Aplicaciones de la integral.
|
|
- Soledad Moya Crespo
- hace 4 años
- Vistas:
Transcripción
1 Cpítulo 6 Aplicciones de l integrl. 6.. Cálculo del áre de un figur pln. En generl, pr clculr el áre de un región pln:. L dividimos en frnjs, infinitmente estrechs, de mner horizontl o verticl,. Suponemos que ls frnjs son rectángulos, con lo cul su áre se obtendrá como el producto de l bse por l ltur (l bse será el diferencil correspondiente d o d), es decir, d hd, obien,d hd.. Clculmos el áre totl como l sum de ls áres de los infinitos rectángulos: A Los límites de integrción se determinn estudindo el recorrido del diferencil correspondiente. Silscurvssecortndentro delintervlodeintegrción, entonces hbráque descomponer l integrl en dichos puntos clculr ls áres por seprdo. En prticulr, Proposición 6. (Áre bjo un curv). El áre del trpecio curvilíneo limitdo por l curv f(), siendof(), por ls rects verticles b por el segmento [, b] del eje O viene definido por l integrl, A 77 d f() d
2 78 CAPÍTULO 6. APLICACIONES DE LA INTEGRAL. Proposición 6. (Áre entre dos curvs). El áre de l región limitd por ls curvs f () e f (), siendof () f (), por ls rects b viene definid por l integrl, f () f () d Ejemplo 6.. Hllr el áre de l región comprendid entre l prábol + lrect Solución. En primer lugr loclizmos el recinto. Podemos utilizr l función tl como viene definid o bien trsldrl girrl con objeto de hcer coincidir l rect con uno de los ejes de coordends. En este ejemplo, utilizremos l función tl como viene definid dividiremos el recinto en frnjs horizontles o verticles. () Frnjs horizontles: A Z d Z (b) Frnjs verticles: Los puntos de corte de mbs curvs son: + ± (, ± ) el diferencil de áre viene definido por: d hd ( )d [ ( +)]d ( )d Con lo cul el áre totl será: ( )d» 8 En este cso los límites de integrción son: el diferencil de áre viene definido por: d hd()d d ( ) / d Con lo cul el áre totl será: A Z d Z ( ) / d ( )/ 8 Ejemplo 6.. Clculr el áre de l región comprendid entre ls prábols +.
3 6.. CÁLCULO DEL ÁREA DE UNA FIGURA PLANA. 79 Solución. En primer lugr loclizmos el recinto. Podemos utilizr ls funciones tl como vienen definids o bien intercmbir l por l con objeto de que sen funciones respecto de. En este ejemplo utilizremos ls funciones tl como vienen definids dividiremos el recinto en frnjs horizontles. Los puntos de corte de mbs curvs los obtenemos por igulción: + ± Es decir, P (, ) Q(, ) el diferencil de áre viene definido por: d hd( d i )d ( ) ( +) d ( )d Con lo cul el áre totl será: Z Z Z A d d ( )d 4 4( )8 Tmbién podemos dividir l región en frnjs verticles, pero en este cso el cálculo del áre result un poco más complicdo, que tenemos que descomponer l región en dos regiones. En efecto, A Z Z Z Z Z d + d d + d Z» d + ( ) / d» ( ) / Ejemplo 6.. Clculr el áre de l región limitd por ls gráfics de ( ) e. Solución. Pr fcilitr los cálculos podemos desplzr el recinto uniddes l izquierd, con objeto de centrrlo en el eje de ordends, con lo cul l región estrá limitd por ls gráfics de ls funciones,e. ( ) 4 4 4
4 8 CAPÍTULO 6. APLICACIONES DE LA INTEGRAL. Dividiendo el recinto en frnjs verticles, tenemos: loslímites de integrción: de donde, A Z d d hd( ) d ( )d Z ± ( )d» 4 Tmbién podemos dividir el recinto en frnjs horizontles, tenemos: d hd ()d ( ) d / d de donde, A Z d Z / / d Cálculo del volumen de un cuerpo 6... Volumen de un cuerpo culquier: Método de secciones En generl, pr clculr el volumen de un cuerpo:. Lo dividimos en secciones, rebnds o lonchs, infinitmente estrechs, medinte cortes con plnos perpendiculres un dirección determind (normlmente uno de los ejes de coordends o un rect prlel uno de ellos),. Suponemos que ls secciones son cilíndrics, con lo cul su volumen se obtendrá como el producto del áre de l bse por l ltur (l ltur será el diferencil correspondiente d o d), es decir, dv S() d, o bien dv S() d.. Clculmos el volumen totl como l sum de los volúmenes de ls infinits secciones: V dv Los límites de integrción se determinn estudindo el recorrido del diferencil correspondiente. En prticulr,
5 6.. CÁLCULO DEL VOLUMEN DE UN CUERPO 8 Proposición 6. (Método de ls secciones). Si el áre de l sección de un cuerpo por un plno perpendiculr l eje O puede epresrse en función de, esdecir,s S(), siendo b, entonces el volumen de l prte del cuerpo comprendid entre los plnos b, perpendiculres l eje O, viene definido por l fórmul: V S() d 6... Volumen de un sólido de revolución: Método de discos Al cortr un sólido medinte plnos perpendiculres l eje de giro ls secciones que se obtienen son discos, con lo cul su volumen viene determindo por dv πr d, obien,dv πr d, si el eje de giro es fronter l región quegir;pordv π(r r ) d, obien,dv π(r r ) d, sielejede giro es eterior l región que gir. En consecuenci, Proposición 6.4 (Giro de trpecio curvilíneo). Si un trpecio curvilíneo limitdo por l curv f(), elejeo ls verticles por los puntos b gir lrededor del eje O, entonces el volumen del cuerpo de revolución que se engendr viene definido por l fórmul: V π d Proposición 6. (Giro de región entre dos curvs). Si l región limitd por ls curvs f (), e f (), siendo f () f (), ls verticles por los puntos b gir lrededor del eje O, entonces el volumen del cuerpo de revolución que se engendr viene definido por l fórmul: V π ( ) d 6... Volumen de un sólido de revolución: Método de los cilindros Si dividimos un sólido de revolución medinte cilindros concéntricos con el eje de giro, cd cilindro con un espesor infinitesiml. El volumen de cd uno de estos cilindros vendrá determindo por: dv πrh d, o bien dv πrh d. L región genertriz deberá estr un solo ldo del eje de giro, en cso contrrio hbrá que descomponer l integrl hcer los volúmenes por seprdo. Tmbién hbrá que descomponer l integrl si l región viene determind por dos curvs que se cortn dentro del intervlo de integrción. Este método tmbién se llm de cps.
6 8 CAPÍTULO 6. APLICACIONES DE LA INTEGRAL. Ejemplo 6.4. Hllr por el método de discos por el de cps el volumen del sólido generdo l girr l región comprendid entre l prábol + lrect lrededor de l rect. Solución. En primer lugr loclizmos el recinto. Podemos utilizr l región tl como viene dd o bien trsldrl girrl con objeto de que el giro de l región de hg sobre uno de los ejes de coordends. Así, pueden utilizrse, por ejemplo, ls funciones +,obien,, girrls sobre el eje O. En este ejemplo utilizremos l función tl como viene definid.. Método de discos: Hllmos el volumen de un disco elementl dv, (, ) (, ) 4 Figur 6.: Método de discos dv πr d π( ) d π( ) d π( ) d Hllmos los límites de integrción pr l vrible : + ± con lo cul, el volumen totl, l ser simétrico, será: V Z π dv π Z Z dv π Z d d π Método de ls cps. + π π
7 6.. CÁLCULO DEL VOLUMEN DE UN CUERPO 8 (, ) (, ) 4 Figur 6.: Método de cps Hllmos el volumen de un cilindro elementl dv, dv πrh d π( )()d 4π( ) d con lo cul el volumen totl será. Z Z V dv 4π ( ) d t Z t + d tdt t ; t 4π ( t )ttdt Z Z 8π ( t )t t dt 8π (t t 4 )dt 8π t ψ! 4 8π 8π 4 8π 64π Ejemplo 6.. Clculr el volumen generdo l girr l región comprendid entre ls prábols +, lrededor del eje OY, plicndo el método de discos el de cps. Solución. En primer lugr loclizmos el recinto. Podemos utilizr l región tl como viene dd o bien intercmbir l por l con objeto de que sen funciones respecto de. En este ejemplo utilizremos l función tl como viene definid. Los puntos de corte de mbs curvs los obtenemos por igulción: + ± Es decir, P (, ) Q(, ). Método de discos:
8 84 CAPÍTULO 6. APLICACIONES DE LA INTEGRAL. ( i,) ( d,) Figur 6.: Método de discos Hllmos el volumen de un disco elementl dv, dv πr d πr d π( d i )d π ( ) ( +) d π(8 8 )d Los límites de integrción pr l vrible son ±. Con lo cul, el volumen, l ser simétrico, será: V Z dv Z dv π Z. Método de ls cps (cilindros). (8 8 )d π 8 8 π 8 8 π (, ) Figur 6.4: Método de cilindros Hllmos el volumen de un cilindro elementl dv, dv πrh d π()d 4π d Ahor bien, el vlor de cmbi prtir de, por tnto tendremos que descomponer l integrl en este punto. Los límites de integrción pr l vrible son,. Con lo cul el volumen totl será: V Z dv + Z dv 4π Z d +4π Z d
9 6.. CÁLCULO DEL VOLUMEN DE UN CUERPO 8 Ambs integrles se resuelven por cmbio de vrible, Z I t Z d t (t +)ttdt + d tdt Z t (t 4 +t )dt + t + 6 Z I t Z d t ( t )t( t) dt d tdt Z 6t ( 6t +t 4 )dt + t Con lo cul, el volumen es, 6 V 4π(I + I )4π π 6π π Ejemplo 6.6. Dd l región limitd por ls gráfics de, 4, obtener, plicndo el método de discos el de cps, el volumen del sólido formdo hciendo girr dich región en torno l eje OX lejeoy. Solución.. Giro en torno l eje OX () Método de los discos: (, ) 4 Figur 6.: Método de discos cilindros Por el método de discos, el diferencil de volumen es: dv πr d π d π d de donde, el volumen totl será: V Z 4 dv Z 4 π d π 4 8π (b) Método de cilindros. El diferencil de volumen es, dv πrh d π(4 ) d π(4 ) d π(4 ) d
10 86 CAPÍTULO 6. APLICACIONES DE LA INTEGRAL. de donde, el volumen totl es, V Z dv Z. Giro en torno l eje OY. π(4 ) d π 4 π(8 4) 8π 4 (, ) 4 Figur 6.6: Método de discos cilindros () Método de discos. El diferencil de volumen es, dv π(r r ) d π(6 ) d π(6 4 ) d de donde, el volumen totl es: Z Z V dv π(6 4 ) d π 6 π( )8 π (b) Método de los cilindros. El diferencil de volumen es, dv πrh d π d π dπ / d de donde, el volumen totl es Z 4 Z 4 V dv π / / d π 4 π 8 π Ejemplo 6.7. Obtener el volumen del sólido formdo l girr l región limitd por ls gráfics de ( ) e,entornolrect, plicndo el método de discos el de cps. Solución. Pr fcilitr los cálculos podemos desplzr el recinto uniddes l izquierd, con objeto de centrrlo en el eje de ordends. Con lo cul el volumen se generrá l girr l región limitd por ls gráfics de e, en torno l rect. Tmbién se podrí volter l región con objeto de hcerl girr en torno l eje O, sin embrgo, l integrl resultnte en est cso es un poco más difícil.. Método de discos. Hllmos el volumen de un disco elementl dv : dv πr d π( ) d π( ) d π( ) d
11 6.. LÍMITE DE SUMAS 87 ( ) ( i,) ( d,) Figur 6.7: Método de discos cilindros Los límites de integrción pr l vrible son ±, l ser l región simétric result: V Z π dv Z dv π 9 + Z ( ) d π π π. Método de los cilindros. Hllmos el volumen de un disco elementl dv : dv πrh d π( ) d4π( ) d Los límites de integrción de l vrible son, con lo cul el volumen totl será: Z Z Z V dv 4π ( ) d4π / / d 4π / / 4π 6.. Límite de sums 9 4π Los siguientes límites pueden clculrse medinte integrles: 8 48π Proposición 6.6. lím n n nx i f i n Z f() d Ejemplo 6.8. Clculr el siguiente límite, lím n 4n n + n n /.
SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES
Junio 009 SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES PR-.- Un cmpo de tletismo de 00 metros de perímetro consiste en un rectángulo y dos semicírculos en dos ldos opuestos, según
Aplicaciones del cálculo integral
Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:
Grado en Biología Tema 3 Integración. La regla del trapecio.
Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con
Aplicaciones de la integral indefinida
Aplicciones_de_l_integrl.n Aplicciones de l integrl indefinid Práctic de Cálculo, E.U.A.T,Grupos ºA y ºB, 2005 Est práctic muestr cómo clculr lguns áres y volúmenes utilizndo integrles. En cd cso dremos
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid
Integración. Capítulo 1. Problema 1.1 Sea f : [ 3, 6] IR denida por: e x 2 2 x 6. (i) Estudiar la continuidad y derivabilidad de f.
Cpítulo Integrción Problem. Se f : [, 6] IR denid por: + +
2.3.1 Cálculo de primitivas
Mtemátics I.3 Lists de ejercicios de Cálculo Integrl.3 Lists de ejercicios de Cálculo Integrl.3. Cálculo de primitivs 75. Encontrr l epresión de ls siguientes integrles indefinids: ) p) tg b) e sen cos
LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b.
Tem 4 Integrción 4.. Primitivs LA INTEGRAL DEFINIDA Si f(x) es un función continu y no negtiv definid en el intervlo x [, b], entonces l integrl definid f(x) represent el áre bjo l gráfic de l función
Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida
Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de
LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES
LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES L integrl definid Se y f un función definid en el intervlo,, se llm integrl definid de f en n el intervlo, y se denot por fd lim fc i i i. n i y se llmn límites
Cálculo II. Volúmenes de Sólidos. M. en C. Ricardo Romero. Grupo CTG87 Trimestre 11-P. Departamento de Ciencias Básicas, UAM-A
Cálculo II Volúmenes de Sólidos M. en C. Ricrdo Romero Deprtmento de Ciencis Básics, UAM-A Grupo CTG87 Trimestre 11-P Grupo CTG87 Trimestre 11-P 1 / Progrm 1 Cálculo de volúmenes prtir de secciones trnsversles
CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2004 Primera parte
CÁLCULO Primer curso de Ingeniero de Telecomunicción Exmen, 7 de Septiembre de 24 Primer prte Ejercicio. Clculr ls coordends de los puntos P y Q de l prábol y x 2, tles que el triángulo formdo por el eje
TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD
Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,
Integración de funciones reales de una variable real. 24 de octubre de 2014
Cálculo Integrción de funciones reles de un vrible rel 24 de octubre de 2014 c Dpto. de Mtemátics UDC Integrción de funciones reles de un vrible rel L integrl indefinid. Cálculo de primitivs L integrl
TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO CALCULO DIFERENCIAL. Integral Indefinida
Integrl Indefinid Estmos costumrdos decir que el producto el cociente son operciones inverss. Lo mismo sucede con l potencición l rdicción. Vmos estudir hor l operción invers de l diferencición. Dd l función
Aplicaciones de la derivada (II)
UNIVERSIDAD DEL CAUCA Fcultd de Ciencis Nturles, Ects de l Educción Deprtmento de Mtemátics CÁLCULO I Ejercicios Rects tngentes Aplicciones de l derivd (II) 1. Se l curv gráfic de l ecución ( ) =. Encuentre
Integral de una función real. Tema 08: Integrales Múltiples. Integral definida. Aproximación de una integral simple
Integrl de un función rel Tem 08: Integrles Múltiples Jun Igncio Del Vlle Gmbo Sede de Guncste Universidd de Cost ic Ciclo I - 2014 Ls integrles definids clculn el áre bjo un curv y = f (x) pr un región
Aplicaciones de la integral
5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle
int(s) o int(s, var) S puede ser una expresión simbólica o el nombre de una expresión simbólica.
Práctic 3: Cálculo Integrl con MtLb Curso 2010-2011 1 1 Introducción Un de los pquetes más útiles pr el cálculo con MtLb lo constituye Symbolic Mth Toolbox, que permite relizr cálculo simbólico vnzdo,
Curvas en el plano y en el espacio
Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que
Resolución del examen de Matemáticas II de Selectividad Andalucía Junio de 2006
Resolución del emen de Mtemátics II de Selectividd Andlucí Junio de 6 Antonio Frncisco Roldán López de Hierro * de junio de 6 Opción A Ejercicio [ 5 puntos] Determin un punto de l curv de ecución y e pendiente
UNIVERSIDAD CARLOS III DE MADRID. Departamento de Matemáticas CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO
UNIVERSIDAD CARLOS III DE MADRID Deprtmento de Mtemátics MATEMÁTICAS CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 2010 2011 Elbordo por Elen Romer Índice generl 4. Cálculo
Curvas en el plano y en el espacio
Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que
6.1 Sumas de Riemann e integral definida
Tem 6 Integrción Definid 6.1 Sums de Riemnn e integrl definid Supongmos que estmos interesdos en clculr el áre que se encuentr bjo un curv y = f(x) en un intervlo [, b] (pr simplificr, consideremos el
INTEGRACIÓN. CÁLCULO DE
Cpítulo INTEGRACIÓN. CÁLCULO DE ÁREAS.. Introducción Si el problem del cálculo de l rect tngente llevó los mtemáticos del siglo XVII l desrrollo de ls técnics de l derivción, otro problem, el del cálculo
5. Integral y Aplicaciones
Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción
153 ESO. La mayoría de los hombres nacen como originales y terminan como copias. Oriental
L myorí de los omres ncen como originles y terminn como copis 15 ESO Orientl ÍNDICE: MILLA NÁUTICA PISTA DE ATLETISMO 1. FÓRMULAS FUNDAMENTALES PARA CÁLCULO DE LONGITUDES, SUPERFICIES Y VOLÚMENES. LONGITUDES
CAPÍTULO XII. INTEGRALES IMPROPIAS
CAPÍTULO XII. INTEGRALES IMPROPIAS SECCIONES A. Integrles impropis de primer especie. B. Integrles impropis de segund especie. C. Aplicciones l cálculo de áres y volúmenes. D. Ejercicios propuestos. 9
Se traza la paralela al lado a y distancia la altura h a.
Hojs de Problems Geometrí IV 56. Construir un triángulo conocido el ldo, l medin reltiv l ldo b y l ltur reltiv l ldo. Tomndo como ldos de un rectángulo los ldos, b del triángulo nterior clculr los ldos
INTEGRALES DOBLES SOBRE REGIONES GENERA- LES.
INTEGRALES DOBLES SOBRE REGIONES GENERA- LES. 6. En l integrl dole f(, ), colocr los límites de integrción en mos órdenes, pr los siguientes recintos: i) trpecio de vértices (, ), (, ), (, ) (, ). ii)
INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE
INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,
Llamaremos S a la superficie dada y D a su proyección sobre el plano XY (ver figura).
TEOREMA E GAU. 15. Hllr el flujo del cmpo i + j + z k trvés de l superficie z 1 +, z 1. ) irectmente. b) Aplicndo el teorem de Guss. olución Llmremos l superficie dd su proección sobre el plno XY (ver
APUNTES DE MATEMÁTICAS
APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición
Modelo 6 Opción A. Como me dicen que es y = 1 me están dando las condiciones
Modelo 6 Opción A Ejercicio º [ puntos] Deterin l función f : R R sbiendo que f ( que l rect tngente l gráfic de f en el punto de bscis es l rect. L rect tngente de f( en es " f( f (( " Coo e dicen que
El Teorema Fundamental del Cálculo
del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su
Ejercicios de optimización
Ejercicios de optimizción 1. Entre todos los triángulos isósceles de perímetro 0, cuál es el de áre máxim? Función mximizr: A yh Relcionr vribles: Estudimos l función: h h y x h x y x y 0 x 0y 0 y 0 0y
LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS
L Rect del Plno Mtemátic 4º Año Cód. 44-5 P r o f. M r í d e l L u j á n M r t í n e z P r o f. J u n C r l o s B u e P r o f. M i r t R o s i t o P r o f. V e r ó n i c F i l o t t i Dpto. de Mtemátic
Práctico 9 - Cálculo de integrales. 1. Teorema fundamental y regla de Barrow
Universidd de l Repúblic Cálculo Fcultd de Ingenierí - IMERL Segundo semestre 6 Práctico 9 - Cálculo de integrles. Teorem fundmentl y regl de Brrow. Utilizndo los resultdos del ejercicio 9 del práctico
Tema 5. Trigonometría y geometría del plano
1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene
XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO
XI. LA HIPÉRBOLA 11.1. LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO Definición L hipérol es el lugr geométrico descrito por un punto P que se mueve en el plno de tl modo que el vlor soluto de l diferenci de sus
FUNCIONES ELEMENTALES
FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() = m + n Sus gráfics son rects pr representrls bst con obtener dos puntos
Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales
Universidd Centrl de Venezuel Fcultd de Frmci Mtemátic - Físic Prof J R Morles Guí de Vectores (Resumen de l Teorí) 1 En físic distinguiremos dos tipos de cntiddes: vectoriles esclres Ls cntiddes vectoriles
PROBLEMAS DE OPTIMIZACIÓN
PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito
Tema 4. Integración de Funciones de Variable Compleja
Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores
Integral de Riemann. Introducción a la integración numérica.
Cálculo Mtemático (Práctics) M. I. Berenguer Mldondo mribel@ugr.es. 1 Integrl de Riemnn. Introducción l integrción numéric. En est práctic usremos l clculdor ClssPd pr trtr el problem de integrción. Se
INTEGRALES INDEFINIDAS INTEGRALES DEFINIDAS: CÁLCULO DE ÁREAS
INTEGRALES INDEFINIDAS INTEGRALES DEFINIDAS: CÁLCULO DE ÁREAS Mtemátics º de Bchillerto Ciencis y Tecnologí Profesor: Jorge Escribno Colegio Inmculd Niñ Grnd www.coleinmculdnin.org TEMA 7.- INTEGRALES
Introducción a la integración numérica
Tem 7 Introducción l integrción numéric Versión: 13 de ril de 009 7.1 Motivción L integrl definid de un función continu f : [, ] R R en el intervlo [, ], If) = fx) dx 7.1) es el áre de l región del plno
CI31A - Mecánica de Fluidos FUERZAS DE PRESIÓN
CI31A - Mecánic de Fluidos FUERZAS DE PRESIÓN Prof. Aldo Tmurrino Tvntzis HIDROSTÁTICA Si ls prt ículs de fluido no están en movimiento no hy fuerzs tngenciles ctundo sore ells. Consideremos un volumen
INTEGRAL DEFINIDA APLICACIÓN al CÁLCULO de ÁREAS
INTEGRAL DEFINIDA APLICACIÓN l CÁLCULO de ÁREAS Isc Brrow (60-677), teólogo y mtemático inglés, mestro de Newton y precursor de l regl que llev su nomre. MATEMÁTICAS II º Bchillerto Alfonso González IES
5.4. Longitud de un Arco de Curva (Rectificación)
Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencil e Integrl 7-2 SEMANA 1: APLICACIONES DE LA INTEGRAL 5.4. Longitud de un Arco de Curv (Rectificción)
CAPÍTULO 3 CÁLCULO INTEGRAL
CAPÍTULO 3 CÁLCULO INTEGRAL. INTERROGANTES CENTRALES DEL CAPÍTULO Concepto de áre Sums de Riemnn Integrl definid Propieddes de l integrl definid Integrl indefinid Propieddes de l integrl indefinid Teorem
TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)
.0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems
La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y
L Elipse Regresr Wikispces L elipse es el conjunto de todos los puntos P de un plno, tles que l sum de ls distncis de culquier punto dos puntos fijos del plno es constnte y su ecución se llm ecución ordinri.
Estudio de funciones exponenciales y logarítmicas
FUNCIÓN EXPONENCIAL Recomendciones l Docente: L ctividd proponer debe puntr que los lumnos puedn nlizr los siguientes spectos: 1. Cómo vrí el gráfico de l función eponencil y de qué depende su monotoní.
Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=±
CAPÍTULO X ECUACIÓN DE º GRADO Y FUNCIÓN CUADRÁTICA 9.. ECUACIÓN DE º GRADO Un ecución de segundo grdo con un incógnit es tod quell que puede ser puest en l form x + bx + c = 0 siendo, b y c coeficientes
FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:
FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De
TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL
TEMA INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL. Funciones.. Incrementos rzones de cmbio. 3. Derivds 4. Derivds de orden superior. 5. Primitivs 6. Integrl definid. Este mteril puede descrgrse desde
PROBLEMAS DE GEOMETRÍA ANALÍTICA PLANA. Capítulo SISTEMA DE COORDENADAS. Demostrar que los puntos A = ( 0,1) son los vértices de un cuadrado.
PROBLEMAS DE GEOMETRÍA ANALÍTICA PLANA Cpítulo SISTEMA DE COORDENADAS Demostrr que los puntos A ( 0,) B (,5) ; C ( 7,) D (, ) son los vértices de un cudrdo. Solución AB 9 6 5 5 BC 6 9 5 5 AD 9 6 5 5 CD
1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas)
Tem : L integrl definid. Cálculo de primitivs. Aplicciones.. Cálculo de primitivs. Definición. Dds f, F : D R R, decimos que F es un primitiv de l función f si: F ( f(, D. Está clro que si F es un primitiv
Curvas en el espacio.
Curvs en el espcio. Tod curv en el espcio R n se puede considerr como l imgen de un función vectoril r : [, b] R n, r(t) = (x 1 (t),..., x n (t)), que recibe el nombre de prmetrizción de l curv. Los puntos
MOMENTOS Y CENTROS DE MASA
MOMENTOS Y CENTROS DE MASA El objetivo de ests línes es explicr brevemente otr de ls numeross plicciones que posee el Cálculo Integrl. En este cso, considermos un plc pln y delgd con form culquier, y nos
TEMA 13: INTEGRAL DEFINIDA
TEMA : INTEGRAL DEFINIDA..- El problem de clculr el áre bjo un curv El problem de clculr el áre limitd por lguns curvs fue borddo, por los mtemáticos griegos, desde bstntes siglos trás. El método empledo
Aplicaciones de la Integral
Aplicciones de l Integrl Cálculo 6// Prof. José G. Rodríguez Ahumd de Se f, g dos funciones tl que pr todo vlor en [, ]. Entonces, el áre A entre sus gráfics en el intervlo [, ] es: ÁREA ENTRE DOS CURVAS
SISTEMAS DE ECUACIONES LINEALES.
TALLER VERTICAL DE MATEMÁTICA PÁGINA SISTEMAS DE ECUACIONES LINEALES. Ls ecuciones 0 de primer grdo en dos vribles pueden tener un o más ríces comunes pr encontrrls, conformmos lo que se denomin un SISTEMA
TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)
.. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de
2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR
1. INTRODUCCIÓN CÁLCULO VECTORIAL Mgnitud: Es todo quello que se puede medir eperimentlmente. Ls mgnitudes físics se clsificn en esclres ectoriles. Mgnitud esclr: Es quell que iene perfectmente definid
Cálculo integral. Beatriz Campos Sancho Cristina Chiralt Monleon. Departament de matemàtiques. Codi d assignatura 305. Cálculo integral - UJI
Cálculo integrl Betriz Cmpos Sncho Cristin Chirlt Monleon Deprtment de mtemàtiques Codi d ssigntur 35 Betriz Cmpos / Cristin Chirlt - ISBN: 978-84-694-64- Edit: Publiccions de l Universitt Jume I. Servei
O(0, 0) verifican que. Por tanto,
Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O
Tema 6: LA DERIVADA. Índice: 1. Derivada de una función.
LA DERIVADA Tem 6: LA DERIVADA Índice:. Derivd de un unción... Derivd de un unción en un punto... Interpretción geométric.3. Derivds lterles..4. Función derivd. Derivds sucesivs.. Derivbilidd y continuidd.
INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA
INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA I. LA RECTA. Ejercicios pr resolver. 1. Demuestr que los puntos A(-,8); B(-6,1) C(0,4) son los vértices de un tringulo
SOLUCIONARIO Poliedros
SOLUCIONARIO Poliedros SGUICES06MT-A16V1 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA Poliedros Ítem Alterntiv 1 D A Comprensión E B 5 D 6 C 7 D 8 B 9 D 10 C 11 E 1 D 1 A 1 C 15 E Comprensión 16 B Comprensión 17
pág CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si:
.- CONTINUIDAD TEMA 6 Continuidd, Cálculo Diferencil. FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continu en si: Lim f( ) f( ) Pr que un función se continu en un punto se h de cumplir: º f ( ) D º Lim
La Geometría de las Normas del Espacio de las Funciones Continuas
Divulgciones Mtemátics Vol. 11 No. 1(2003), pp. 71 82 L Geometrí de ls Norms del Espcio de ls Funciones Continus The Geometry of the Norms of the Spce of Continuous Functions Arístides Arellán (ristide@ciens.ul.ve)
Integración Numérica. 18 Regla del Trapecio
Integrción Numéric L integrl resuelve el problem de clculr el áre bjo l gráfic de un función positiv definid sobre un intervlo cerrdo. El cálculo elementl de funciones de un vrible rel proporcion un método
CÁLCULO ELEMENTAL APUNTES. Valor absoluto. Definición 1. El valor absoluto del número real a, que se designa por a, se define por. a si a < 0.
CÁLCULO ELEMENTAL APUNTES Vlor bsoluto Definición 1. El vlor bsoluto del número rel, que se design por, se define por { si 0, = si < 0. Definición 2. L distnci entre los números x 1 y x 2 de l rect rel
Cálculo de primitivas
Cálculo de primitivs Cmbio de vrible Cálculo de primitivs Utilizremos l notción f (x) pr denotr un primitiv de l función f. Además, busndo del lenguje, menudo hblremos de integrl de l función cundo deberímos
Determinantes y la Regla de Cramer
Determinntes y l Regl de Crmer Mtriz Invers Not: un mtriz cudrd que no tiene invers se llm mtriz singulr. Ejemplo: Hllr l invers de A. A 4 Si l plicr el método de Guss se obtiene ceros en los elementos
7.1. Definición de integral impropia y primeras propiedades
Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,
Tema 4: Integrales Impropias
Prof. Susn López 1 Universidd Autónom de Mdrid Tem 4: Integrles Impropis 1 Integrl Impropi En l definición de un integrl definid f (x) se exigió que el intervlo [, b] fuese finito. Por otro ldo el teorem
Tema 6: LA DERIVADA. Índice: 1. Derivada de una función.
LA DERIVADA Tem 6: LA DERIVADA Índice: 1. Derivd de un unción. 1.1. Derivd de un unción en un punto. 1.. Interpretción geométric 1.3. Derivds lterles. 1.4. Función derivd. Derivds sucesivs.. Derivbilidd
UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS
u r s o : Mtemátic Mteril N 13 GUÍ TÓRIO PRÁTI Nº 11 UNI: GOMTRÍ POLÍGONOS URILÁTROS POLÍGONOS FINIIÓN: Un polígono es un figur pln, cerrd, limitd por trzos llmdos ldos y que se intersectn sólo en sus
LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco
LA ELIPSE EJERCICIOS RESUELTOS Colegio Sor Jun Inés de l Cruz Sección Preprtori Mtemátics III Bloque VII Ing. Jonthn Quirog Tinoco 1. Pr encontrr l ecución de l elipse con centro en el origen, un foco
1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre
La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a.
INSTITUTO VALLADOLID PREPARATORIA Págin 11 7 LA HIPÉRBOLA 7.1 DEFINICIONES L hipérol es el lugr geométrico de todos los puntos cuy diferenci de distncis dos puntos fijos, llmdos focos, es constnte e igul.
3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL
3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus
Optimización de funciones
Tem 5 Optimizción de funciones 5.1. Extremos de funciones de vris vribles Definición 5.1.1. Sen f : D R n R, x 0 D y el problem de optimizción: mximizr / minimizr f(x 1, x,, x n ), (x 1, x,, x n ) D en
8 - Ecuación de Dirichlet.
Ecuciones Diferenciles de Orden Superior Prte V III Integrl de Dirichle t Ing. Rmón scl Prof esor Titulr de nálisi s de Señles Sistems Teorí de los Circuit os I I en l UTN, Fcultd Regionl vellned uenos
EJERCICIOS DE GEOMETRÍA
VECTORES EJERCICIOS DE GEOMETRÍA 1. Hllr un vector unitrio u r r r r de l mism dirección que el vector v = 8i 6j.Clculr otro vector ortogonl v r y de módulo 5.. Normliz los vectores: u r = ( 1, v r = (-4,3
Integrales dobles y triples
Integrles dobles y triples 1 Integrles dobles Integrles triples 3 Cmbios de vrible R: retángulo R = [, b [, d f : R R: mpo eslr e dos vribles. Si f es ontinu en R f x : [, d R y f y : [, b R son funiones
4.1. El problema del cálculo de áreas
Cpítulo 4 Integrción 4.. El problem del cálculo de áres Unidd de medid: áre del cudrdo. Áre de un rectángulo, de un triángulo, de un prlelogrmo, de un rombo, de un trpecio, de un polígono regulr. Exhución
4.1 ÁREAS DE REGIONES PLANAS 4.2 VOLÚMENES DE SÓLIDOS DE REVOLUCIÓN 4.3 LONGITUD DE UNA CURVA PLANA 4.4 VALOR MEDIO DE UNA FUNCIÓN
Cp. pliccione e l Integrl. ÁRES DE REGIONES PLNS. VOLÚMENES DE SÓLIDOS DE REVOLUCIÓN. LONGITUD DE UN CURV PLN. VLOR MEDIO DE UN FUNCIÓN Objetivo: Se pretene que el etuinte clcule áre e regione pln generle,
E-mail: grupociencia@hotmail.com 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619
1. En el prlelogrmo mostrdo en l figur M N son puntos medios. Hlle = ++ en función de 3 + D + C +3. En l figur muestr los vectores de inscritos en un cudro de 6m de ldo. Determine el vector unitrio del
fig. 1 fig. 2 fig. 3 fig. 4 fig. 5 EJEMPLOS 1. Si el área de un cuadrado es 144 cm 2, entonces su perímetro mide
Profesor ln Rvnl S. UNI: GOMTRÍ PRÍMTROS Y ÁRS Perímetro de un polígono, es l sum de ls longitudes de todos sus ldos. l perímetro se denotrá por p. Áre es l medid que le corresponde tod l región poligonl.
LÍMITES DE FUNCIONES
LÍMITES DE FUNCIONES Se dice que un función y f() tiene límite "L" cundo l tiende "" y lo representmos por: f() L cundo pr tod sucesión de números reles que se proime "" tnto como quermos, los vlores correspondientes
Vectores en el espacio 2º Bachillerato. Ana Mª Zapatero
Vectores en el espcio º Bchillerto An Mª Zptero El conjunto R Es un conjunto de terns ordends de números reles R { ( x, y, z ) / x R, y R, z R } Primer componente Segund componente Tercer componente Iguldd
CURSO DE MATEMÁTICA 1. Facultad de Ciencias
CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl
UNIDAD: GEOMETRÍA RECTAS Y PLANOS EN EL ESPACIO - ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS
u r s o : Mtemátic Mteril N 38 GUÍ TEÓRIO PRÁTI Nº 29 UNIDD: GEOMETRÍ RETS Y PLNOS EN EL ESPIO - ÁRES Y VOLÚMENES DE UERPOS GEOMÉTRIOS Determinción del plno: Un plno qued determindo por: Dos rects que
2.1 Ecuaciones de la recta en 2.2 Posiciones relativas.
. Ecuciones de l rect en. Posiciones reltivs. R Objetivos. Se persigue que el estudinte: Encuentre ecuciones de rects Determine si dos rects son coincidentes, prlels o si son intersecntes Encuentre punto
Integral Definida. Aplicaciones
Itegrl Defiid. Apliccioes. Itegrl defiid. Defiició Se f(x u fució cotiu e u itervlo cerrdo [, b] y cosideremos el itervlo dividido e prtes igules x < x < x s < < x b. Pr cd subitervlo [x i, x i ], l fució
2. Cálculo de primitivas
5. Cálculo de primitivs Definición. Se dice que un función F () es un primitiv de otr función f() sobre un intervlo (, b) si pr todo de (, b) se tiene que F () f(). Por ejemplo, l función F () es un primitiv