3.4. Derivadas de funciones trigonométricas. Derivada de la función seno

Tamaño: px
Comenzar la demostración a partir de la página:

Download "3.4. Derivadas de funciones trigonométricas. Derivada de la función seno"

Transcripción

1 3.4 Derivaas e funciones trigonométricas 83 T 6. Drenao e un tanque El número e galones e agua que ay en un tanque t minutos espués e que éste empezó a vaciarse es Q(t) (3 t). Qué tan rápio salía el agua al transcurrir min? Cuál es la razón promeio a la que el agua sale urante los primeros min? 7. Drenao e un tanque Para renar por completo un tanque e almacenamiento se necesitan oras; el fluio el tanque sale al abrir una válvula en su base. La profunia y el fluio en el tanque t oras espués e abrir la válvula está aa por la fórmula y 6a - t b m. a. Encuentre la razón ynt(m/) a la que el tanque está renano en el tiempo t. b. En qué momento está escenieno más rápio el nivel el fluio en el tanque? En qué momento lo ace más espacio? Cuáles son los valores e ynt en esos tiempos? c. Grafique juntas y y ynt, y iscuta el comportamiento e y en relación con los signos y valores e ynt. 8. Inflao e un globo El volumen V s4>3pr 3 e un globo esférico cambia e acuero con su raio. a. A qué razón (pie 3 Npie) cambia el volumen con respecto al raio cuano r pies? b. Cuánto crece aproximaamente el volumen cuano el raio cambia e a. pies? 9. Despegue e un aeroplano Suponga que la istancia recorria por un aeroplano a lo largo e una pista antes el espegue está aa por D (N9)t, one D se mie en metros ese el punto e inicio, y t se mie en segunos ese el momento en que se quitan los frenos. El aeroplano espegará en el instante que alcance kmn. Cuánto tiempo tara en espegar y qué istancia recorrerá en ese tiempo? 3. Brotes e lava volcánica A pesar e que la erupción el volcán awaiano Kilauea Iki, en noviembre e 959, empezó con una línea e brotes e lava a lo largo e la pare el cráter, más tare la activia se concentró en un solo orificio ubicao en el piso el cráter. En un momento ao, la lava lanzaa ese ico orificio alcanzó una altura e 9 pies (un récor munial). Cuál fue la velocia e salia e la lava en pies por seguno? En millas por ora? (Sugerencia: Si v es la velocia e salia e una partícula e lava, su altura t segunos más tare será s y t 6t pies. Empiece por eterminar el tiempo en el que snt. Desprecie la resistencia el aire). T En los ejercicios 3 a 34 se a la función e posición s f(t) e un objeto que se mueve a lo largo el eje s como una función el tiempo t. Grafique f junto con la función velocia yst s>t ƒ st y la función e aceleración ast s>t ƒ st. Comente el comportamiento el objeto en relación con los signos y valores e y y a. Incluya en su comentario temas como los siguientes: a. En qué momento el objeto está momentáneamente en reposo? b. Cuáno se mueve a la izquiera (abajo) o a la ereca (arriba)? c. Cuáno cambia e irección?. En qué momento aumenta o isminuye su rapiez? e. Cuáno se mueve a su máxima velocia? Cuáno lo ace a la mínima? f. Cuáno está más lejos el origen? 3. s t - 6t, t.5 (un objeto pesao lanzao verticalmente ese la superficie terrestre, a piesnseg) s t - 3t +, t 5 s t 3-6t + 7t, t 4 s 4-7t + 6t - t 3, t Carrera e caballos pura sangre En un ipóromo un caballo e raza pura realiza una competencia e estaios (un estaio equivale a yaras, aunque usaremos en este ejercicio estaios y segunos como uniaes). A meia que el caballo pasa caa marca e estaio (F), un juez registra el tiempo transcurrio (t) ese el inicio e la carrera, con los resultaos que se muestran en la tabla: F t a. Cuánto tara el caballo en terminar la carrera? b. Cuál es la rapiez promeio el caballo urante los primeros 5 estaios? c. Cuál es la rapiez aproximaa el caballo cuano pasa por la marca e los 3 estaios?. En qué parte e la carrera el caballo corre más rápio? e. En qué parte e la carrera el caballo acelera más rápio? 3.4 Derivaas e funciones trigonométricas Mucos e los fenómenos e los que requerimos información muestran un comportamiento más o menos perióico (campos electromagnéticos, ritmos cariacos, mareas, clima). Las erivaas e senos y cosenos juegan un papel clave en la escripción e cambios perióicos. En esta sección se mostrará cómo erivar las seis funciones trigonométricas básicas. Derivaa e la función seno Para calcular la erivaa e f(x) sen x, para x meio en raianes, combinamos los límites el ejemplo 5a y el teorema 7 e la sección.4, con la ientia para la suma e ángulos: sen sx + sen x cos + cos x sen.

2 84 Capítulo 3: Derivaas Si ƒsx sen x, entonces ƒsx + - ƒsx ƒ sx sen sx + - sen x ssen x cos + cos x sen - sen x sen x scos - + cos x sen asen x# cos - cos - sen x# lím sen x# + cos x # cos x. b + lím acos x# sen sen + cos x# lím b Definición e erivaa Ientia el seno para la suma e ángulos Ejemplo 5(a) y teorema 7, sección.4 La erivaa e la función seno es la función coseno: ssen x cos x. EJEMPLO Derivaas que involucran el seno (a) y x - sen x: (b) y x sen x: y x - Asen xb x - cos x. Regla e la iferencia y x Asen xb + x sen x Regla el proucto (c) y sen x x : x cos x + x sen x. y x# Asen xb - sen x # x x cos x - sen x x. Regla el cociente Derivaa e la función coseno Con la ayua e la fórmula e la suma e ángulos para el coseno, cos sx + cos x cos - sen x sen,

3 3.4 Derivaas e funciones trigonométricas 85 tenemos y y' y cos x x y' sen x FIGURA 3.3 La curva y -sen x como la gráfica e las penientes e las tangentes a la curva y cos x. x cossx + - cos x scos x scos x cos - sen x sen - cos x cos xscos - - sen x sen cos x# cos - cos - cos x# lím cos x# - sen x # -sen x. - lím sen x# sen sen - sen x# lím Definición e erivaa Ientia e la suma e ángulos para el coseno Ejemplo 5(a) y teorema 7, sección.4 La erivaa e la función coseno es el negativo e la función seno: scos x -sen x La figura 3.3 muestra una manera e ver este resultao. EJEMPLO Derivaas que involucran el coseno (a) (b) y 5x + cos x: y sen x cos x: y s5x + Acos xb 5 - sen x. Regla e la suma (c) y cos x - sen x : y A - sen xb - sen x s - sen x y sen x Acos xb + cos x Asen xb sen xs-sen x + cos xscos x cos x - sen x. s - sen xs-sen x - cos xs - cos x - sen x. Acos xb - cos x A - sen xb s - sen x s - sen x Regla el proucto Regla el cociente sen x + cos x

4 86 Capítulo 3: Derivaas s 5 5 Posición en reposo Posición en t FIGURA 3.4 Un cuerpo que cuelga el extremo e un resorte y espués se esplaza, oscila acia arriba y acia abajo e la posición e reposo. Su movimiento está escrito por funciones trigonométricas (ejemplo 3). s, y y 5 sen t 3 s 5 cos t 5 FIGURA 3.5 Las gráficas e la posición y la velocia el cuerpo el ejemplo 3. t Movimiento armónico simple El movimiento que escribe un objeto bamboleánose libremente acia arriba y acia abajo, en el extremo e un resorte o una cuera elástica, es un ejemplo e movimiento armónico simple. El ejemplo siguiente escribe un caso en one no ay fuerzas opuestas como la fricción o la flotación que esaceleren el movimiento. EJEMPLO 3 Movimiento en un resorte Un objeto que cuelga e un resorte (figura 3.4) se estira 5 uniaes ese su posición e reposo y se suelta en el tiempo t para que se mueva acia arriba y acia abajo. Su posición en cualquier tiempo t posterior es Cuáles son su velocia y su aceleración en el tiempo t? Posición: Velocia: Tenemos que s 5 cos t s 5 cos t. y s t s5 cos t -5 sen t t Aceleración: a y s-5 sen t -5 cos t. t t Observe too lo que poemos aprener e estas ecuaciones:. Conforme pasa el tiempo, el cuerpo se mueve acia abajo y acia arriba entre s 5 y s 5 en el eje s. La amplitu el movimiento es 5. El perioo el movimiento es p.. La velociay -5 sen t alcanza su mayor magnitu, 5, cuano cos t, como muestran las gráficas e la figura 3.5. Aora bien, la rapiez el cuerpo, ƒyƒ 5 ƒ sen tƒ, es mayor cuano cos t, esto es, cuano s (la posición e reposo). La rapiez el cuerpo es cero cuano sen t. Esto ocurre cuano s 5 cos t ;5, en los extremos el intervalo el movimiento. 3. El valor e la aceleración siempre es exactamente el opuesto el valor e posición. Cuano el cuerpo está arriba e la posición e reposo, la gravea lo tira acia abajo. Cuano el cuerpo está ebajo e la posición e reposo, el resorte lo jala acia arriba. 4. La aceleración, a 5 cos t, es cero solamente en la posición e reposo, one cos t y la fuerza e la gravea y la fuerza el resorte se compensan entre ellas. Cuano el cuerpo está en cualquier otro lao, las os fuerzas son esiguales y la aceleración no es cero. La aceleración alcanza su máxima magnitu en los puntos más alejaos e la posición e reposo, one cos t ;. EJEMPLO 4 Sacuia En el caso el movimiento armónico simple el ejemplo 3, la sacuia es j a t s-5 cos t 5 sen t. t La sacuia alcanza su magnitu más grane cuano sen t ;, no en los extremos el esplazamiento, sino en la posición e reposo, one la aceleración cambia e irección y e signo. Derivaas e las emás funciones trigonométricas básicas Como sen x y cos x son funciones iferenciables e x, las funciones relacionaas tan x cos sen x x cos x, cot x sen x, sec x cos x y csc x sen x

5 3.4 Derivaas e funciones trigonométricas 87 son iferenciables en too valor e x en el que estén efinias. Sus erivaas, calculaas a partir e la regla el cociente, están aas por las fórmulas siguientes. Observe el signo negativo en las fórmulas e las cofunciones. Derivaas e las emás funciones trigonométricas stan x sec x ssec x sec x tan x scot x -csc x scsc x -csc x cot x Para mostrar los cálculos típicos, obtenremos la erivaa e la función tangente. Las emás erivaas se ejan para el ejercicio 5. EJEMPLO 5 Encontrar (tan x) >. Atan xb asen cos x x cos x b cos x cos x - sen x s-sen x cos x cos x + sen x cos x cos x sec x Asen xb - sen x Acos xb cos x Regla el cociente EJEMPLO 6 Encontrar y si y sec x. y sec x y sec x tan x y ssec x tan x sec x Atan xb + tan x Asec xb Regla el proucto sec xssec x + tan xssec x tan x sec 3 x + sec x tan x

Información importante

Información importante Universia Técnica Feerico Santa María Departamento e Matemática Coorinación e Matemática I (MAT021) 1 er Semestre e 2010 Semana 9: Lunes 17 viernes 21 e Mayo Información importante El control Q2A es el

Más detalles

3.1. DERIVADAS DE SEGUNDO ORDEN

3.1. DERIVADAS DE SEGUNDO ORDEN .. DERIVADAS DE SEGUNDO ORDEN La erivaa y ' f ' es la primera erivaa e y con respecto a, pero igualmente es posible realizar la erivaa e la erivaa, y y '' f ''. Lo que se conoce como la seguna erivaa e

Más detalles

XXII OLIMPIADA NACIONAL DE FÍSICA Guadalajara, Jal de noviembre de 2011 Prueba teórica

XXII OLIMPIADA NACIONAL DE FÍSICA Guadalajara, Jal de noviembre de 2011 Prueba teórica XXII OLIMPI NIONL E FÍSI Guaalajara, Jal. 0-4 e noviembre e 011 Prueba teórica 1. PROLEM olisión e pieras (8 puntos) Una piera esférica se eja caer ese un eificio alto e altura h (ese la calle) al tiempo

Más detalles

La regla de la constante. DEMOSTRACIÓN Sea ƒ(x) c. Entonces, por la definición de derivada mediante el proceso de límite, se deduce que.

La regla de la constante. DEMOSTRACIÓN Sea ƒ(x) c. Entonces, por la definición de derivada mediante el proceso de límite, se deduce que. SECCIÓN. Reglas básicas e erivación razón e cambio 07. Reglas básicas e erivación razón e cambio Encontrar la erivaa e una función por la regla e la constante. Encontrar la erivaa e una función por la

Más detalles

Derivación de funciones de una variable real

Derivación de funciones de una variable real Capítulo 4 Derivación e funciones e una variable real 4.1. Derivaa e una función 4.1.1. Introucción Definición 4.1.1. Sea f : (a, b) R R y x 0 (a, b). Se ice que la función f es erivable en el punto x

Más detalles

4.1. DERIVADAS DE LAS FUNCIONES TRIGONOMETRICAS

4.1. DERIVADAS DE LAS FUNCIONES TRIGONOMETRICAS Escuela Colombiana e Ingeniería 4.. DERIVADAS DE LAS FUNCIONES TRIGONOMETRICAS Derivaa e y La erivaa e y se puee obtener como: y + Lim 0 Para calcular este límite se utilizan los siguientes conceptos previamente

Más detalles

DERIVADA. Interpretación Geométrica Encontrar la pendiente de la recta tangente a una curva en un punto dado de ella.

DERIVADA. Interpretación Geométrica Encontrar la pendiente de la recta tangente a una curva en un punto dado de ella. DERIVADA Interpretación Geométrica Objetivo: Encontrar la peniente e la recta tangente a una curva en un punto ao e ella. Para precisar correctamente la iea e tangente a una curva en un punto, se utilizará

Más detalles

(f + g) (x) = f (x) + g (x) (α f) (x) = α f (x) (f g) (x) = f (x) g(x) + f(x) g (x) (x) = f (x) g(x) f(x) g (x) g. [g(x)] 2 (f g) (x) = f (g(x)) g (x)

(f + g) (x) = f (x) + g (x) (α f) (x) = α f (x) (f g) (x) = f (x) g(x) + f(x) g (x) (x) = f (x) g(x) f(x) g (x) g. [g(x)] 2 (f g) (x) = f (g(x)) g (x) Derivaa e una función en un punto: El concepto e erivaa e una función matemática se halla íntimamente relacionao con la noción e límite. Así, la erivaa se entiene como la variación que experimenta la función

Más detalles

( ) 2. Pendiente de una Recta Tangente. Sea f una función que es continua en x. 1. Para definir la pendiente de la recta tangente ( )

( ) 2. Pendiente de una Recta Tangente. Sea f una función que es continua en x. 1. Para definir la pendiente de la recta tangente ( ) Derivaa e una Función Ínice.. Introucción.. Peniente e una recta tangente.. Derivaa e una función. 4. Derivaas laterales. 5. Derivaa e una función compuesta (Regla e la Caena). 6. Tabla e erivaas usuales.

Más detalles

FUNCIONES TRIGONOMÉTRICAS

FUNCIONES TRIGONOMÉTRICAS Unia os Geometría Trigonometría 8. FUNCIONES TRIGONOMÉTRICAS 8. El círculo trigonométrico o unitario En temas anteriores, las funciones trigonométricas se asociaron con razones, es ecir con cocientes e

Más detalles

DERIVADAS DE LAS FUNCIONES ELEMENTALES

DERIVADAS DE LAS FUNCIONES ELEMENTALES Universia Metropolitana Dpto. e Matemáticas Para Ingeniería Cálculo I (FBMI0) Proesora Aia Montezuma Revisión: Proesora Ana María Roríguez Semestre 08-09A DERIVADAS DE LAS FUNCIONES ELEMENTALES DERIVADAS

Más detalles

1. Hallar la derivada por definición de f ( x) x x 1. Solución: para resolver la derivada aplicaremos la definición de la derivada: f '( x)

1. Hallar la derivada por definición de f ( x) x x 1. Solución: para resolver la derivada aplicaremos la definición de la derivada: f '( x) . Hallar la erivaa por efinición e f ( ) Solución: para resolver la erivaa aplicaremos la efinición e la erivaa: f '( ) lim 0 f ( ) f ( ) f ( ) f '( ) lim 0 ara allar la erivaa meiante efinición ebemos

Más detalles

UNIDAD IV.- CÁLCULO INTEGRAL

UNIDAD IV.- CÁLCULO INTEGRAL UNIDAD IV.- CÁLCULO INTEGRAL En la práctica e cualquier campo científico es frecuente que se presenten prolemas relacionaos con el cálculo e áreas, algunas veces e figuras regulares y muchas otras, con

Más detalles

Unidad 1 Ecuaciones Diferenciales de Primer Orden. 1.1 Definiciones (Ecuación Diferencial, Orden, Grado, Linealidad)

Unidad 1 Ecuaciones Diferenciales de Primer Orden. 1.1 Definiciones (Ecuación Diferencial, Orden, Grado, Linealidad) . Definiciones (Ecuación Diferencial, Oren, Grao, Linealia) Unia Ecuaciones Diferenciales e Primer Oren. Definiciones (Ecuación Diferencial, Oren, Grao, Linealia) En iversas áreas como son la ingeniería,

Más detalles

2.3 Reglas del producto, del cociente y derivadas de orden superior

2.3 Reglas del producto, del cociente y derivadas de orden superior SECCIÓN 2.3 Reglas el proucto, el cociente y erivaas e oren superior 119 2.3 Reglas el proucto, el cociente y erivaas e oren superior Encontrar la erivaa e una función por la regla el proucto. Encontrar

Más detalles

2.5 Derivación implícita

2.5 Derivación implícita SECCIÓN.5 Derivación implícita 4.5 Derivación implícita Distinguir entre funciones eplícitas e implícitas. Hallar la erivaa e una función por erivación implícita. E X P L O R A C I Ó N Representación gráfica

Más detalles

Regla de la cadena. Ejemplo 1. y = f (g(x)) Como las funciones son diferenciables son suaves.

Regla de la cadena. Ejemplo 1. y = f (g(x)) Como las funciones son diferenciables son suaves. 1 Regla e la caena Hasta aquí hemos erivao funciones que no son compuestas. El problema surge cuano tenemos una función que es compuesta, por ejemplo, igamos que el precio e la gasolina epene el precio

Más detalles

Información importante

Información importante Departamento e Matemática Coorinación e Matemática I (MAT01) 1 er Semestre e 010 Semana 1: Lunes 07 viernes 11 e Junio Información importante Durante esta semana se publicarán las notas el Certamen en

Más detalles

DERIVADAS. Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto.

DERIVADAS. Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto. DERIVADAS Tema: La derivada como pendiente de una curva Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto. La pendiente de la curva en el punto

Más detalles

Física para todos 1 Carlos Jiménez Huaranga MOVIMIENTO PARABÓLICO. a) Aplicamos la ecuación: ttotal. b) Para calcular la máxima altura, utilizamos la

Física para todos 1 Carlos Jiménez Huaranga MOVIMIENTO PARABÓLICO. a) Aplicamos la ecuación: ttotal. b) Para calcular la máxima altura, utilizamos la Física para toos 1 Carlos Jiménez Huarana MOVIMIENTO PARABÓLICO Es un movimiento compuesto por: Un movimiento orizontal rectilíneo uniforme one la componente orizontal e la velocia permanece constante

Más detalles

DEFINICION DE DERIVADA Sea una función definida en un intervalo abierto que contiene a a Diremos que f es Derivable en a si: si este límite existe

DEFINICION DE DERIVADA Sea una función definida en un intervalo abierto que contiene a a Diremos que f es Derivable en a si: si este límite existe DERIVADA DEFINICION DE DERIVADA Sea una función efinia en un intervalo abierto que contiene a a Diremos que f es Derivable en a si: si este límite eiste Dicho límite, cuano eiste, se llama DERIVADA e f

Más detalles

[b] Aunque se puede calcular los índices de refracción, vamos a utilizar la expresión de la ley de

[b] Aunque se puede calcular los índices de refracción, vamos a utilizar la expresión de la ley de Opción A. Ejercicio [a] En qué consiste el fenómeno e la reflexión total e una ona? Qué circunstancias eben cumplirse para que ocurra? Defina el concepto e ángulo límite. ( punto) [b] Una ona sonora que

Más detalles

Cada grado se divide en 60 minutos (60 ) y cada minuto en 60 segundos (60 ). Así, por ejemplo, un ángulo puede medir = 38º

Cada grado se divide en 60 minutos (60 ) y cada minuto en 60 segundos (60 ). Así, por ejemplo, un ángulo puede medir = 38º Sistemas e meición e ángulos Como en toos los elementos susceptibles a meiciones, en los ángulos se han establecio iversos sistemas e meición, entre ellos los más importantes son: El sistema seagesimal

Más detalles

Regla de la cadena. f (x) 1 x 3. d dx x3 1 x 3. (3x 2 ) 3 x. f(x) 3 d dx ln x 3. 1 x. para x70, d dx ln x 1. para x60, d dx ln( x) 1x.

Regla de la cadena. f (x) 1 x 3. d dx x3 1 x 3. (3x 2 ) 3 x. f(x) 3 d dx ln x 3. 1 x. para x70, d dx ln x 1. para x60, d dx ln( x) 1x. 74 CAPÍTULO 3 La erivaa EJEMPLO 4 Diferencie f ()=ln 3. Regla e la caena Solución Debio a que 3 ebe ser positiva, se entiene que 70. Así, por (3), con u= 3, tenemos Solución alterna: Por iii) e las lees

Más detalles

2.3 Reglas del producto, del cociente y derivadas de orden superior

2.3 Reglas del producto, del cociente y derivadas de orden superior SECCIÓN.3 Reglas el proucto, el cociente erivaas e oren superior 119.3 Reglas el proucto, el cociente erivaas e oren superior Encontrar la erivaa e una función por la regla el proucto. Encontrar la erivaa

Más detalles

ECUACIÓN DEL M.A.S. v( t) = dx. a( t) = dv. x( 0) = 0.26 m v( 0) = 0.3 m / s

ECUACIÓN DEL M.A.S. v( t) = dx. a( t) = dv. x( 0) = 0.26 m v( 0) = 0.3 m / s ECUACIÓN DEL M.A.S. Una partícula tiene un desplazamiento x dado por: x ( t ) = 0.3cos t + π 6 en donde x se mide en metros y t en segundos. a) Cuáles son la frecuencia, el periodo, la amplitud, la frecuencia

Más detalles

Cálculo Integral Enero 2015

Cálculo Integral Enero 2015 Cálculo Integral Enero 015 Laboratorio # 1 Antiderivadas I.- Halle las siguientes integrales indefinidas. 10) ) 6) 1 1 1 1 16) 1 8) 9) 18) II.- Calcule 1.. 1 Cálculo Integral Enero 015 Laboratorio # Aplicaciones

Más detalles

MATE 3013 LA REGLA DE LA CADENA

MATE 3013 LA REGLA DE LA CADENA MATE 3013 LA REGLA DE LA CADENA La composición e funciones DEFINICION: La composición función f g, e f con g, se efine f g f ( g( x)) La composición e funciones Ejemplo : Para Hallar f (x) x 3 y g(x) 1

Más detalles

4. Mecánica en la Medicina Derivar e Integrar

4. Mecánica en la Medicina Derivar e Integrar 4. Mecánica en la Meicina Derivar e Integrar Teoría Dr. Willy H. Gerber Instituto e Ciencias Físicas y Matemáticas, Universia Austral, Valivia, Chile 17.04.2011 W. Gerber 4. Mecánica en la Meicina - Matemática

Más detalles

DEPARTAMENTO DE FISICA (4ºBTO)

DEPARTAMENTO DE FISICA (4ºBTO) DEPARTAMENTO DE ISICA (4ºBTO) Electrostática y Campo Eléctrico Electrostática Introucción Cuano se frota un tejio e lana con algo e plástico, este puee levantar peazos e papel, cabellos, etc. Los griegos

Más detalles

3 DERIVADAS ALGEBRAICAS

3 DERIVADAS ALGEBRAICAS DERIVADAS ALGEBRAICAS DERIVADAS ALGEBRAICAS Entiénase la erivaa como la peniente e la recta tangente a la función en un punto ao, lo anterior implica que la función ebe eistir en ese punto para poer trazar

Más detalles

Módulo 3: Gráfica de las Funciones Trigonométricas

Módulo 3: Gráfica de las Funciones Trigonométricas x Módulo : Gráfica de las Funciones Trigonométricas Una función es una relación entre los valores x de un conjunto (dominio) los elementos de un conjunto (llamado codominio o rango), en la cual a cada

Más detalles

La derivada de las funciones trascendentes

La derivada de las funciones trascendentes La erivaa e las funciones trascenentes Manuel Barahona, Eliseo Martínez Diciembre 205 Muchos fenómenos e la naturaleza son moelaos meiante funciones eponeciales, logarítimicas, trigonométricas y combinaciones

Más detalles

Matemática I (BUC) - Cálculo I. Práctica 1: FUNCIONES

Matemática I (BUC) - Cálculo I. Práctica 1: FUNCIONES Matemática I (BUC) - Cálculo I Práctica : FUNCIONES Matemática I (BUC) / Cálculo I - Funciones. Indique cuales de los siguientes dibujos podrían corresponder al gráfico de una función. Marque en el gráfico

Más detalles

MOVIMIENTO PARABÓLICO

MOVIMIENTO PARABÓLICO MOIMIENTO PARABÓLICO En la naturaleza no se presentan los movimientos aislaamente, sino combinaos ó superpuestos e os o más movimientos simples. Son movimientos simples : el Movimiento Rectilíneo Uniforme

Más detalles

CONCEPTOS BÁSICOS DE CONFIABILIDAD

CONCEPTOS BÁSICOS DE CONFIABILIDAD CAPÍTULO II CONCEPTOS BÁSICOS DE CONFIABILIDAD El iseño e sistemas, comprene los aspectos más amplios e la organización e equipo complejo, turnos e operación, turnos e mantenimiento y e las habiliaes necesarias

Más detalles

Derivada. 1. Pendiente de la recta tangente a una curva

Derivada. 1. Pendiente de la recta tangente a una curva Nivelación de Matemática MTHA UNLP Derivada Pendiente de la recta tangente a una curva Definiciones básicas Dada una curva que es la gráfica de una función y = f() y sea P un punto sobre la curva La pendiente

Más detalles

Notas de clase Cálculo derivadas Raúl Urbán R

Notas de clase Cálculo derivadas Raúl Urbán R Notas e clase Cálculo erivaas Raúl Urbán R Derivaas El Cálculo Infinitesimal, tiene su origen en Grecia, siglo III a.c., con las contribuciones e Oresme, Arquímees y Euoxo basaos en los trabajos filosóficos

Más detalles

Cálculo Diferencial en una variable

Cálculo Diferencial en una variable Tema 3 Cálculo Diferencial en una variable 3.1 Introucción Analizaremos en este Tema los conceptos funamentales acerca e las erivaas e las funciones reales e variable real. En el tema siguiente estuiaremos

Más detalles

Tema 6: Derivadas, Técnicas de Derivación

Tema 6: Derivadas, Técnicas de Derivación Matemáticas º Bacillerato CCNN Tema 6: Derivaas, Técnicas e Derivación.- Introucción.- Tasa e Variación Meia.- Derivaa e una unción en un punto..- Derivaas Laterales...- Interpretación geométrica e la

Más detalles

La producción de acero en Monterrey N.L. (México) en millones de toneladas, durante el año de 1992 a partir del mes de enero se muestra en la tabla:

La producción de acero en Monterrey N.L. (México) en millones de toneladas, durante el año de 1992 a partir del mes de enero se muestra en la tabla: El objetivo al estudiar el concepto razón de cambio, es analizar tanto cuantitativa como cualitativamente las razones de cambio instantáneo y promedio de un fenómeno, lo cual nos permite dar solución a

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica

Más detalles

Capítulo 7. Trigonometría del triángulo rectángulo. Contenido breve. Presentación. Módulo 17 Medición de ángulos. Módulo 18 Ángulos notables

Capítulo 7. Trigonometría del triángulo rectángulo. Contenido breve. Presentación. Módulo 17 Medición de ángulos. Módulo 18 Ángulos notables Capítulo 7 Trigonometría del triángulo rectángulo Contenido breve Módulo 17 Medición de ángulos Módulo 18 Ángulos notables La trigonometría se utiliza para realizar medidas indirectas de posición y distancias.

Más detalles

Primera parte: Funciones trigonome tricas (cont). Tiempo estimado: 1.3 h

Primera parte: Funciones trigonome tricas (cont). Tiempo estimado: 1.3 h 1. DATOS DE IDENTIFICACIÓN Asignatura: Cálculo Diferencial Docente: Alirio Gómez Programa : INGENIERÍA Semestre: 4 Fecha de elaboración: 21-07-2013 Guía Nº: 2 Título: Funciones. Alumno: Grupo: CB-N-2 Primera

Más detalles

Ejercicios de derivadas e integrales

Ejercicios de derivadas e integrales Ejercicios e erivaas e integrales Este material puee escargarse ese http://wwwuves/~montes/biologia/matceropf Departament Estaística i Investigació Operativa Universitat e València Derivaas Reglas e erivación

Más detalles

Taller de Fuerzas. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Taller de Fuerzas. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Taller de Fuerzas MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Una pelota de plástico en un líquido se comporta de acuerdo a su peso y a la

Más detalles

SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0-A

SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0-A ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0-A (Abril 14 del 2010) NO ABRIR esta prueba hasta que los profesores den la autorización. En esta

Más detalles

SOLUCION DE UN ERROR CON OTRO ERROR

SOLUCION DE UN ERROR CON OTRO ERROR SOLUCION DE UN ERROR CON OTRO ERROR El matemático, al igual que too ser humano, puee incurrir en errores; en algunos casos sucee que el error no ha sio cometio por el creaor e la obra sino por los encargaos

Más detalles

INSTRUCTIVO PARA TUTORÍAS

INSTRUCTIVO PARA TUTORÍAS INSTRUCTIVO PARA TUTORÍAS Las tutorías corresponen a los espacios acaémicos en los que el estuiante el Politécnico Los Alpes puee profunizar y reforzar sus conocimientos en iferentes temas e cara al eamen

Más detalles

Límites y continuidad. Cálculo 1

Límites y continuidad. Cálculo 1 Límites y continuidad Cálculo 1 Razones de cambio y límites La rapidez promedio de un móvil es la distancia recorrida durante un intervalo de tiempo dividida entre la longitud del intervalo. Ejemplo 1

Más detalles

LA CICLOIDE, UNA CURVA DE MUCHO EMPAQUE

LA CICLOIDE, UNA CURVA DE MUCHO EMPAQUE LA CICLOIDE, UNA CUVA DE MUCHO EMPAQUE CALOS S CHINEA LA CICLOIDE UNA CUVA DE MUCHO EMPAQUE Una breve introucción 1 Ecuaciones paramétricas La tangente y la normal en un punto 3 Longitu e un arco 4 El

Más detalles

P1.- La delicada vida gravitatoria del cometa 67P/Churiumov-Guerasimenko.

P1.- La delicada vida gravitatoria del cometa 67P/Churiumov-Guerasimenko. P.- La elicaa via gravitatoria el cometa 67P/Churiumov-uerasimenko. El cometa 67P, escubierto en 969 por los astrónomos Klim Churiumov y Svetlana uerasimenko, se ha convertio recientemente en una estrella

Más detalles

Ing ROBERTO MOLINA CUEVA FÍSICA 1

Ing ROBERTO MOLINA CUEVA FÍSICA 1 Ing ROBERTO MOLINA CUEVA FÍSICA 1 1 CINEMÁTICA Describe el movimiento ignorando los agentes que causan dicho fenómeno. Por ahora consideraremos el movimiento en una dimensión. (A lo largo de una línea

Más detalles

Slide 1 / 144. Slide 2 / 144. Slide 3 / 144

Slide 1 / 144. Slide 2 / 144. Slide 3 / 144 1 El motor de un automóvil aplica una fuerza de 65 kn; cuánto trabajo realiza el motor a medida que el automóvil se mueve a una distancia de 75 m? Slide 1 / 144 2 Una fuerza realiza 30000 J de trabajo

Más detalles

Docente: Angel Arrieta Jiménez

Docente: Angel Arrieta Jiménez CINEMÁTICA DE UNA PARTÍCULA EN DOS DIMENSIONES EJERCICIOS DE MOVIMIENTO CIRCULAR 1. En el ciclo de centrifugado de una maquina lavadora, el tubo de 0.3m de radio gira a una tasa constante de 630 r.p.m.

Más detalles

CINEMÁTICA ESTUDIO DEL MOVIMIENTO DE LOS CUERPOS 1.- Movimiento y desplazamiento (Conceptos previos)

CINEMÁTICA ESTUDIO DEL MOVIMIENTO DE LOS CUERPOS 1.- Movimiento y desplazamiento (Conceptos previos) CINEMÁTICA ESTUDIO DEL MOVIMIENTO DE LOS CUERPOS 1.- Movimiento y desplazamiento (Conceptos previos) Para poder definir el movimiento, se necesitan tres factores: - El SISTEMA DE REFERENCIA es el punto

Más detalles

Resolución de problemas aplicando leyes de Newton y consideraciones energéticas

Resolución de problemas aplicando leyes de Newton y consideraciones energéticas UIVERSIDAD TECOLÓGICA ACIOAL Facultad Regional Rosario UDB Física Cátedra FÍSICA I Resolución de problemas aplicando lees de ewton consideraciones energéticas 1º) Aplicando lees de ewton (Dinámica) Pasos

Más detalles

Hacia el pensamiento lógico-matemático formal, mediante la resolución de problemas

Hacia el pensamiento lógico-matemático formal, mediante la resolución de problemas ÁREA DE MATEMÁTICAS Asignatura: TRIGONOMETRÍA Curso DÉCIMO Bimestre SEGUNDO Fecha 24.01.2013 Elaboró Prof. GRECY NATHALY SANDOVAL Revisó Prof. MAURICIO CÁRDENAS 2013: Año de la fe: María contemplación

Más detalles

EJERCICIOS DE FÍSICA 3ER CORTE DEBE REALIZAR AL MENOS 10 RECUERDE QUE UNO DE ESTOS EJERCICIOS SE INCLUIRÁ EN EL EXAMEN

EJERCICIOS DE FÍSICA 3ER CORTE DEBE REALIZAR AL MENOS 10 RECUERDE QUE UNO DE ESTOS EJERCICIOS SE INCLUIRÁ EN EL EXAMEN EJERCICIOS DE FÍSICA 3ER CORTE DEBE REALIZAR AL MENOS 10 RECUERDE QUE UNO DE ESTOS EJERCICIOS SE INCLUIRÁ EN EL EXAMEN 1 Considere los tres bloques conectados que se muestran en el diagrama. Si el plano

Más detalles

Electromagnetismo Pedagogía en Física R. Lagos. PROBLEMAS RESUELTOS

Electromagnetismo Pedagogía en Física R. Lagos. PROBLEMAS RESUELTOS PROBLEMAS RESUELTOS. Un capacitor e lleno e aire está compuesto e os placas paralela, caa una con un área e 7 6 [ 2 ], separaas por una istancia e,8 [mm]. Si se aplica una iferencia e potencial e 20 [V]

Más detalles

Examen Final - Fisi 3161/3171 Nombre: miércoles 5 de diciembre de 2007

Examen Final - Fisi 3161/3171 Nombre: miércoles 5 de diciembre de 2007 Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Física Examen Final - Fisi 3161/3171 Nombre: miércoles 5 de diciembre de 2007 Sección: Prof.: Lea cuidadosamente las instrucciones.

Más detalles

CAPÍTULO. La derivada. espacio recorrido tiempo empleado

CAPÍTULO. La derivada. espacio recorrido tiempo empleado 1 CAPÍTULO 5 La derivada 5.3 Velocidad instantánea 1 Si un móvil recorre 150 km en 2 oras, su velocidad promedio es v v media def espacio recorrido tiempo empleado 150 km 2 75 km/ : Pero no conocemos la

Más detalles

Si se pueden obtener las imágenes de x por simple sustitución.

Si se pueden obtener las imágenes de x por simple sustitución. TEMA 0: REPASO DE FUNCIONES FUNCIONES: TIPOS DE FUNCIONES Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción,

Más detalles

Trigonometría. 1. Ángulos:

Trigonometría. 1. Ángulos: Trigonometría. Ángulos: - Ángulos en posición estándar: se ubican en un sistema de coordenadas XY. El vértice será el origen (0,0) y el lado inicial coincide con el eje X positivo. - Ángulos positivos:

Más detalles

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE OBJETIVOS DEL APRENDIZAJE: ESTUDIAR LAS OSCILACIONES DEL PÉNDULO Y DETERMINAR LAS SIMPLIFICACIONES

Más detalles

LA RAPIDEZ es una cantidad escalar. Si un objeto requiere de un tiempo t para recorre una distancia d, entonces:

LA RAPIDEZ es una cantidad escalar. Si un objeto requiere de un tiempo t para recorre una distancia d, entonces: LA RAPIDEZ es una cantidad escalar. Si un objeto requiere de un tiempo t para recorre una distancia d, entonces: Rapidez promedio = distancia total recorrida = d Tiempo transcurrido t La dirección del

Más detalles

EL PROBLEMA DE LA TANGENTE

EL PROBLEMA DE LA TANGENTE EL PROBLEMA DE LA TANGENTE El problema de definir la tangente a una curva y f (x) en un punto P ( x, y ) ha llevado al concepto de la derivada de una función en un punto P ( x, y ). Todos sabemos dibujar

Más detalles

La función, definida para toda, es periódica si existe un número positivo tal que

La función, definida para toda, es periódica si existe un número positivo tal que Métodos con series de Fourier Definición: Función periódica La función, definida para toda, es periódica si existe un número positivo tal que para toda. El número en un periodo de la función. Si existe

Más detalles

SOLUCIÓN NUMÉRICA DE ECUACIONES ALGEBRAICAS Y TRASCENDENTES

SOLUCIÓN NUMÉRICA DE ECUACIONES ALGEBRAICAS Y TRASCENDENTES SOLUCIÓN NUMÉRICA DE ECUACIONES ALGEBRAICAS Y TRASCENDENTES EL PROBLEMA DE OBTENER LOS CEROS O RAÍCES DE UNA ECUACIÓN ALGEBRAICA O TRASCENDENTE, ES UNO DE LOS REQUERIDOS MAS FRECUENTEMENTE, DEBIDO A ELLO

Más detalles

FUNCIONES TRIGONOMÉTRICAS

FUNCIONES TRIGONOMÉTRICAS CAPÍTULO 6 FUNCIONES TRIGONOMÉTRICAS 6.1 FUNCIONES TRASCENDENTES (Áreas 1, y ) Las funciones trascenentes se caracterizan por tener lo que se llama argumento. Un argumento es el número o letras que lo

Más detalles

Tema 1. Movimiento de una Partícula

Tema 1. Movimiento de una Partícula Tema 1. Movimiento de una Partícula CONTENIDOS Rapidez media, velocidad media, velocidad instantánea y velocidad constante. Velocidades relativas sobre una línea recta (paralelas y colineales) Movimiento

Más detalles

2. Dado el campo de fuerzas F x, Solución: W = 6 J

2. Dado el campo de fuerzas F x, Solución: W = 6 J UNIVERSIDD DE OVIEDO Escuela Politécnica de Ingeniería de Gijón Curso 013-4 1. Dos objetos, uno con masa doble que el otro, cuelgan de los extremos de la cuerda de una polea fija de masa despreciable y

Más detalles

2.1.5 Teoremas sobre derivadas

2.1.5 Teoremas sobre derivadas si x < 0. f(x) = x si x 0 x o = 0 Teoremas sobre derivadas 9 2. f(x) = x 3, x o = 3 a. Determine si f es continua en x o. b. Halle f +(x o ) y f (x o ). c. Determine si f es derivable en x o. d. Haga la

Más detalles

DERIVADA DE LA FUNCIONES BÁSICAS TANGENTE, COTANGENTE, SECANTE Y COSECANTE

DERIVADA DE LA FUNCIONES BÁSICAS TANGENTE, COTANGENTE, SECANTE Y COSECANTE DERIVADA DE LA FUNCIONES BÁSICAS TANGENTE, COTANGENTE, SECANTE Y COSECANTE Sugerencias para quien imparte el curso: En esta sección de la propuesta didáctica se parte de plantear un problema de optimización

Más detalles

EXAMEN DE UBICACIÓN DE FÍSICA ADMISIONES 2010: GRUPO # 2

EXAMEN DE UBICACIÓN DE FÍSICA ADMISIONES 2010: GRUPO # 2 ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS EXAMEN DE UBICACIÓN DE FÍSICA ADMISIONES 2010: GRUPO # 2 VERSIÓN 0 NOMBRE: Este examen consta de 30 preguntas, entre preguntas conceptuales

Más detalles

Difracción producida por un cabello Fundamento

Difracción producida por un cabello Fundamento Difracción proucia por un cabello Funamento Cuano la luz láser se hace inciir sobre un cabello humano, la imagen e ifracción que se obtiene es similar a la que prouce una oble renija (fig.1). Existe una

Más detalles

DERIVADAS DERIVADAS. La siguiente tabla muestra el número de nacimientos en cada mes a lo largo de un año en una determinada población:

DERIVADAS DERIVADAS. La siguiente tabla muestra el número de nacimientos en cada mes a lo largo de un año en una determinada población: DERIVADAS INTRODUCCIÓN Una recta es tangente a una curva en un punto si solo tiene en común con la curva dicho punto. y 5 4 Recta tangente en (,) La pendiente de una recta es la tangente del ángulo que

Más detalles

ASIGNATURA: QUIMICA AGROPECUARIA (RB8002) TALLER N 6: EQUILIBRIO QUIMICO

ASIGNATURA: QUIMICA AGROPECUARIA (RB8002) TALLER N 6: EQUILIBRIO QUIMICO I. Presentación e la guía: ASIGNATURA: QUIMICA AGROPECUARIA (RB800) TALLER N 6: EQUILIBRIO QUIMICO Competencia: El alumno será capaz e escribir iferentes tipos e reacciones en equilibrio, el significao

Más detalles

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS CÁTEDRA DE FÍSICA I Ing. Civil, Ing. Electromecánica, Ing. Eléctrica, Ing. Mecánica OSCILACIONES - PROBLEMAS RESUELTOS PROBLEMA Nº 1 Un cuerpo oscila con movimiento armónico simple a lo largo del eje x.

Más detalles

1) Con cuál de los siguientes números el valor del polinomio = -6x + 8 es igual a cero? a) -4 b) -2 c) 2 d) 4

1) Con cuál de los siguientes números el valor del polinomio = -6x + 8 es igual a cero? a) -4 b) -2 c) 2 d) 4 1) Con cuál de los siguientes números el valor del polinomio = -6x + 8 es igual a cero? a) -4 b) -2 c) 2 d) 4 2) Las expresiones y son a) Opuestas. b) Semejantes. c) Iguales. d) Racionales. 3) La línea

Más detalles

2. Continuidad y derivabilidad. Aplicaciones

2. Continuidad y derivabilidad. Aplicaciones Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 7 2. Continuidad y derivabilidad. Aplicaciones Límite de una función en un punto Sea una función f(x) definida en el entorno de un punto

Más detalles

Cálculo Diferencial e Integral - Recta tangente y velocidad. Farith J. Briceño N.

Cálculo Diferencial e Integral - Recta tangente y velocidad. Farith J. Briceño N. Cálculo Diferencial e Integral - Recta tangente y velocidad. Farit J. Briceño N. Objetivos a cubrir Código : MAT-CDI.7 Problema: Recta tangente a una curva en un punto 0. Problema: Velocidad promedio y

Más detalles

Reflexiones sobre los conceptos velocidad y rapidez de una partícula en física

Reflexiones sobre los conceptos velocidad y rapidez de una partícula en física ENSEÑANZA REVISTA MEXICANA DE FÍSICA E 56 () 181 189 DICIEMBRE 1 Reflexiones sobre los conceptos velocia y rapiez e una partícula en física S. Díaz-Solórzano y L. González-Díaz Centro e Investigaciones

Más detalles

6. Movimiento Rectilíneo Uniforme

6. Movimiento Rectilíneo Uniforme 6. Movimieno Recilíneo Uniforme La velocia e un vehículo es mayor en las recas que en las curvas. Cuano un físico se refiere a la prisa con la que se mueve un cuerpo, aemás e conocer su rapiez, necesia

Más detalles

Seminario 12: Condensadores.

Seminario 12: Condensadores. Seminario 2: Conensaores. Fabián Anrés Torres Ruiz Departamento e Física, Universia e Concepción, Chile 30 e Mayo e 2007. Problemas. (Desarrollo) Deucción el tiempo e escarga e un conensaor 2. (Problema

Más detalles

MATEMÁTICAS BÁSICAS DERIVADA INCREMENTOS x = x - x y2 = f(x2) y = y - y y = f(x )

MATEMÁTICAS BÁSICAS DERIVADA INCREMENTOS x = x - x y2 = f(x2) y = y - y y = f(x ) Faculta e Contauría Aministración. UNAM Derivaa Autor: Dr. José Manuel Becerra Espinosa MATEMÁTICAS BÁSICAS DERIVADA INCREMENTOS Se eine como incremento e la variable al aumento o isminución que eperimenta,

Más detalles

Análisis Matemático I (Lic. en Cs. Biológicas) Práctica 4: Derivadas. Primer cuatrimestre de 2009

Análisis Matemático I (Lic. en Cs. Biológicas) Práctica 4: Derivadas. Primer cuatrimestre de 2009 Análisis Matemático I (Lic. en Cs. Biológicas) Primer cuatrimestre de 2009 Práctica 4: Derivadas Notaciones: Dada una función f : R R, un punto a R y un número R que llamaremos incremento en, se define

Más detalles

Aplicaciones de ED de segundo orden

Aplicaciones de ED de segundo orden CAPÍTULO Aplicaciones de ED de segundo orden..1 Movimiento armónico simple x 0 k m Sistema masa-resorte para el estudio de las vibraciones mecánicas Para iniciar el estudio de las vibraciones mecánicas,

Más detalles

Problemas sobre Trabajo y Energía. Trabajo hecho por una fuerza constante

Problemas sobre Trabajo y Energía. Trabajo hecho por una fuerza constante Problemas sobre Trabajo y Energía Trabajo hecho por una fuerza constante 1. Si una persona saca de un pozo una cubeta de 20 g y realiza un trabajo equivalente a 6.00 J, Cuál es la profundidad del pozo?

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA Año:2015 Período: Segundo Término Materia: Física A Profesor: Evaluación: Tercera Fecha: 17

Más detalles

Expliquemos con exactitud qué queremos decir con valores máximos y mínimos.

Expliquemos con exactitud qué queremos decir con valores máximos y mínimos. Introducción: Ahora que conocemos las reglas de derivación nos encontramos en mejor posición para continuar con las aplicaciones de la derivada. Veremos cómo afectan las derivadas la forma de la gráfica

Más detalles

Derivación. (x c) que pasa por el punto fijo (c, f(c)) y el punto móvil (c + h, f(c + h)) cuando h tiende a 0.

Derivación. (x c) que pasa por el punto fijo (c, f(c)) y el punto móvil (c + h, f(c + h)) cuando h tiende a 0. Derivación Definición y propieaes básicas Definición. Una función f efinia en un entorno e un punto c R es erivable en c si y sólo si el ite f c = f fc + h fc f fc c := = h h c c eiste y toma un valor

Más detalles

Funciones reales. Números complejos

Funciones reales. Números complejos Funciones reales. Números complejos Funciones reales 1. Encuentra todos los números reales x que verifican: a) (x 1)(x 3) > 1 b) x + 1 > 1 1 x c) x 1 + x + 1 < 1 d) 5 < x 2 14x + 5 < 26 2. Si la gráfica

Más detalles

Unidad I Funciones Expresar una función. Dominios

Unidad I Funciones Expresar una función. Dominios Unidad I Funciones Epresar una función 1. Un rectángulo tiene un perímetro de 0m. Eprese el área del rectángulo como función de la longitud de uno de sus lados.. Un rectángulo tiene un área de 16 m. Eprese

Más detalles

República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación U.E. Colegio Francisco Lazo Martí Cabudare, Edo. Lara Física 4to año

República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación U.E. Colegio Francisco Lazo Martí Cabudare, Edo. Lara Física 4to año República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación U.E. Colegio Francisco Lazo Martí Cabudare, Edo. Lara Física 4to año Ejercicios 1. Se da la siguiente tabla donde se representa

Más detalles

UCLM - Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG)

UCLM - Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) PAEG Junio 03 Propuesta B Matemáticas aplicaas a las CCSS II º Bachillerato UCLM - Pruebas e Acceso a Enseñanzas Universitarias Oiciales e Grao (PAEG) Matemáticas aplicaas a las Ciencias Sociales II Junio

Más detalles

PROBLEMAS RESUELTOS TRABAJO Y ENERGIA CUARTA, QUINTA Y SEXTA EDICION SERWAY. Raymond A. Serway

PROBLEMAS RESUELTOS TRABAJO Y ENERGIA CUARTA, QUINTA Y SEXTA EDICION SERWAY. Raymond A. Serway PROBLEMAS RESUELTOS TRABAJO Y ENERGIA CAPITULO 7 FISICA I CUARTA, QUINTA Y SEXTA EDICION SERWAY Raymond A. Serway Sección 7.1 Trabajo hecho por una fuerza constante Sección 7. El producto escalar de dos

Más detalles

Aplicación: cálculo de áreas XII APLICACIÓN: CÁLCULO DE ÁREAS

Aplicación: cálculo de áreas XII APLICACIÓN: CÁLCULO DE ÁREAS XII APLICACIÓN: CÁLCULO DE ÁREAS El estudiante, hasta este momento de sus estudios, está familiarizado con el cálculo de áreas de figuras geométricas regulares a través del uso de fórmulas, como el cuadrado,

Más detalles

PROBLEMAS RESUELTOS TEMA: 3

PROBLEMAS RESUELTOS TEMA: 3 PROBLEMAS RESUELTOS TEMA: 3 1. Una partícula de 3 kg se desplaza con una velocidad de cuando se encuentra en. Esta partícula se encuentra sometida a una fuerza que varia con la posición del modo indicado

Más detalles

TRABAJO PARA LA TERCERA EVALUACION PARCIAL DE TRIGONOMETRIA Profra. Dulce Estrella Hernández Hernández.

TRABAJO PARA LA TERCERA EVALUACION PARCIAL DE TRIGONOMETRIA Profra. Dulce Estrella Hernández Hernández. NEXA A LA NORMAL DE NAUCALPAN TRABAJO PARA LA TERCERA EVALUACION PARCIAL DE TRIGONOMETRIA Profra. Dulce Estrella Hernández Hernández. Contesta a mano en hojas blancas, incluye todos los procedimientos.

Más detalles