:: OBJETIVOS [3.1] :: PREINFORME [3.2]

Tamaño: px
Comenzar la demostración a partir de la página:

Download ":: OBJETIVOS [3.1] :: PREINFORME [3.2]"

Transcripción

1 :: OBJETIVOS [3.] Verificar que la resistecia equivalete a ua asociació de resistecias e serie se obtiee sumado aritméticamete las resistecias coectadas Verificar que la resistecia equivalete a ua asociació de resistecias e paralelo se obtiee tomado el iverso de la suma de los iversos de las resistecias coectadas. Comprobar que la suma de las caídas de tesió e cada ua de las resistecias de u circuito serie es igual al asceso de tesió e la fuete. :: PREINFORME [3.] Dé el sigificado de la Ley de Ohm e térmios de la desidad de corriete y el campo eléctrico. Explique el cocepto de diferecia de potecial e los termiales de ua resistecia. Realice el aálisis dimesioal de las ecuacioes 3.6 y 3.7. Estudie y discuta el comportamieto de las corrietes eléctricas que fluye desde y hacia u odo e u circuito eléctrico. :: EQUIPOS Y MATERIALES [3.3] Reóstatos Phywe, valores omiales de 00Ω, 330Ω, 3 300Ω ó 0 000Ω. Multímetro Digital Fluke o Hi-Tech. Amperímetros aálogos Pasco o Phywe. Fuete de alimetació V DC. 0 Coductores :: MARCO TEÓRICO [3.4] Asociació de resistecias e serie[3.4.] :. U cojuto de resistecias coectadas ua a cotiuació de la otra de tal maera que la corriete circule por todas ellas a través de u úico camio, forma ua asociació de resistecias e serie, tal como lo idica la figura 3.. Se ota que V o- = V o- + V V -, (3.)

2 3 De acuerdo co la ley de Ohm, los térmios del lado derecho de la aterior ecuació tiee la siguiete equivalecia: Figura 3. V o- = I R + I R I R (3.) V o- = I (R + R R ) (3.3) V0 I i i= = R (3.4) Dode I es la corriete úica que circula por la asociació de resistecias e serie y R, R... R so las resistecias coectadas e serie. Dado que V o- + V -o = V o-o = V o - V o = 0 Vol t y V o- = V, etoces El térmio V I R = i i= (3.5) Ri Tiee dimesioes de resistecia y es coveiete llamarlo i= resistecia equivalete serie R eq, por lo tato V = I R eq, que atediedo a la ley de Ohm puede ser iterpretado a través de la figura 3.. Figura 3.

3 4 La aterior figura se iterpreta como la red equivalete co la asociació de resistecias de la figura 3.. Asociació de resistecias e paralelo [3.4.] :. U cojuto de resistecias está coectadas e paralelo cuado sus respectivos termiales está coectados a putos comues, tal como se idica e la figura 3.3. Figura 3.3 La tesió etre los termiales de cada ua de las resistecias del circuito e paralelo es la misma para cada ua de ellas. Aplicado la ley de Ohm a cada ua de las resistecias del circuito paralelo, se tiee: V = I R = I R =... = I R (3.6) Porque e los cables que coecta los odos o se registra caída de tesió. De igual maera I = I + I I Ya que los cables que coecta los odos o so fuetes i sumideros de cargas eléctricas, es decir, allí o se crea i se destruye carga eléctrica, y por lo tato la rata de cambio de la carga co el tiempo (la corriete) o cambia. Atediedo a los resultados ateriores y al hecho de que e ua proporció, la suma de los atecedetes es a la suma de los cosecuetes como cualquier atecedete es a su respectivo cosecuete, se cocluye que

4 5 I i I I I I = = = = = = R R R R R i= V... El térmio i = R i= i i= i i Tiee dimesioes de iverso de resistecia y es coveiete llamarlo R eq etoces: i= I R i = I = V R eq (3.7) De uevo, de acuerdo co ley de Ohm se llega a la siguiete cofiguració 3.4 que es equivalete a la de la figura 3.3. Figura 3.4 Si e la coexió serie de resistecias se coecta ua resistecia adicioal, la resistecia equivalete aumeta y la corriete dismiuye; además si se preseta ua falla e la cotiuidad de cualquiera de los elemetos coectados, el flujo de corriete se iterrumpe e el circuito. E la coexió paralelo de resistecias podemos apreciar que la resistecia equivalete es meor que la meor de las resistecias coectadas y la falla de uo de los elemetos coectados o afecta la operació del resto del circuito.

5 6 :: PROCEDIMIENTO [3.5] Asociació de resistecias e serie[3.5.] :. a. Istale el circuito de la figura 3.5, previamete co el óhmetro profesioal mida cada resistecia y aótela e la tabla 3.. b. Cierre el iterruptor S y aote la lectura del amperímetro A. Además mida las caídas de tesió e cada resistecia y cosige la iformació e la tabla 3.. Figura 3.5 Valor Nomial Medido co el óhmetro R (Ω) 330 R (Ω) 70 Lectura Amperímetro I = A Caídas de tesió V (V) V (V) V (V) Tabla 3. c. Reemplace la combiació serie de resistecias, por u reóstato de valor omial R= Ω, de acuerdo co la figura 3.6 y empezado co el valor máximo de resistecia, varíe el reóstato e setido decreciete hasta obteer e el amperímetro la lectura registrada e la istrucció 3.5.b y escríbala e la tabla 3..

6 7 Figura 3.6 Lectura del Amperímetro (A) R eq serie equivalete medida co el óhmetro (Ω) Asceso de tesió e la fuete V = V Tabla 3. d. Ua vez realizado lo idicado e el paso aterior y si mover el cursor del reóstato, mida su resistecia co u óhmetro profesioal. Este valor correspode a la resistecia equivalete de la coexió serie. Lleve este valor a la tabla 3.. e. Icidetalmete verifique que la suma de las caídas de tesió medidas e la resistecias de 330 Ω y 70 Ω es igual al asceso de tesió e la fuete, como quedo registrado e la tabla 3. (columa derecha). Asociació de resistecias e paralelo [3.5.] :. a. Istale el circuito de la figura 3.7. Mida la resistecia de cada reóstato co el óhmetro profesioal, so los datos experimetales que será aotados e la tabla 3.3. Nota: Por limitacioes de equipo para el desarrollo de esta práctica, cada puesto de trabajo solo dispoe de u istrumeto para medir itesidad de corriete, por lo tato se debe iterrumpir solo la rama elegida e la cual se isertará el amperímetro para medir las itesidades respectivas I, I e I

7 8 Itesidad de corriete e cada rama Valor Nomial Medido co el óhmetro R (Ω) 00 R (Ω) 330 Voltaje de la fuete V = V Tabla 3.3 I (A) I (A) I (A) b. Cierre el iterruptor, y aote cada lectura de los amperímetros e la tabla 3.3. Figura 3.7 c. Reemplace la combiació paralelo de resistecias por u reóstato R = 00 Ω de valor omial, segú se idica e la figura 3.8. Figura 3.8 Tome el reóstato desde su máximo valor y varíe e setido decreciete, hasta obteer la mayor de las lecturas registrada e el umeral [3.5.] literal b. y llee la tabla 3.4. d. Ua vez realizado lo idicado e la istrucció aterior y si mover el cursor del reóstato, mida su resistecia co u óhmetro profesioal y cosige este dato e la tabla 3.4, compare éste valor co la resistecia equivalete a la asociació paralelo de resistecias.

8 9 Lectura del Amperímetro (A) Req equivalete paralelo medida co el óhmetro (Ω) :: PREGUNTAS [3.6] Asceso de tesió e la fuete Tabla 3.4 V= V a. Demuestre que la R eq e la asociació serie de resistecia es mayor que cualquiera de las resistecias compoetes R i y explique este resultado comparativamete co los datos experimetales. b. Demuestre que la R eq e la asociació paralelo de resistecias es meor que cualquiera de las resistecias compoetes R i. y aalice las diferecias co los valores experimetales. c. Discuta y explique lo que sucede e u circuito serie si falla u elemeto de la red. d. Explique lo que pasa e u circuito paralelo si se iterrumpe la corriete a través de uo de sus elemetos. e. Aalice para el circuito de la figura 3.5 los voltajes V V medidos co el voltímetro y compárelos co los valores V = RI y V = R I calculados co los valores experimetales de R, R e I. f. Aalice para el circu ito d e la figura 3.7 los valores de las itesidades de corrietes medidas I, I e I e las ramas respectivas del circuito y compárelos co las catidades V V calculadas I = e I = coformes a las medidas de V, R y R respectivas. R R g. Discutir las diferecias básicas que existe etre circuitos que asocia resistecias e serie co asociacioes de resistecias e paralelo. h. Idetifique como so los circuitos domiciliarios. i. Diseña y resuelva aalítica y uméricamete u circuito mixto secillo, (o emplee más de 5 resistecias).

Soluciones práctico 3 - Electrotécnica 2 Transformador trifásico

Soluciones práctico 3 - Electrotécnica 2 Transformador trifásico Solucioes práctico 3 - Electrotécica 2 Trasformador trifásico Problema 1 a) Grupo de coexió Yd11. b) Potecia cosumida por la carga S = P + jq = 207, 846 + j120, 000, la potecia etregada por la fuete es

Más detalles

:: OBJETIVOS [1.1] :: PREINFORME [1.2]

:: OBJETIVOS [1.1] :: PREINFORME [1.2] Manejo de aparatos de medida. Identificación de componentes eléctricos de un circuito. Comparación entre los valores registrados por instrumentos de medidas eléctricas, uno análogo y otro digital. :: OBJETIVOS

Más detalles

M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para

M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para GEOMETRÍA, TRIGONOMETRÍA Y SERIES Tema 4 Series uméricas M arcelo, de vez e vez, usa ua reata de 10 m de largo y cm de grueso para medir el cotoro de los terreos que fumiga. Para que la reata que usa o

Más detalles

PRACTICA 5: FUERZA ELECTROMOTRIZ Y RESISTENCIA INTERNA DE UNA PILA

PRACTICA 5: FUERZA ELECTROMOTRIZ Y RESISTENCIA INTERNA DE UNA PILA 1 PRCTIC 5: FUERZ ELECTROMOTRIZ Y REITENCI INTERN DE UN PIL 1.1 OBJETIVO GENERL Utilizar un circuito resistivo sencillo para medir la resistencia interna de una fuente de voltaje y diferenciar los conceptos

Más detalles

ALGEBRA ELEMENTAL AUTOR: CARLOS DOMÍNGUEZ V... 16 INDICE... 1 UNIDAD III.- EXPONENTES Y RADICALES. RAZONES, PROPORCIONES Y VARIACIONES.

ALGEBRA ELEMENTAL AUTOR: CARLOS DOMÍNGUEZ V... 16 INDICE... 1 UNIDAD III.- EXPONENTES Y RADICALES. RAZONES, PROPORCIONES Y VARIACIONES. ALGEBRA ELEMENTAL INDICE AUTOR: CARLOS DOMÍNGUEZ V... 16 INDICE... 1 UNIDAD III.- EXPONENTES Y RADICALES. RAZONES, PROPORCIONES Y VARIACIONES. Ley asociativa... Ley distriutiva... 1.- EXPONENTES Y RADICALES...

Más detalles

11. TRANSFORMADOR IDEAL

11. TRANSFORMADOR IDEAL . TAFOMADO DEA.. TODUCCÓ Cuado el flujo magético producido por ua bobia alcaza ua seguda bobia se dice que existe etre las dos bobias u acople magético, ya que el campo magético variable que llega a la

Más detalles

4.4 Sistemas mal condicionados

4.4 Sistemas mal condicionados 7 4.4 Sistemas mal codicioados l resolver u sistema de ecuacioes lieales usado u método directo, es ecesario aalizar si el resultado calculado es cofiable. E esta secció se estudia el caso especial de

Más detalles

MATEMÁTICAS 3º ESO - SUCESIONES. Una sucesión es un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero

MATEMÁTICAS 3º ESO - SUCESIONES. Una sucesión es un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero ucesioes Ua sucesió es u cojuto de úmeros dados ordeadamete de modo que se pueda umerar: primero, segudo, tercero Ejemplos: a), 3, 5, 7, 9, b), 4, 9, 6, 25, 36 c) 2, 4, 8, 6, 32, 64 e llama térmios a los

Más detalles

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I ASPECTOS PRELIMINARES INTRODUCCIÓN AL CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I ASPECTOS PRELIMINARES INTRODUCCIÓN AL CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I ASPECTOS PRELIMINARES INTRODUCCIÓN AL CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS INTRODUCCIÓN

Más detalles

MANUAL DE LAB ELECTRICIDAD Y MAGNETISMO

MANUAL DE LAB ELECTRICIDAD Y MAGNETISMO POTENCIA ELECTRICA EXPERIENCIA N 5 1. OBJETIVOS. 1. Mostrar la potencia eléctrica como función del voltaje y de la corriente, calculando y midiendo la potencia disipada en una resistencia conforme aumenta

Más detalles

TEMA 16. ESTEQUIOMETRIA DE UNA FORMULA QUIMICA

TEMA 16. ESTEQUIOMETRIA DE UNA FORMULA QUIMICA 1 TEMA 16. ESTEQUIOMETRIA DE UNA FORMULA QUIMICA Mario Melo Araya Ex Profesor Uiversidad de Chile [email protected] Estructuralmete las substacias químicas está costituidas por etidades elemetales

Más detalles

PROGRESIONES ARITMÉTICAS.-

PROGRESIONES ARITMÉTICAS.- PROGRESIONES ARITMÉTICAS.- Ua progresió aritmética es ua sucesió de úmeros tales que cada uo de ellos, excepto el primero, se obtiee sumado al aterior ua costate d, que se deomia diferecia de la progresió.

Más detalles

Cómo simplificar expresiones algebraicas?

Cómo simplificar expresiones algebraicas? Cómo simplificar expresioes algebraicas? Prof. Jea-Pierre Marcaillou OBJETIVOS: La calculadora CASIO ClassPad 330 dispoe de los comados [simplify] y [combie] del submeú desplegable Trasformació del meú

Más detalles

Transporte de portadores. Corriente en los semiconductores

Transporte de portadores. Corriente en los semiconductores Trasporte de portadores Corriete e los semicoductores Movimieto térmico de los portadores Detro del semicoductor los portadores de corriete está sometidos a u movimieto de agitació térmica (movimieto browiao).

Más detalles

El circuito NE565 un PLL de propósito general. Su diagrama de bloques y patillado se muestra en la siguiente figura.

El circuito NE565 un PLL de propósito general. Su diagrama de bloques y patillado se muestra en la siguiente figura. Práctica : PLL. Itroducció E esta práctica se utilizará el circuito NE565. Es u bucle de egache e fase moolítico co márgees de fucioamieto que llega hasta los 5 Khz. para el NE565. El PLL respode a u diagrama

Más detalles

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir:

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir: Capítulo Series Numéricas Las series uméricas so sucesioes muy particulares ya que se defie (o se geera) a partir de otra sucesió. Dos ejemplos secillos aparece e la defiició de e y el la Paradoja de Zeó.

Más detalles

ANÁLISIS Y RESOLUCIÓN DE CIRCUITOS

ANÁLISIS Y RESOLUCIÓN DE CIRCUITOS NÁLSS Y ESOLCÓN DE CCTOS. Las Leyes de Kirchhoff..- Euciado de las Leyes de Kirchhoff. Defiició de Nodo y Lazo Cerrado. Las Leyes de Kirchhoff so el puto de partida para el aálisis de cualquier circuito

Más detalles

Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series.

Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series. CÁLCULO Igeiería Idustrial. Curso 2009-200. Departameto de Matemática Aplicada II. Uiversidad de Sevilla. Lecció 5. Series. Resume de la lecció. 5.. Sucesioes y series. Sucesió covergete. Se de e ua sucesió

Más detalles

RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN SEMANA 13 RAZONES Y PROPORCIONES ab + cd = 2500, halle el valor de (a + c) a c e g K.

RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN SEMANA 13 RAZONES Y PROPORCIONES ab + cd = 2500, halle el valor de (a + c) a c e g K. SEMANA 1 RAZONES Y PROPORCIONES 1. Si: a b c d y 7 4 1 6 ab + cd = 500, halle el valor de (a + c) A) 75 B) 80 C) 90 D) 95 E) 100 a b ab K K 7 4 8 d e de K K 1 6 7 Luego: 500 100K K = 5 Luego: a = 5, d

Más detalles

Composición de fundamental con tercera armónica Onda fundamental. Onda resultante

Composición de fundamental con tercera armónica Onda fundamental. Onda resultante Fució POLARMÓNCAS ENSONES Y CORRENES POLARMÓNCAS 7. troducció E los aálisis ateriores, hemos trabajado co geeració de tesioes alteras del tipo seoidal, y circuitos co características lieales, lo cual se

Más detalles

Mg. Marco Antonio Plaza Vidaurre 1 LAS SERIES UNIFORMES

Mg. Marco Antonio Plaza Vidaurre 1 LAS SERIES UNIFORMES Mg. Marco Atoio laza Vidaurre LAS SEIES UNIFOMES Las series uiformes so u cojuto de valores moetarios iguales distribuidos e el tiempo, co ua frecuecia regular. U cojuto de stocks forma ua serie. E la

Más detalles

Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1

Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1 Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1 TEMA 10 CÁLCULO DE PROBABILIDADES 10.1 EXPERIENCIAS ALEATORIAS. SUCESOS EXPERIENCIAS DETERMINISTAS Y ALEATORIAS Se llama experiecia

Más detalles

Sucesiones. Se denomina sucesión a una función cuyo dominio es el conjunto de los números naturales.

Sucesiones. Se denomina sucesión a una función cuyo dominio es el conjunto de los números naturales. Sucesioes Sucesió Se deomia sucesió a ua fució cuyo domiio es el cojuto de los úmeros aturales. Para deotar el -ésimo elemeto de la sucesió se escribe a e lugar de f(). Ejemplo: a = 1/ a 1 = 1, a 2 = 1/2,

Más detalles

ESTADISTICA UNIDIMENSIONAL

ESTADISTICA UNIDIMENSIONAL ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate

Más detalles

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma:

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma: Semiario Uiversitario de Igreso 07 oliomio de ua sola variable a0; a; a;...; a úmeros reales y N 0, llamaremos poliomio de la variable a toda epresió algebraica etera de la forma: a0 a a... a Los poliomios

Más detalles

Lentes divergentes. Estudiar propiedades de lentes divergentes. Análisis de aberraciones por esfericidad.

Lentes divergentes. Estudiar propiedades de lentes divergentes. Análisis de aberraciones por esfericidad. etes divergetes Objetivo Estudiar propiedades de letes divergetes. Aálisis de aberracioes por esfericidad. Actividad etes divergetes Estas letes tiee la característica de ser más delgadas e el cetro que

Más detalles

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc.

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc. Sucesioes Sucesi o. Ua sucesió es u cojuto ifiito de úmeros ordeados de tal forma que se puede decir cuál es el primero, cuál el segudo, el tercero, etc. Los térmios de ua sucesió se desiga mediate a 1,

Más detalles

TRABAJO DE GRUPO Series de potencias

TRABAJO DE GRUPO Series de potencias DPTO. MATEMÁTICA APLICADA FACULTAD DE INFORMÁTICA (UPM) TRABAJO DE GRUPO Series de potecias CÁLCULO II (Curso 20-202) MIEMBROS DEL GRUPO (por orde alfabético) Nota: Apellidos Nombre Este trabajo sobre

Más detalles

PROTECCIÓN DE MAQUINAS

PROTECCIÓN DE MAQUINAS Proteccioes de Sistemas Eléctricos PROTECCÓN DE MAQUNAS. Protecció de Geeradores. troducció Se puede afirmar que, e geeral, todos os elemetos de u sistema eléctrico de potecia. merece el mismo grado de

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad Evaluació NOMBRE APELLIDOS CURSO GRUPO FECHA CALIFICACIÓN Calcula el térmio geeral de ua progresió geométrica que tiee de térmio a y por razó /. a) b) c) El 6 es: a) b) 0 c) / 6 7 El es: a) b) c) 0 El

Más detalles

ONDAS SOBRE UNA CUERDA

ONDAS SOBRE UNA CUERDA ONDAS SOBRE UNA CUERDA Objetivo: Aalizar el comportamieto de las odas estacioarias e ua cuerda relacioado la tesió, la frecuecia de oscilació, la logitud de la cuerda y el úmero de segmetos que se forma

Más detalles

ÁLGEBRA ELEMENTAL. Un término es una expresión algebraica que sólo contiene productos y cocientes (es decir, no aparecen sumas o restas).

ÁLGEBRA ELEMENTAL. Un término es una expresión algebraica que sólo contiene productos y cocientes (es decir, no aparecen sumas o restas). ÁLGEBRA ELEMENTAL 1.- EXPRESIONES ALGEBRAICAS (GENERALIDADES) 1.1.- Alguas defiicioes Ua epresió algebraica es ua epresió matemática que cotiee úmeros, letras que represeta úmeros cualesquiera sigos matemáticos

Más detalles

8. INTERVALOS DE CONFIANZA

8. INTERVALOS DE CONFIANZA 8. INTERVALOS DE CONFIANZA Al estimar el valor de u parámetro de la distribució teórica, o se provee iformació sobre la icertidumbre e el resultado. Esa icertidumbre es producida por la dispersió de la

Más detalles

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11 IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como

Más detalles

Estudio de las condiciones de equilibrio de un puente de Wheatstone. Empleo de un método de precisión para medir resistencias eléctricas.

Estudio de las condiciones de equilibrio de un puente de Wheatstone. Empleo de un método de precisión para medir resistencias eléctricas. Estudio de las condiciones de equilibrio de un puente de Wheatstone. Empleo de un método de precisión para medir resistencias eléctricas. :: NTODUCCÓN [9.] El puente de Wheatstone deriva su nombre del

Más detalles

LABORATORIO DE FÍSICA II/21 PRACTICA Nº 2 USO DE DIAGRAMAS ELÉCTRICOS Y COMPROBACIÓN EXPERIMENTAL DE LAS LEYES DE KIRCHOFF

LABORATORIO DE FÍSICA II/21 PRACTICA Nº 2 USO DE DIAGRAMAS ELÉCTRICOS Y COMPROBACIÓN EXPERIMENTAL DE LAS LEYES DE KIRCHOFF Página 1 de 7 LORTORIO DE FÍSIC II/21 PRCTIC Nº 2 USO DE DIGRMS ELÉCTRICOS Y COMPROCIÓN EXPERIMENTL DE LS LEYES DE KIRCHOFF OJETIVOS 1. Representar diagramas eléctricos. 2. Montar circuitos eléctricos.

Más detalles

Walter Orlado Gozales Caicedo Secuecias Lógicas OBJETIVO: Lograr habilidad y destreza e el alumo practicado u razoamieto abstracto PROCEDIMIENTOS: INICIAL: Halla el valor del térmio que cotiúa e:,,,, 0,

Más detalles

a m x a n = a (m+n) a n m = a n x m

a m x a n = a (m+n) a n m = a n x m Poteciació y Radicació de úmeros eteros Sabías que... E el tablero de operacioes de la atigua Chia, la multiplicació se iiciaba co las cifras del orde superior, pasado gradualmete a las cifras de órdees

Más detalles

Tema 3: Introducción a la probabilidad. Tema 3: Introducción a la probabilidad. Tema 3: Introducción a la probabilidad. 3.

Tema 3: Introducción a la probabilidad. Tema 3: Introducción a la probabilidad. Tema 3: Introducción a la probabilidad. 3. Tema 3: Itroducció a la probabilidad Tema 3: Itroducció a la probabilidad 3.1 Itroducció Equiprobabilidad Métodos combiatorios Objetivos del tema: l fial del tema el alumo será capaz de: Compreder y describir

Más detalles

Fracciones. Prof. Maria Peiró

Fracciones. Prof. Maria Peiró Fraccioes Prof. Maria Peiró Recordemos Las partes de ua divisió so Dividedo Residuo divisor Cociete Defiició Ua fracció o querado, es ua divisió de la uidad e u determiado úmero de partes, de las cuales

Más detalles

Cálculo de límites. 8.1. Criterio de Stolz. Tema 8

Cálculo de límites. 8.1. Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles

SUCESIONES Y SERIES Una sucesión es un conjunto de números ordenados bajo cierta regla específica. 7, 10, 13, 16, 19, 22, 25,...

SUCESIONES Y SERIES Una sucesión es un conjunto de números ordenados bajo cierta regla específica. 7, 10, 13, 16, 19, 22, 25,... SUCESIONES Y SERIES. Ua sucesió es u cojuto de úmeros ordeados bajo cierta regla específica. E muchos problemas cotidiaos se preseta sucesioes, como por ejemplo los días del mes, ya que se trata del cojuto

Más detalles

SOLUCIÓN EXAMEN I PARTE II

SOLUCIÓN EXAMEN I PARTE II Nombre: Apellido: C.I.: Fecha: Firma: MÉTODOS ESTADÍSTICOS I EXAMEN I Prof. Gudberto Leó PARTE I: (Cada respuesta correcta tiee u valor de 1 puto) E los siguietes gráficos se represeta distitas distribucioes

Más detalles

Introducción a las medidas de dispersión.

Introducción a las medidas de dispersión. UNIDAD 8: INTERPRETEMOS LA VARIABILIDAD DE LA INFORMACION. Itroducció a las medidas de dispersió. Como su ombre lo idica, las medidas de dispersió so parámetros que os idica qué ta dispersos está los datos.

Más detalles

PRÁCTICA # 3 PREPARACIÓN DE GRÁFICAS GRÁFICAS LINEALES

PRÁCTICA # 3 PREPARACIÓN DE GRÁFICAS GRÁFICAS LINEALES TEORIA PRÁCTICA # 3 PREPARACIÓN DE GRÁFICAS GRÁFICAS LINEALES Cuado se realiza experimetos usualmete se obtiee ua serie de datos, por ejemplo los mostrados e la tabla. Geeralmete, lo que se quiere es ecotrar

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. [email protected]. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 23 a 43

SOLUCIONES DE LAS ACTIVIDADES Págs. 23 a 43 TEMA. SUCESIONES DE NÚMEROS. LOGARITMOS SOLUCIONES DE LAS ACTIVIDADES Págs. a a 8 + ( ); Y fialmete: a 7 8 + (7 ) 86 0 7 + 0. S 0 Págia 7 [ ( 7 + 9 5) ] 95. a) 6 : pero 0 : 6,6 o es PG b) 6 : ( ) : 6 :

Más detalles

CAPITULO 4 COMPARACIÓN DE REACTORES IDEALES Y REACTORES MÚLTIPLES

CAPITULO 4 COMPARACIÓN DE REACTORES IDEALES Y REACTORES MÚLTIPLES omparació de Reactores Ideales y Reactores Múltiples PITULO 4 OMPRIÓN DE RETORES IDELES Y RETORES MÚLTIPLES 4. INTRODUIÓN E este capítulo se comparará los reactores T y. Se diseñará baterías de reactores

Más detalles

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica.

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica. 5 CAPIULO 0 CONCEPOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Este capítulo proporcioa u pequeño resume acerca de coceptos básicos de álgebra y programació lieal que resulta fudametales para el bue etedimieto

Más detalles

DERIVACIÓN Y DIFERENCIACIÓN DE FUNCIONES DE UNA VARIABLE REAL. APROXIMACIÓN POLINÓMICA. DESARROLLOS EN SERIE

DERIVACIÓN Y DIFERENCIACIÓN DE FUNCIONES DE UNA VARIABLE REAL. APROXIMACIÓN POLINÓMICA. DESARROLLOS EN SERIE DEIVACIÓN Y DIFEENCIACIÓN DE FUNCIONES DE UNA VAIABLE EAL. APOXIMACIÓN POLINÓMICA. DESAOLLOS EN SEIE.- Calcular, aplicado la defiició, las derivadas de las siguietes fucioes e el puto : a) f ( ) se( )

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel x Estimado alumo: Aquí ecotrarás las claves de correcció, las habilidades y los procedimietos de resolució asociados a cada preguta, o obstate, para reforzar tu apredizaje es fudametal que asistas a la

Más detalles

DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA

DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA U Modelo de Costeo por Procesos JOSE ANTONIO CARRANZA PALACIOS *, JUAN MANUEL RIVERA ** INTRODUCCION U aspecto fudametal e la formulació

Más detalles

De esta forma, el problema de encontrar la mejor recta se concentra en calcular los valores de la pendiente (m) y de la ordenada al origen (b)

De esta forma, el problema de encontrar la mejor recta se concentra en calcular los valores de la pendiente (m) y de la ordenada al origen (b) MÉTODO DE MÍNIMOS CUADRADOS E muchos de los experimetos que se realiza e Física, se obtiee u cojuto de parejas de úmeros (abscisa, ordeada) por los cuales ecesitamos, para obteer u modelo matemático que

Más detalles

4.- Aproximación Funcional e Interpolación

4.- Aproximación Funcional e Interpolación 4- Aproximació Fucioal e Iterpolació 4 Itroducció Ua de las mayores vetajas de aproximar iformació discreta o fucioes complejas co fucioes aalíticas secillas, radica e su mayor facilidad de evaluació y

Más detalles

TEMA 1 NÚMEROS REALES

TEMA 1 NÚMEROS REALES . Objetivos / Criterios de evaluació TEMA 1 NÚMEROS REALES O.1.1 Coocer e idetificar los cojutos uméricos N, Z, Q, I,R, Im O.1.2 Saber covertir úmeros racioales e fraccioes. O.1.3 Redodeo y aproximació

Más detalles

GUIA DE ESTUDIO Nro 1

GUIA DE ESTUDIO Nro 1 MATERIA: MATEMÁTICA I CURSO: I AÑO EJE ESTRUCTURAL I: CONCEPTOS FUNDAMENTALES DEL ALGEBRA GRUPOS CONCEPTUALES: - Epresioes algebraicas. Poliomios. - Ecuacioes. Iecuacioes. TEMARIO: GUIA DE ESTUDIO Nro

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

Tema 4.4: Teorema de Riemann de singularidades evitables. Ceros de una función holomorfa. Principio de identidad

Tema 4.4: Teorema de Riemann de singularidades evitables. Ceros de una función holomorfa. Principio de identidad Tema 4.4: Teorema de Riema de sigularidades evitables. Ceros de ua fució holomorfa. Pricipio de idetidad Facultad de Ciecias Experimetales, Curso 2008-09 E. de Amo Comeamos e este tema extrayedo las primeras

Más detalles

UNEFA C.I.N.U. Matemáticas

UNEFA C.I.N.U. Matemáticas RADICACIÓN: DEFINICIÓN Y PROPIEDADES Ates de etrar e el tema Radicació, vamos a comezar por recordar u poco sore Poteciació: Saemos que e lugar de escriir, utilizamos la otació: de Poteciació, dode el

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 23 a 43

SOLUCIONES DE LAS ACTIVIDADES Págs. 23 a 43 TEMA. SUCESIONES DE NÚMEROS. LOGARITMOS SOLUCIONES DE LAS ACTIVIDADES Págs. a Págia. a) Es la sucesió de los úmeros impares:, 5, 7 b) Se suma al valor absoluto del úmero y se cambia de sigo: 7, 0, c) Se

Más detalles

Gráficos de control por atributos

Gráficos de control por atributos Gráficos de cotrol por atributos por Felipe de la Rosa Los gráficos de cotrol por variables so istrumetos sumamete útiles para moitorear y mejorar la calidad, si embargo, preseta al meos dos limitacioes

Más detalles

CAPÍTULO VIII. CONVERGENCIA DE SUCESIONES. SECCIONES A. Criterios de convergencia. B. Ejercicios propuestos.

CAPÍTULO VIII. CONVERGENCIA DE SUCESIONES. SECCIONES A. Criterios de convergencia. B. Ejercicios propuestos. CAPÍTULO VIII CONVERGENCIA DE SUCESIONES SECCIONES A Criterios de covergecia B Ejercicios propuestos 347 A CRITERIOS DE CONVERGENCIA Ua fució cuyo domiio es el cojuto de los úmeros aturales se dice sucesió

Más detalles

UNIVERSIDAD ANTONIO NARIÑO GUIA 1

UNIVERSIDAD ANTONIO NARIÑO GUIA 1 UNIVERSIDAD ANTONIO NARIÑO GUIA ANTIDERIVADAS OBJETIVO: Apreder el cocepto de atiderivada e itegral idefiida y resolver itegrales usado las formulas básicas. ocepto: Dada ua fució, sabemos como hallar

Más detalles

Introducción a las Funciones Vectoriales (Funciones de R R n ) 1. Funciones de R en R n (Funciones Vectoriales)

Introducción a las Funciones Vectoriales (Funciones de R R n ) 1. Funciones de R en R n (Funciones Vectoriales) Itroducció a las Fucioes Vectoriales (Fucioes de R R 1 Fucioes de R e R (Fucioes Vectoriales Llamaremos fució vectorial de variable real o simplemete fució vectorial, a aquellas co domiio e u subcojuto

Más detalles

Expresiones Algebraicas

Expresiones Algebraicas U.T.N. F.R.C.U. Semiario Uiversitario Matemática Módulo Expresioes Algebraicas Difícilmete se pueda estudiar cualquier rama de la matemática actual si u maejo algebraico razoable. Usamos la palabra maejo

Más detalles

Figura 8.1: Ejemplos de conjuntos de índices.

Figura 8.1: Ejemplos de conjuntos de índices. Capítulo 8 Cojuto de ídices Defiició 8.1 (Cojuto de ídices) Sea I u cojuto, tal que para cada i I se tiee u cojuto A i U. El cojuto I se deomia cojuto de ídices y cada i I es u ídice. (a) Los ídices so

Más detalles

Orden en los números naturales

Orden en los números naturales 88 Aritmética U istrumeto para medir usado fraccioes comues Refleioes adicioales Dividir ua uidad e partes iguales: El Teorema de Thales se refiere a dividir u segmeto e cualquier úmero de segmetos iguales.

Más detalles

AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1

AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1 AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO / TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como ua fució que asiga

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

Sesión de Preparación de Olimpiada Matemática.

Sesión de Preparación de Olimpiada Matemática. Sesió de Preparació de Olimpiada Matemática 6 de Diciembre de 06 Ferado Mayoral Desigualdades (y Poliomios y otras fucioes) (I) -Alguas desigualdades básicas ) x 0 para cualquier x R La igualdad sólo se

Más detalles

Expresiones Algebraicas

Expresiones Algebraicas Semiario Uiversitario Matemática Módulo Epresioes Algebraicas Difícilmete se pueda estudiar cualquier rama de la matemática actual si u maejo algebraico razoable. Usamos la palabra maejo y o la de estudio,

Más detalles

Tema 7 (IV). Aplicaciones de las derivadas (2). Representación gráfica de curvas y fórmula de Taylor

Tema 7 (IV). Aplicaciones de las derivadas (2). Representación gráfica de curvas y fórmula de Taylor Tema 7 (IV) Aplicacioes de las derivadas () Represetació gráfica de curvas y fórmula de Taylor Aplicacioes de la derivada primera El sigo de la derivada primera de ua fució permite coocer los itervalos

Más detalles

Prácticas de Matemáticas I y Matemáticas II con DERIVE 136

Prácticas de Matemáticas I y Matemáticas II con DERIVE 136 Prácticas de Matemáticas I y Matemáticas II co DERIVE 6. DIGONLIZCIÓN... PRINCIPLES FUNCIONES DE DERIVE PR L DIGONLIZCION: CLCULO DE UTOVLORES Y UTOVECTORES. tes de iiciar el estudio de los pricipales

Más detalles