.1 Conceptos Básicos de Funciones. Función

Más detalles

SISTEMAS DE ECUACIONES. Un sistema de ecuaciones no lineal es aquel en el que al menos una de las dos ecuaciones no es de primer grado.

SISTEMAS DE ECUACIONES. Un sistema de ecuaciones no lineal es aquel en el que al menos una de las dos ecuaciones no es de primer grado. 1. SISTEMAS NO LINEALES Un sistema de ecuaciones no lineal es aquel en el que al menos una de las dos ecuaciones no es de primer grado. 3 + = 5 = 3 = + 1 = 3 = 1 + = 5 Resolución: Para resolver un sistema

Más detalles

Prof. Sergio SIGNORELLI

Prof. Sergio SIGNORELLI I LOGARITMOS Otra de las funciones importantes de la matemática es la función logarítmica, la cual se expresa de la siguiente forma: y = log b a En principio definiremos a logaritmo de un número: LOGARITMO

Más detalles

TEMA 9- LÍMITES Y CONTINUIDAD MATEMÁTICAS I 1º BACHILLERATO 1 TEMA 9 LÍMITES DE FUNCIONES, CONTINUIDAD Y RAMAS INFINITAS

TEMA 9- LÍMITES Y CONTINUIDAD MATEMÁTICAS I 1º BACHILLERATO 1 TEMA 9 LÍMITES DE FUNCIONES, CONTINUIDAD Y RAMAS INFINITAS TEMA 9- LÍMITES Y CONTINUIDAD MATEMÁTICAS I 1º BACHILLERATO 1 TEMA 9 LÍMITES DE FUNCIONES, CONTINUIDAD Y RAMAS INFINITAS TEMA 9- LÍMITES Y CONTINUIDAD MATEMÁTICAS I 1º BACHILLERATO 9.1. LÍMITE DE UNA FUNCIÓN

Más detalles

Matemáticas CCSS LÍMITES DE FUNCIONES 1. INTRODUCCIÓN BÁSICA: A) LÍMITES SOBRE GRÁFICAS. Ejercicio nº 1.- Ejercicio nº 2.

Matemáticas CCSS LÍMITES DE FUNCIONES 1. INTRODUCCIÓN BÁSICA: A) LÍMITES SOBRE GRÁFICAS. Ejercicio nº 1.- Ejercicio nº 2. LÍMITES DE FUNCIONES. INTRODUCCIÓN BÁSICA: A) LÍMITES SOBRE GRÁFICAS Ejercicio nº.- Ejercicio nº.- Página B) LÍMITES APOYÁNDONOS EN LAS GRÁFICAS B.) FUNCIONES POLINÓMICAS De grado : a ) 3 + b ) 3 + c )

Más detalles

Álgebra 2. Plan de estudios (305 temas)

Álgebra 2. Plan de estudios (305 temas) Álgebra 2 Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales pueden personalizar el

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 005 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

Solución: pasando a restar el término de la derecha de la inecuación y sacando MCD:

Solución: pasando a restar el término de la derecha de la inecuación y sacando MCD: . Resolver la inecuación: Solución: empleando la siguiente propiedad de valor absoluto a a a, tenemos lo siguiente: Resolviendo por el método de puntos críticos, para cada caso tenemos: 0 0 0 Entonces

Más detalles

Tutoría Completa - Curso de Matemática para 1, 2 y 3 Básico

Tutoría Completa - Curso de Matemática para 1, 2 y 3 Básico Tutoría Completa - Curso de Matemática para 1, 2 y 3 Básico Contenido 1 Básico 1. Proposiciones y cuantificadores a. Proposiciones b. Negación c. Conjunción d. Disyunción e. Condicional f. Doble condicional

Más detalles

Departamento de Matemáticas I.E.S. Juan García Valdemora. Ejercicios de repaso. 2. Expresa como una potencia de exponente fraccionario: x x.

Departamento de Matemáticas I.E.S. Juan García Valdemora. Ejercicios de repaso. 2. Expresa como una potencia de exponente fraccionario: x x. Ejercicios de repaso. Epande las siguientes epresiones: + + d) +. Epresa como una potencia de eponente fraccionario: a a a a a. Opera y simplifica. ( + ) ( + ) ( ) ( ) ( )( ) + + +. Realiza las siguientes

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

Resolver ecuaciones racionales y con raíz transformando la ecuación en una lineal o cuadrática. Ecuación Expresiones Variables.

Resolver ecuaciones racionales y con raíz transformando la ecuación en una lineal o cuadrática. Ecuación Expresiones Variables. Clase : Ecuaciones lineales, cuadráticas, racionales y con raíz Resolver ecuaciones lineales y cuadráticas. Resolver ecuaciones racionales y con raíz transformando la ecuación en una lineal o cuadrática..

Más detalles

UNIDAD VII.- ECUACIONES Y DESIGUALDADES. Una ecuación es lineal si el exponente de la variable que aparece en dicha ecuación es uno.

UNIDAD VII.- ECUACIONES Y DESIGUALDADES. Una ecuación es lineal si el exponente de la variable que aparece en dicha ecuación es uno. UNIDAD VII.- ECUACIONES Y DESIGUALDADES Ecuaciones Lineales Ecuación: Es una epresión algebraica en la que debe aparecer el símbolo de igualdad =, y la cual resolverla, consiste en encontrar los valores

Más detalles

Matemática Aplicada - Licenciatura de Farmacia - Curso 2005/ HOJA 2 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 2

Matemática Aplicada - Licenciatura de Farmacia - Curso 2005/ HOJA 2 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 2 Matemática Aplicada - Licenciatura de Farmacia - Curso 5/6 - HOJA SOLUCIONES DE LOS EJERCICIOS DE LA HOJA Para ver que las ecuaciones dadas poseen una única raíz real, intentaremos aplicar el teorema de

Más detalles

FUNCIONES. entonces:

FUNCIONES. entonces: FUNCIONES. Si f ( ) para y g( ), entonces: + g f ( ), para + B) g f ( ), para + C) g f ( ), para + D) g f ( ), para + (Convocatoria septiembre 00. Eamen tipo B) La composición de funciones es una operación

Más detalles

Solución: Para calcular la pendiente, despejamos la y: La ordenada en el origen es n. 3 Puntos de corte con los ejes: 1 Eje Y 0, 3

Solución: Para calcular la pendiente, despejamos la y: La ordenada en el origen es n. 3 Puntos de corte con los ejes: 1 Eje Y 0, 3 EJERCICIO. Halla la pendiente, la ordenada en el origen y los puntos de corte con los ejes de coordenadas de la recta 6y 0. Represéntala gráficamente. Para calcular la pendiente, despejamos la y: 6y 0

Más detalles

TEMA 10.-LÍMITES DE FUNCIONES Y CONTINUIDAD

TEMA 10.-LÍMITES DE FUNCIONES Y CONTINUIDAD TEMA.-Límites de funciones y continuidad.- Matemáticas I. SUCESIONES DE NÚMEROS REALES TEMA.-LÍMITES DE FUNCIONES Y CONTINUIDAD Una sucesión de números reales es un conjunto de números (a, a, a 3,...,

Más detalles

IES DIONISIO AGUADO LA FUNCION LOGARITMO

IES DIONISIO AGUADO LA FUNCION LOGARITMO LA FUNCION LOGARITMO En tu calculadora hay dos teclas que todavía no has usado, son las designadas por y Ln. Si haces 00 el resultado es, si haces 000 el resultado es, si haces el resultado es 0, si haces

Más detalles

SESIÓN 2 FUNCIONES REALES ESPECIALES

SESIÓN 2 FUNCIONES REALES ESPECIALES SESIÓN FUNCIONES REALES ESPECIALES Llamadas tamién funciones reales de variale real, son aquellas funciones reales que por sus características toman el nomre de funciones reales especiales o solamente

Más detalles

ETS Minas: Métodos matemáticos Ejercicios resueltos Tema 1 Preliminares

ETS Minas: Métodos matemáticos Ejercicios resueltos Tema 1 Preliminares ETS Minas: Métodos matemáticos Ejercicios resueltos Tema Preliminares Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Curso 006/07 Agosto 006,

Más detalles

Algebra y Trigonometría Grupo: 1

Algebra y Trigonometría Grupo: 1 Guía No 4 Algebra y Trigonometría Grupo: 1 UNAD Escuela de Ciencias Básicas Tecnología e Ingeniería Algebra Trigonometría y Geometría Analítica Definición: FUNCIONES POLINOMIALES Una función polinomial

Más detalles

UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS PLANEACION DIDACTICA BASADE EN OBJETIVOS METODOS CUANTITATIVOS II ANDINO ERIC/LOPEZ LUIS (1ERA EDICION)

UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS PLANEACION DIDACTICA BASADE EN OBJETIVOS METODOS CUANTITATIVOS II ANDINO ERIC/LOPEZ LUIS (1ERA EDICION) UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS PLANEACION DIDACTICA BASADE EN OBJETIVOS ASIGNATURA: AUTOR:EDICION: METODOS CUANTITATIVOS II ANDINO ERIC/LOPEZ LUIS (1ERA EDICION) TEXTO BASICO: METODOS CUANTITATIVOS

Más detalles

APLICACIONES DE LA DERIVADA CCSS

APLICACIONES DE LA DERIVADA CCSS APLICACIONES DE LA DERIVADA CCSS Crecimiento y decrecimiento. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto: Una función f() es creciente en

Más detalles