Introducción a la Optimización Multiobjetivo
|
|
|
- Mario Villalba Márquez
- hace 8 años
- Vistas:
Transcripción
1 Introduccón a la Optmzacón Multobjetvo
2 Optmzacón Multobjetvo (MOP) Práctcamente en cualquer área y en una varedad de contetos se presentan problemas con múltples objetvos que se contraponen entre sí A este tema se le conoce tambén como Optmzacón Vectoral y se clasfca en térmnos del tpo de varables y restrccones ( MOLP, MONLP, etc.) Mamzar (,, 3, K k ) h( ) 0 g( ) 0
3 Un Ejemplo Un estudante desea selecconar la mejor escuela de ngenería con c base a varos crteros: Escuelas consderadas Crteros de Seleccón Rangos proporconados por US News
4 Valores normalzados Seleccón de Unversdad Análss de Resultados
5 Conjunto Pareto MIT es mejor que Georga Tech y que la Unversdad de Mchgan en todos los crteros consderados. Sn embargo, Stanford, Cal Tech, Cornell y Carnege Mellon son mejores o no que MIT dependendo del crtero. La solucón a una problema MOP no es un solo valor, sno un conjunto de alternatvas denomnado Conjunto Pareto, Conjunto Preferdo o Conjunto No Domnado Un grupo de 5 escuelas conforman el Conjunto Pareto en el ejemplo Conjunto Pareto: Conjunto de alternatvas que proporconan solucones potencales y representan un compromso entre los dferentes objetvos
6 Otro Ejemplo: Fabrcacón de Químcos Mnmze Mnmze 05 Durabldad Almacenamento Dsponbldad Segurdad, 5 8 Costo Emsones 0 Regón Factble en espaco de Decsón
7 Otro Ejemplo: Fabrcacón de Químcos Regón Factble en espaco de Objetvos Frontera BAD consttuye el Conjunto Pareto Valores en Puntos Etremos
8 Métodos de Solucón para MOP Métodos Basados en la Preferenca : Determnan la solucón que mejor satsface la preferenca de quen toma las decsones. Reduce el tempo y el número de alternatvas pero sufren de subjetvdad y falta de nformacón Métodos Generadores Determnan el conjunto Pareto de manera formal La mejor estratega es utlzar un método generador para determnar el Conjunto Pareto y entonces usar un método basado en la preferenca para selecconar la solucón óptma fnal.
9 Método Generador: Método de los Coefcentes de Peso La dea es asocar cada funcón objetvo con un coefcente de peso y mnmzar la suma pesada de los objetvos El problema se converte en una sere de problemas de optmzacón de una sola funcón objetvo Optmzar mult k w h( ) 0 g( ) 0
10 Método de los Coefcentes de Peso: Procedmento Encuentre los óptmos ndvduales para cada objetvo. Tales puntos representan los etremos del Conjunto No Domnado. Escoja valores no negatvos de los pesos y resuelva el k problema: Optmzar Optmzar Optmzar M Optmzar mult h( ) 0 g( ) 0 A nalce el espaco de la funcón objetvo y repta con nuevos pesos de form a que se mueva haca la regón del conjunto Pareto que se desea eplorar k w
11 Ejemplo Ilustratvo Ejemplo Ilustratvo w w Mnmze mult 0, 5 8 Funcón objetvo pesada Funcón objetvo pesada mult w w w
12 Método Generador: Método de Restrccones (Constrant Method) La dea otra vez es transformar el problema multobjetvo a una sere de problemas de un solo objetvo Se seleccona una funcón objetvo que se conserva como tal y el resto se ncluye como restrccones de desgualdad Mnmze (,, 3, K k ) Mnmze mult j j j h( ) 0 g( ) 0
13 Método de Restrccones Método de Restrccones 05 Mnmze Mnmze 0, 5 8 0, 5 8 Mnmze 5. 0
14 Método de Restrccones
15 Método Basado en la Preferenca: Optmzacón Medante Metas (Goal Programmng) Se defne un valor como meta para cada funcón objetvo Se crea una sola funcón objetvo que mnmza las desvacones respecto de las metas defndas Mnmze (,, 3, K k ) Mnmze goal ( δ δ ) G δ δ Se establece una meta G para cada objetvo h( ) 0 g( ) 0 δ, δ 0
16 Goal Goal Programmng Programmng 05 Mnmze Mnmze 0, 5 8 0, 5 8 ( ) goal Mnmze δ δ, 0 δ δ 5 G G δ δ δ δ Solucón:
Optimización multicriterio. Andrés Ramos Universidad Pontificia Comillas
Optmzacón multcrtero Andrés Ramos Unversdad Pontfca Comllas http://www.t.comllas.edu/aramos/ [email protected] Contendo 1. Conceptos báscos 2. Métodos contnuos 3. Métodos dscretos Escuela Técnca
Simulación y Optimización de Procesos Químicos. Titulación: Ingeniería Química. 5º Curso Optimización.
Smulacón y Optmzacón de Procesos Químcos Ttulacón: Ingenería Químca. 5º Curso Optmzacón. Programacón Cuadrátca Métodos de Penalzacón Programacón Cuadrátca Sucesva Gradente Reducdo Octubre de 009. Programacón
315 M/R Versión 1 Integral 1/ /1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA
35 M/R Versón Integral / 28/ UNIVERSIDAD NACIONAL AIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA ASIGNATURA: Investgacón de Operacones I CÓDIGO: 35 MOMENTO: Prueba Integral FECHA DE
3.- Programación por metas.
Programacón Matemátca para Economstas 1 3.- Programacón por metas. Una vez menconados algunos de los nconvenentes de las técncas generadoras, la ncorporacón de nformacón se va a traducr en una accón del
Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos
Reconclacón de datos expermentales MI5022 Análss y smulacón de procesos mneralúgcos Balances Balances en una celda de flotacón En torno a una celda de flotacón (o un crcuto) se pueden escrbr los sguentes
Optimización no lineal
Optmzacón no lneal José María Ferrer Caja Unversdad Pontfca Comllas Planteamento general mn f( x) x g ( x) 0 = 1,..., m f, g : n R R La teoría se desarrolla para problemas de mnmzacón, los problemas de
METODOLOGÍA PARA LA OPTIMIZACIÓN DE MÚLTIPLES OBJETIVOS BASADA EN AG Y USO DE PREFERENCIAS BIBIANA ANDREA CUARTAS TORRES
METODOLOGÍA PARA LA OPTIMIZACIÓN DE MÚLTIPLES OBJETIVOS BASADA EN AG Y USO DE PREFERENCIAS BIBIANA ANDREA CUARTAS TORRES UNIVERSIDAD NACIONAL DE COLOMBIA FACULTAD DE MINAS ESCUELA DE SISTEMAS MEDELLÍN
TEMA 4. TEORÍA DE LA DUALIDAD.
Investgacón Operatva TEMA. TEORÍA DE LA DUALIDAD. TEMA. TEORÍA DE LA DUALIDAD..... INTRODUIÓN... ALGORITMO DUAL DEL SIMPLEX.... EJEMPLO.... EJEMPLO.... EJEMPLO... TEORÍA DE LA DUALIDAD.... PROLEMA PRIMAL
Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1
Escuela de Ingenería Comercal Ayudantía # 01, Conceptos Generales, Modelo de Regresón Profesor: Carlos R. Ptta 1 1 [email protected] Escuela de Ingenería Comercal Ayudantía 01 Parte 01: Comentes Señale
PROPUESTAS PARA LA DETERMINACIÓN DE LOS PARÁMETROS DEL GRÁFICO DE CONTROL MEWMA
Est. María. I. Flury Est. Crstna A. Barbero Est. Marta Rugger Insttuto de Investgacones Teórcas y Aplcadas. Escuela de Estadístca. PROPUESTAS PARA LA DETERMINACIÓN DE LOS PARÁMETROS DEL GRÁFICO DE CONTROL
CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso.
CARTAS DE CONTROL Las cartas de control son la herramenta más poderosa para analzar la varacón en la mayoría de los procesos. Han sdo dfunddas extosamente en varos países dentro de una ampla varedad de
UN MODELO DE PROGRAMACIÓN DE METAS PARA LA PLANIFICACIÓN OPERATIVA DE UN ASERRADERO DE MADERA.
Un Modelo de Programacón por Metas para la Planfcacón operatva... UN MODELO DE PROGRAMACIÓN DE METAS PARA LA PLANIFICACIÓN OPERATIVA DE UN ASERRADERO DE MADERA. Caballero Fernández, Rafael ([email protected]),
TERMODINÁMICA DEL EQUILIBRIO CAPÍTULO V. EQUILIBRIO DE REACCIÓN QUÍMICA
Ing. Federco G. Salazar Termodnámca del Equlbro TERMODINÁMICA DEL EQUILIBRIO CAPÍTULO V. EQUILIBRIO DE REACCIÓN QUÍMICA Contendo 1. Conversón y Coordenada de Reaccón. 2. Ecuacones Independentes y Regla
Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia
Investgacón y Técncas de Mercado Prevsón de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): s de Tendenca Profesor: Ramón Mahía Curso 00-003 I.- Introduccón Hasta el momento,
2. Lectura de planos y manuales técnicos
Lectura de planos y manuales técncos INTRODUCCIÓN Este módulo de 152 horas pedagógcas, tene como propósto que los y las estudantes de tercero medo desarrollen conocmentos y habldades sobre dversos tpos
Regresión Binomial Negativa
Regresón Bnomal Negatva Resumen El procedmento Regresón Bnomal Negatva está dseñado para ajustar un modelo de regresón en el cual la varable dependente Y consste de conteos. El modelo de regresón ajustado
MODELOS DE SECUENCIACIÓN EN MÁQUINAS 1
odelos de secuencacón de tareas en máqunas Andrés Ramos Unversdad Pontfca Comllas http://www.t.comllas.edu/aramos/ [email protected] ODELOS DE SECUENCIACIÓN EN ÁQUINAS odelos de secuencacón de tareas
FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA 2- Parte III CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN
FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA 2- Parte III CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN 1 CÁLCULO DE LOS FLUJOS NETOS DE CAJA Y TOMA DE DECISIONES DE INVERSIÓN PRODUCTIVA Peculardades
Relaciones entre variables
Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.
Análisis Matemático en la Economía: Optimización y Programación. Augusto Rufasto
Análss Matemátco en la Economía: Optmzacón y Programacón [email protected]@lycos.com www.geoctes.com/arufast-http://rufasto.trpod.com La optmzacón y la programacón están en el corazón del problema
2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo
Evaluacón Económca de Proyectos de Inversón 1 ANTECEDENTES GENERALES. La evaluacón se podría defnr, smplemente, como el proceso en el cual se determna el mérto, valor o sgnfcanca de un proyecto. Este proceso
Ingeniería Económica y Análisis Financiero Finanzas y Negocios Internacionales Parcial 3 Diciembre 10 de Nombre Código.
Ingenería Económca y Análss Fnancero Fnanzas y Negocos Internaconales Parcal 3 Dcembre 0 de 20 Nombre Códgo Profesor: Escrba el nombre de sus compañeros Al frente Izquerda Atrás Derecha Se puede consultar
Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó
Comparacón entre dstntos Crteros de decsón (, TIR y PRI) Por: Pablo Lledó Master of Scence en Evaluacón de Proyectos (Unversty of York) Project Management Professonal (PMP certfed by the PMI) Profesor
REGRESION LINEAL SIMPLE
REGREION LINEAL IMPLE Jorge Galbat Resco e dspone de una mustra de observacones formadas por pares de varables: (x 1, y 1 ) (x, y ).. (x n, y n ) A través de esta muestra, se desea estudar la relacón exstente
TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE
TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE LECTURA OBLIGATORIA Regresón Lneal Múltple. En Ral, A. y Varela, J. (008). Estadístca Práctca para la Investgacón en Cencas de la Salud. Coruña: Netbblo.
Análisis de Weibull. StatFolio de Muestra: Weibull analysis.sgp
Análss de Webull Resumen El procedmento del Análss de Webull está dseñado para ajustar una dstrbucón de Webull a un conjunto de n observacones. Es comúnmente usado para analzar datos representando tempos
TEMA 3. VARIABLE ALEATORIA
TEMA 3. VARIABLE ALEATORIA 3.. Introduccón. 3... Dstrbucón de Probabldad de una varable aleatora 3... Funcón de Dstrbucón de una varable aleatora 3.. Varable aleatora dscreta 3... Funcón masa de probabldad
TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1).
TRABAJO 1: Varables Estadístcas Undmensonales (Tema 1). Técncas Cuanttatvas I. Curso 2016/2017. APELLIDOS: NOMBRE: GRADO: GRUPO: DNI (o NIE): A: B: C: D: En los enuncados de los ejerccos que sguen aparecen
Regresión Cuantílica o Quantile Regression
Regresón Cuantílca o Quantle Regresson A. Cameron and P. rved, (005), Macroeconometrcs, Methods and Applcatons, Cambrdge Unversty Press. R. Koenker, (005), Quantle Regresson, Econometrc Socety Monographs
Índice de contribución de la estructura a la sostenibilidad
ANEJO 13º Índce de contrbucón de la estructura a la sostenbldad 1. Consderacones generales El proyecto, la ejecucón y el mantenmento de las estructuras de hormgón consttuyen actvdades, enmarcadas en el
[email protected] Centro de Cálculo, Instituto de Computación Facultad de Ingeniería. Universidad de la República, Uruguay.
Una Versón Paralela del Algortmo Evolutvo para Optmzacón Multobjetvo NSGA-II y su Aplcacón al Dseño de Redes de Comuncacones Confables Sergo Nesmachnow [email protected] Centro de Cálculo, Insttuto de
Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:
VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes
REGRESION Y CORRELACION
nav Estadístca (complementos) 1 REGRESION Y CORRELACION Fórmulas báscas en la regresón lneal smple Como ejemplo de análss de regresón, descrbremos el caso de Pzzería Armand, cadena de restaurantes de comda
EQUILIBRIO LÍQUIDO VAPOR EN UN SISTEMA NO IDEAL
EQUILIBRIO LÍQUIDO VAPOR EN UN SISTEMA NO IDEAL OBJETIVO El alumno obtendrá el punto azeotrópco para el sstema acetona-cloroformo, calculará los coefcentes de actvdad de cada componente a las composcones
Módulo 3. OPTIMIZACION MULTIOBJETIVO DIFUSA (Fuzzy Multiobjective Optimization)
Módulo 3. OPTIMIZACION MULTIOBJETIVO DIFUSA (Fuzzy Multobjectve Optmzaton) Patrca Jaramllo A. y Rcardo Smth Q. Insttuto de Sstemas y Cencas de la Decsón Facultad de Mnas Unversdad Naconal de Colomba, Medellín,
4. La Factorización No Negativa de Matrices
4. La Factorzacón No Negatva de Matrces 4.1 Introduccón Un problema bastante extenddo en dferentes técncas de análss de datos consste en encontrar una representacón adecuada de los datos. Un tpo de representacón
Economía de la Empresa: Financiación
Economía de la Empresa: Fnancacón Francsco Pérez Hernández Departamento de Fnancacón e Investgacón de la Unversdad Autónoma de Madrd Objetvo del curso: Dentro del contexto de Economía de la Empresa, se
Guía de Electrodinámica
INSTITITO NACIONAL Dpto. de Físca 4 plan electvo Marcel López U. 05 Guía de Electrodnámca Objetvo: - econocer la fuerza eléctrca, campo eléctrco y potencal eléctrco generado por cargas puntuales. - Calculan
Variables Aleatorias. Variables Aleatorias. Variables Aleatorias. Objetivos del tema: Al final del tema el alumno será capaz de:
Varables Aleatoras Varables Aleatoras Objetvos del tema: Concepto de varable aleatora Al fnal del tema el alumno será capaz de: Varables aleatoras dscretas y contnuas Funcón de probabldad Funcón de dstrbucón
Disoluciones. Disolución ideal. Disolución ideal. Disolución ideal. Disolución ideal
Dsolucones TEM. Dsolucones reales. otencal químco en dsolucones reales. Concepto de actvdad. Una dsolucón es una mezcla homogénea de un componente llamado dsolvente () que se encuentra en mayor proporcón
Fugacidad. Mezcla de gases ideales
Termodnámca del equlbro Fugacdad. Mezcla de gases deales rofesor: Alí Gabrel Lara 1. Fugacdad 1.1. Fugacdad para gases Antes de abarcar el caso de mezclas de gases, debemos conocer como podemos relaconar
Programación mixta-entera
Programacón mxta-entera Prof. Cesar de Prada ISA UVA [email protected] Indce Problemas híbrdos Tpos de problemas mxto-enteros Algortmo Branch and Bound Ejemplos Software Problemas híbrdos Muchos problemas
Condiciones Generales TestQual 2013
Condcones Generales TestQual 2013 Ejerccos TestQual 2013: En el presente documento se descrben las Condcones Generales de aplcacón en los Programas de Intercomparacón de TestQual. Con la solctud de uno
CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED
Modelo en red para la smulacón de procesos de agua en suelos agrícolas. CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED IV.1 Modelo matemátco 2-D Exsten dos posbldades, no ndependentes, de acuerdo con
OPERACIONES BÁSICAS. (Notas de clase) Separadores flash
OPERACIONE BÁICA (Notas de clase eparadores flash Profesor Asocado Andrés oto Agüera Curso 2003-2004 Operacones Báscas Balances de matera y energía Caracteracón del estado de equlbro termodnámco de un
Riesgos Proporcionales de Cox
Resgos Proporconales de Cox Resumen El procedmento Resgos Proporconales de Cox esta dseñado para ajustar un modelo estadístco sem-parámetrco a los tempos de falla de una o mas varables predctoras. Los
Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma
Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................
Submicrométricas Ópticas
Estmacón n de la Dstrbucón n de Tamaños de Partículas Submcrométrcas de Látex L por Técncas T Óptcas Lus M. Guglotta, Georgna S. Stegmayer, Jorge R. Vega Santa Fe (ARGENTINA) Septembre de 007 Unversdad
Modelos dinámicos de formación de precios y colusión. Carlos S. Valquez IEF
Modelos dnámcos de formacón de precos y colusón Carlos S. Valquez IEF Modelos dnámcos de formacón de precos y colusón Enfoques empleados en el análss de la nteraccón repetda entre empresas: Juegos repetdos.
Tipos de amplificadores según su ganancia
Tpos de amplfcadores según su gananca Electrónca nalógca: ealmentacón Todo amplfcador que posea unas resstencas de entrada () y de salda (o) dstntas de cero y dstntas de nfnto se puede representar de cuatro
TEMA 4 Variables aleatorias discretas Esperanza y varianza
Métodos Estadístcos para la Ingenería Curso007/08 Felpe Ramírez Ingenería Técnca Químca Industral TEMA 4 Varables aleatoras dscretas Esperanza y varanza La Probabldad es la verdadera guía de la vda. Ccerón
CESMA BUSINESS SCHOOL
CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 4 RENTAS y MÉTODOS DE AMORTIZACIÓN Javer Blbao García 1 1.- Introduccón Defncón: Conjunto de captales con vencmentos equdstantes de tempo. Para que exsta
PRINCIPIOS PARA LA VALORACIÓN DE INVERSIONES
PRINCIPIOS PARA LA VALORACIÓN DE INVERSIONES Y SELECCIÓN N DE PROYECTOS FELIPE ANDRÉS HERRERA R. - ING. ADMINISTRADOR Especalsta en Ingenería Fnancera Unversdad Naconal de Colomba Escuela de la Ingenería
PRACTICA 4. Asignatura: Economía y Medio Ambiente Titulación: Grado en ciencias ambientales Curso: 2º Semestre: 1º Curso
PRACTICA 4 Asgnatura: Economía y Medo Ambente Ttulacón: Grado en cencas ambentales Curso: º Semestre: 1º Curso 010-011 Profesora: Inmaculada C. Álvarez Ayuso [email protected] PREGUNTAS TIPO TEST
Algunos métodos de clasificación de puestos de trabajo en la empresa
lgunos métodos de clasfcacón de puestos de trabajo en la empresa. lgunos métodos de clasfcacón de puestos de trabajo en la empresa Canós Darós, Lourdes, [email protected] Pers Ortz, Marta, [email protected]
Equilibrio termodinámico entre fases fluidas
CAPÍTULO I Equlbro termodnámco entre fases fludas El conocmento frme de los conceptos de la termodnámca se consdera esencal para el dseño, operacón y optmzacón de proyectos en la ngenería químca, debdo
CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS
CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS Edgar Acuña Fernández Departamento de Matemátcas Unversdad de Puerto Rco Recnto Unverstaro de Mayagüez Edgar Acuña Analss de Regreson Regresón con varables
OPTIMIZACIÓN DE SISTEMAS LINEALES USANDO MÉTODOS DE PUNTO INTERIOR
Scenta et echnca Año X, No 24, Mayo 24. UP. ISSN 122-171 43 OPIMIZACIÓN DE SISEMAS LINEALES USANDO MÉODOS DE PUNO INERIOR RESUMEN La técnca de optmzacón denomnada puntos nterores evolucona por el nteror
Smoothed Particle Hydrodynamics Animación Avanzada
Smoothed Partcle Hydrodynamcs Anmacón Avanzada Iván Alduán Íñguez 03 de Abrl de 2014 Índce Métodos sn malla Smoothed partcle hydrodynamcs Aplcacón del método en fludos Búsqueda de vecnos Métodos sn malla
Separación del sistema etanol/acetona/agua por medio de un diseño híbrido destilación-pervaporación.
Separacón del sstema etanol/acetona/agua por medo de un dseño híbrdo destlacón-pervaporacón. esumen Alan Dder érez Ávla Se aplca las curvas de resduo de membrana para sstemas multcomponentes hacendo uso
Planificación y optimización asistida por computadora de secuencias de ensamble mecánico
Ingenería Mecánca. Vol. 12. No.1, enero-abrl de 2009, pag. 59-68 ISSN 1815-5944 Planfcacón y optmzacón asstda por computadora de secuencas de ensamble mecánco L. L. omás-garcía Recbdo el 12 de enero de
Equipo de Algoritmos Evolutivos Multiobjetivo Paralelos
Equpo de Algortmos Evolutvos Multobjetvo Paralelos José Manuel Fernandez Gangreco Cencas y Tecnología - Unversdad Católca Nuestra Señora de la Asuncón Centro Naconal de Computacón - Unversdad Naconal de
MODELOS DE ELECCIÓN BINARIA
MODELOS DE ELECCIÓN BINARIA Econometría I UNLP http://www.econometra1.depeco.econo.unlp.edu.ar/ Modelos de Eleccón Bnara: Introduccón Estamos nteresados en la probabldad de ocurrenca de certo evento Podemos
Problemas donde intervienen dos o más variables numéricas
Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa
INSYS Advanced Dashboard for Enterprise
Enterprse Enterprse INSYS Advanced Dashboard for Enterprse Enterprse, es un tablero de control para llevar a cabo la Gestón de la Segurdad de la Informacón, Gestón de Gobernabldad, Resgo, Cumplmento (GRC)
Gráficos de flujo de señal
Gráfcos de flujo de señal l dagrama de bloques es útl para la representacón gráfca de sstemas de control dnámco y se utlza extensamente en el análss y dseño de sstemas de control. Otro procedmento alternatvo
Regresión Lineal Simple y Correlación
4 Regresón Lneal Smple y Correlacón 4.1. Fundamentos teórcos 4.1.1. Regresón La regresón es la parte de la estadístca que trata de determnar la posble relacón entre una varable numérca, que suele llamarse
Clasificación Jerárquica de contenidos Web.
Clasfcacón Jerárquca de contendos Web. Álvaro Gascón y Marín de la Puente Unversdad Carlos III Madrd [email protected] Mguel María Rodríguez Aparco Unversdad Carlos III Madrd [email protected]
7º CONGRESO IBEROAMERICANO DE INGENIERIA MECANICA 7º CONGRESSO IBEROAMERICANO DE ENGENHARIA MECANICA México D.F., 12 al 14 de Octubre de 2005
7º CONGRESO IBEROAMERICANO DE INGENIERIA MECANICA 7º CONGRESSO IBEROAMERICANO DE ENGENHARIA MECANICA Méxco D.F., 1 al 14 de Octubre de 005 ANÁLISIS DINÁMICO DE UN EQUIPO DE ENSAYO DE AMORTIGUADORES Zabalza
METODOLOGÍA PARA LA ASIGNACIÓN DE TOLERANCIAS Y VALORES NOMINALES A UN CONJUNTO DE VARIABLES DEPENDIENTES
Ingenería Técnca Industral Mecánca METODOLOGÍA PARA LA ASIGNACIÓN DE TOLERANCIAS Y VALORES NOMINALES A UN CONJUNTO DE VARIABLES DEPENDIENTES UNIVERSIDAD CARLOS III DE MADRID ESCUELA POLITÉCNICA SUPERIOR
NUEVA APROXIMACIÓN AL MÉTODO TÓPSIS DIFUSO CON ETIQUETAS LINGÜÍSTICAS
NUEVA APROXIMACIÓN AL MÉTODO TÓPSIS DIFUSO CON ETIQUETAS LINGÜÍSTICAS M. Socorro Garca-Cascales 1, M. Teresa Lamata 2 1 Dpto de Electrónca, Tecnología de Computadoras y Proyectos. Unversdad de Poltécnca
GUÍA DE DISEÑO PARA CAPTACIÓN DEL AGUA DE LLUVIA
GUÍA DE DISEÑO PARA CAPTACIÓN DEL AGUA DE LLUVIA Lma, 2004 Tabla de contendo 1. Introduccón...3 2. Ventajas y desventajas...3 Págna 3. Factbldad...3 3.1 Factor técnco...4 3.2 Factor económco...4 3.3 Factor
Las acciones a considerar en el proyecto de una estructura o elemento estructural se pueden clasificar según los criterios siguientes:
CAÍTULO III ACCIONES Artículo 9º Clasfcacón de las accones Las accones a consderar en el proyecto de una estructura o elemento estructural se pueden clasfcar según los crteros sguentes: - Clasfcacón por
7. Mantenimiento de sistemas hidráulicos y neumáticos
7. Mantenmento de sstemas hdráulcos y neumátcos INTRODUCCIÓN Este módulo de 190 horas pedagógcas, tene como propósto que los y las estudantes de cuarto medo desarrollen conocmentos y habldades sobre los
Tutorial sobre Máquinas de Vectores Soporte (SVM)
Tutoral sobre Máqunas de Vectores Soporte SVM) Enrque J. Carmona Suárez [email protected] Versón ncal: 2013 Últma versón: 11 Julo 2014 Dpto. de Intelgenca Artcal, ETS de Ingenería Informátca, Unversdad
