EXPRESIONES ALGEBRAICAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EXPRESIONES ALGEBRAICAS"

Transcripción

1 EXPRESIONES ALGEBRAICAS OPERACIONES CON POLINOMIOS 1) Dados los siguientes polinomios: P()=2³ 3 + 2, Q()= 3³ + ² + 2 3, opera: P() +Q() 3 P() + 2 Q() P() Q() P() Q() 2) Saca factor común: 3² ⁴ + 6² 18 6²y³ 9y² + 9y 5³y³ + 10²y³ 3²y² + ²y 3) Calcula: ( 1) ( + 3)² (2 + 3) (3 2) ( + 1) ( ) ( 2 1 3)( ) (2 1)⁵ 4) Epresa estos polinomios como un producto notable: ² ² ² 4 9² ² 1 9 4² g) ² 5 h) ² ) Divide los siguientes polinomios y eprésalos como D = d c + r: (4 ⁵ 2³ + 6² 1) : (2² +1) (3 ⁴ + ³ 2 + 3) : ( + 2) ( ⁴ 4³ + 6² 4 + 1) : (² 2 + 1) ( ⁵ 2 ⁴ + ³ 3) : (³ + 2) 6) Calcula el valor de k para que el polinomio P()=³ + ² 2 + k sea divisible por 2. 7) Verifica que el polinomio P()=2³ 8² es divisible por 3 sin hacer la división. 8) La división de ³ + a + 2 entre 2 da de resto 6. Cuánto vale a? 1

2 9) Factoriza los siguientes polinomios: ⁴ 5³ ² ⁴ + 6³ + 6² + 2 ⁵ + ⁴ 5³ + 3 ⁵ ⁵ 2³ + 2 ⁶ ⁵ 5 ⁴ + ³ + 3² FRACCIONES ALGEBRAICAS 10) Factoriza y simplifica las siguientes fracciones algebraicas: 2 + y+ y ² 4 ² ³ g) h) y 5 4y 4 ( 5) y+6 4y ) Opera y simplifica: ( )2 EXPRESIONES ALGEBRAICAS 12) El coste de producir chips de memoria de ordenador (0 5) viene dado por la epresión C ()= en unidades monetarias. El precio por unidad al que se pueden vender las unidades producidas es P ()= unidades monetarias. Indica los ingresos que se obtienen al producir y vender dos unidades. Escribe el polinomio que determina el beneficio según las unidades producidas y vendidas. Indica el beneficio si se han producido y vendido tres unidades. Indica el beneficio si se han producido y vendido cinco unidades. Interpreta el resultado. 2

3 13) Los costes, en euros, de fabricar pares de zapatillas deportivas vienen dados por la epresión C ()= : Calcula el coste total que supone fabricar cincuenta pares de zapatillas. Indica cuáles son los costes fijos. Indica cuáles son los costes variables. Indica cuáles son los costes totales para cada par de zapatillas cuando se fabrican pares. Indica cuáles son los costes variables para cada par de zapatillas cuando se fabrican pares. Indica cuáles son los costes totales por cada par de zapatillas cuando se fabrican setenta y cinco pares. 14) La pista de un polideportivo tiene forma de rectángulo con dos semicírculos de diámetro igual a los lados cortos. Si su perímetro es de 200m, halla la superficie que encierra en función del radio de los semicírculos. 15) Se quiere construir el marco de una ventana rectangular de 4 m² de superficie. El metro lineal de tramo horizontal cuesta 16, y el de tramo vertical 25. Epresa el coste del marco en función de la longitud del tramo horizontal. ECUACIONES Y SISTEMAS DE ECUACIONES 16) Resuelve las siguientes ecuaciones: 3² 27 = 0 2² 4 = 0 16² 25 = 0 5² + 7 = 0 ² = 0 ² = 0 g) ² + 6 = 9 h) 2² = i) ² = 0 j) 6² 6 = 5 17) Resuelve las siguientes ecuaciones: 3 ( 3)² 2 = 5 (3 ) ( 1)² + 2 ( 2)² = =1 3 ( 3) =2 i) ( 1) 15 + ( 6)2 5 ( 2) ( 3) = 0 ( 3)² = 0 + ( +2)2 = (3 2) (3 4) 3 15 g) (2 3) (2 + 3) = 0 h) (5 + 7) = 0 3

4 18) Escribe una ecuación de segundo grado tenga por soluciones: = 1 ; = 3 = -2 doble = 0 ; = 2 = 3 ; = 3 Sin solución 19) Resuelve las siguientes ecuaciones: ⁴ 5² + 4 = 0 4 ⁴ + 7² 2 = 0 ⁴ 4² + 3 = 0 ⁶ 9³ + 8 = 0 ⁴ + 2² + 1 = 0 2 ⁴ 2² + 4 = 0 20) Resuelve las siguientes ecuaciones: 2 3 = =2 3 (2 1) 1 20= = = 2+ 4= 12 21) Resuelve las siguientes ecuaciones: ⁵ ⁴ 5³ ² 6 = 0 6³ 7² = 0 ⁵ = 0 ⁵ ⁴ ³ + ² = 0 ( 1)² ( + 2) (2 + 3) = 0 ² ( + 1)³ (3 1) (2 + 1) = 0 22) Resuelve las siguientes ecuaciones: = = = = = = 5 23) Resuelve los siguientes sistemas de ecuaciones lineales por los tres métodos: 2 + y 3 =4 3 y 1 2 =0 3 + y=1 +2y + y+2 = y 2 = 1 y 2 = y+1 =2y y 3 =

5 24) Resuelve los siguientes sistemas de ecuaciones no lineales: y = 5 6 y=6 2 y=4 2 + y = y 2 =1 2 y+2= y2 9 =1 +2y=4 2 + y=44 y 2 + y=77 + y=11 y=77 25) Resuelve los siguientes sistemas por el método de Gauss y estudia su compatibilidad: +3y 2z=6 + 2y 2z=4 +3y 2z= y 2z=8 2+ 5y 2z=10 2 3y +5z=6 4 +2y 6z=6 4 +9y 6z=18 5 3y +8z=6 +2y 3z=3 3 2y +z=7 5+ 2y 5z=1 3+2y z=0 2+ y+3z=0 3y+2z=0 2+ y 2z=8 2 4y+3z= 2 4 y+6z= 4 26) En un test de 30 preguntas se obtienen 0,75 puntos por cada respuesta correcta y se restan 0,25 puntos por cada error. Si mi nota ha sido 10,5 cuántos aciertos y cuántos errores he tenido? 27) Una empresa fabrica dos tipos de bicicletas, A y B. Para fabricar una del modelo A, se necesitan 1 kg de acero y 3 kg de aluminio, y para una del modelo B, 2 kg de cada uno de esos materiales. Si la empresa dispone de 80 kg de acero y 120 kg de aluminio, cuántas bicicletas de cada tipo puede fabricar? 28) Cuántos litros de nata con un 35% de grasa se han de mezclar con leche con un 4% de grasa para obtener 20 litros de leche con un 25% de grasa? 29) La suma de tres números es 12. Cuando restamos el tercer número a la suma de los otros dos, el resultado es 2, y si a la suma del tercero más el doble del primero se le resta el segundo, el resultado es 7 Cuáles son los tres números? 30) Dos capitales iguales se colocan al 3% y al 4% respectivamente durante un año. El segundo produce doce euros y medio más de intereses que el primero. Cuál era el capital inicial? 31) Una fábrica de perfumes dispone de seiscientos litros de un producto A y cuatrocientos de otro producto B. Mezclando ambos productos en diferentes proporciones se obtienen esencias diferentes. Se quieren preparar dos clases de perfume: la primera lleva tres partes de A y una de B y su precio será de cincuenta euros el litro, y la segunda lleva la misma cantidad de A que de B y se venderá a sesenta euros el litro. Cuántos litros de cada clase de perfume se podrán preparar? Qué ingresos totales se obtendrán? 5

6 32) Se compra un libro y una pulsera. La suma de los precios es de treinta y cinco euros pero hay una rebaja del seis por ciento en libros y del doce por ciento en la pulsera, así que sólo se deben pagar treinta y cuatro euros con cuarenta céntimos Cuál era el precio indicado del libro y de la pulsera? Cuánto se ha pagado al final por cada uno de ellos? 33) Julia, Clara y Miguel reparten hojas de propaganda. Clara reparte siempre el 20% del total, Miguel reparte 100 hojas más que Julia. Entre Clara y Julia reparten 850 hojas. Cuántas hojas reparte cada uno? 34) El área de un rectángulo es de treinta y cinco unidades cuadradas. Si se aumenta un lado en dos unidades y se disminuye otro en tres unidades, el área disminuye en diecisiete unidades cuadradas. Halla las dimensiones del rectángulo inicial 35) A primera hora de la mañana, en un cajero automático se quieren tener ochocientos billetes de diez, veinte y cincuenta euros, con un valor total de dieciséis mil euros. Si por cada tres billetes de cincuenta hacen falta cuatro de veinte cuántos billetes de cada tipo debe haber? 6

7 INECUACIONES Y SISTEMAS DE INECUACIONES 36) Resuelve las siguientes inecuaciones: < 3(2 5) 4( 2) > ) Halla y representa gráficamente las soluciones de las siguientes inecuaciones: < >0 (3 5)(5+2) 0 ( 2) g) < h) ( 2) 2 +( +4)( 2) ) Representa el semiplano que epresan las siguientes inecuaciones: y 2 3 y 0 y> 3 <3 + y<4 g) 2+3y<3+ y y 1 h) 3(+2y) 2> 2y+1 39) Resuelve gráficamente los siguientes sistemas indicando los puntos en que se cortan las rectas: y> 1 + y 0 y< + 2 y 0 1 y 2 1 y> y 2 + y 2 y 3 g) 1 + y y 12 2y< 1 + y 2 y<1 y 0 h) + y y 4 2y 2 y 2 40) Halla el área de la región encerrada en el ejercicio 39-g. 7

8 41) 8

3 Polinomios y fracciones algebráicas

3 Polinomios y fracciones algebráicas Solucionario 3 Polinomios y fracciones algebráicas ACTIVIDADES INICIALES 3.I. Para cada uno de los siguientes monomios, indica las variables, el grado y el coeficiente, y calcula el valor numérico de los

Más detalles

8. ECUACIONES. SISTEMAS DE ECUACIONES

8. ECUACIONES. SISTEMAS DE ECUACIONES 8. ECUACIONES. SISTEMAS DE ECUACIONES º ESO Def.: Una ecuación es una igualdad entre dos epresiones algebraicas donde aparecen números conocidos (datos) números desconocidos llamados incógnitas. Def.:

Más detalles

REPASO DE ÁLGEBRA PRIMERA PARTE: RADICALES, LOGARITMOS Y POLINOMIOS

REPASO DE ÁLGEBRA PRIMERA PARTE: RADICALES, LOGARITMOS Y POLINOMIOS Ejercicio nº.- Simplifica: REPASO DE ÁLGEBRA PRIMERA PARTE: RADICALES, LOGARITMOS Y POLINOMIOS a) b) a a Ejercicio nº.- Epresa en forma de intervalo las soluciones de la desigualdad: El intervalo [, 6].

Más detalles

UNIDADES 1 y 2: FRACCIONES Y DECIMALES. POTENCIAS Y RAÍCES. NÚMEROS APROXIMADOS. 1º.- Ordena de menor a mayor las siguientes fracciones:

UNIDADES 1 y 2: FRACCIONES Y DECIMALES. POTENCIAS Y RAÍCES. NÚMEROS APROXIMADOS. 1º.- Ordena de menor a mayor las siguientes fracciones: UNIDADES y : FRACCIONES Y DECIMALES. POTENCIAS Y RAÍCES. NÚMEROS APROXIMADOS. º.- Ordena de menor a mayor las siguientes fracciones: ; 6 5 7 4 ; 5 4 ; ; ; 8 6 9 º.- Efectúa las siguientes operaciones y

Más detalles

SISTEMAS DE ECUACIONES Y DE INECUACIONES

SISTEMAS DE ECUACIONES Y DE INECUACIONES Sistemas de Ecuaciones de Inecuaciones Departamento de Matemáticas SISTEMAS DE ECUACIONES Y DE INECUACIONES SISTEMAS LINEALES. - Resuelve por sustitución e igualación los siguientes sistemas: a) c) b)

Más detalles

Sistema de ecuaciones e inecuaciones

Sistema de ecuaciones e inecuaciones 5 Sistema de ecuaciones e inecuaciones 1. Sistemas lineales. Resolución gráfica Piensa y calcula Indica, en cada caso, cómo son las rectas y en qué puntos se cortan: c) r r s P r s s Las rectas r y s son

Más detalles

Actividades de la 1ª Evaluación para alumnos con Matematicas Pendientes de 2º ESO

Actividades de la 1ª Evaluación para alumnos con Matematicas Pendientes de 2º ESO Actividades de la 1ª Evaluación para alumnos con Matematicas Pendientes de º ESO FECHA DEL EXAMEN: 17 DE NOVIEMBRE DE 01 A LAS 10:1 (En el salón de actos) Las actividades realizadas deben entregarse obligatoriamente

Más detalles

El producto de dos números es 4, y la suma de sus cuadrados 17. Cuáles son esos números?

El producto de dos números es 4, y la suma de sus cuadrados 17. Cuáles son esos números? TEMA 4: INECUACIONES Y SISTEMAS SISTEMAS DE ECUACIONES NO LINEALES Un sistema de ecuaciones es no lineal, cuando al menos una de sus ecuaciones no es de primer grado. La resolución de estos sistemas se

Más detalles

Tema 4: Ecuaciones y sistemas de ecuaciones.

Tema 4: Ecuaciones y sistemas de ecuaciones. Tema : Ecuaciones y sistemas de ecuaciones.. Ecuaciones de º grado Ejemplo Resuelve las siguientes ecuaciones de º grado:. 0 x x a Ecuación de º grado completa con La fórmula es x b b ac a 9 9 0 b c 0

Más detalles

EJERCICIOS DE EXPRESIONES ALGEBRAICAS

EJERCICIOS DE EXPRESIONES ALGEBRAICAS EJERCICIOS DE EXPRESIONES ALGEBRAICAS Ejercicio nº.- Epresa en lenguaje algebraico cada uno de los siguientes enunciados: a El 0% de un número. b El área de un rectángulo de base cm y altura desconocida.

Más detalles

Ejercicios de números reales

Ejercicios de números reales Ejercicios de números reales Ejercicio nº.- Clasifica los siguientes números como naturales, enteros, racionales o reales:,7 7 4 7 Ejercicio nº.- Considera los siguientes números: 9,000000..., 8,... Clasifícalos

Más detalles

Matemáticas Académicas de 4º ESO A. Repaso 2017

Matemáticas Académicas de 4º ESO A. Repaso 2017 Página1 1. Calcula el valor del segmento desconocido en cada una de las figuras siguientes. Cuál es la razón de semejanza en cada caso? 2. Observa las siguientes parejas de triángulos. Son semejantes?

Más detalles

a) 2x-2(3x - 1) + 4(2x 5) 10 = 8x

a) 2x-2(3x - 1) + 4(2x 5) 10 = 8x ECUACIONES DE PRIMER Y SEGUNDO GRADO TEMA 4: ECUACIONES E INECUACIONES 1- Resuelve las siguientes ecuaciones de primer grado: a) 2x-2(3x - 1) + 4(2x 5) 10 = 8x b) c) d) 2- Resuelve las siguientes ecuaciones

Más detalles

Sistemas de ecuaciones

Sistemas de ecuaciones Sistemas de ecuaciones EJERCICIOS 00 Halla tres soluciones de las siguientes ecuaciones lineales, represéntalas en el plano. a) b) + c) d) 7 a) Soluciones: 0,, 0, b) Soluciones: 0,,, c) Soluciones:, 0

Más detalles

IES VIGAN DEPARTAMENTO DE MATEMÁTICAS 1º ESO/3º EVALUACIÓN ALUMNO/A: CURSO: 1º ESO NOTA:

IES VIGAN DEPARTAMENTO DE MATEMÁTICAS 1º ESO/3º EVALUACIÓN ALUMNO/A: CURSO: 1º ESO NOTA: 1. Completa la siguiente tabla: Números Millares Centenas Decenas Unidades 5.720 13.783 32 7 8 4 9 4 0 1 2. Resuelve las operaciones siguientes: 3. Halla los cinco primeros múltiplos de los números siguientes:

Más detalles

1º BACHILLERATO MATEMÁTICAS CCSS

1º BACHILLERATO MATEMÁTICAS CCSS PÁGINA 87, EJERCICIO 48 1º BACHILLERATO MATEMÁTICAS CCSS PROBLEMAS TEMA 4 - ECUACIONES Y SISTEMAS La suma de los cuadrados de dos números naturales impares consecutivos es 170. Calcula el valor del siguiente

Más detalles

1f 2v 3v 4f 5v 6f 7v 8v 9v 10v 11v 12v 13f 14f 15v 16v 17v 18f 19v 20f 21v 22f 23v 5 - ( ) = -2 3(2 + 3(-7) + 25) = -27

1f 2v 3v 4f 5v 6f 7v 8v 9v 10v 11v 12v 13f 14f 15v 16v 17v 18f 19v 20f 21v 22f 23v 5 - ( ) = -2 3(2 + 3(-7) + 25) = -27 I CUESTIONES TEÓRICAS: 1f v 3v 4f 5v 6f 7v 8v 9v 10v 11v 1v 13f 14f 15v 16v 17v 18f 19v 0f 1v f 3v 4v 5f 6v 7f 8f 9v 30v 31f 3f 33v 34v 35f II OPERACIONES CON NÚMEROS RACIONALES. 1.- Calcula, paso a paso,

Más detalles

POLINOMIOS Y FRACCIONES ALGEBRAICAS EJERCICIOS

POLINOMIOS Y FRACCIONES ALGEBRAICAS EJERCICIOS ESO POLINOMIOS Y FRACCIONES ALGEBRAICAS EJERCICIOS EXPRESIONES ALGEBRAICAS - Traduce los siguientes enunciados a epresiones algebraicas El doble de un número menos su tercera parte. El doble del resultado

Más detalles

Sistemas de ecuaciones

Sistemas de ecuaciones C/ Francisco García Pavón, 6 Tomelloso 700 (C. Real) Teléfono Fa: 96 5 9 9 Sistemas de ecuaciones 00 Halla tres soluciones de las siguientes ecuaciones lineales, represéntalas en el plano. a) b) + c) d)

Más detalles

I N E C U A C I O N E S

I N E C U A C I O N E S I N E C U A C I O N E S DE PRIMER GRADO CON UNA INCÓGNITA Forma general: a + b> 0 a + b 0 a + b< 0 a + b 0 Para resolverlas se siguen los mismos pasos que en las ecuaciones de primer grado con una incógnita:.

Más detalles

TAREA DE VERANO MATEMÁTICAS REFUERZO 1º ESO

TAREA DE VERANO MATEMÁTICAS REFUERZO 1º ESO TAREA DE VERANO MATEMÁTICAS REFUERZO º ESO Realiza las siguientes operaciones con paréntesis a) 9 b) Calcula a) 6 8 b) 9 Realiza las siguientes operaciones a) + 60-6 ( + ) + ( - ) = b) ( - + - 0 ) - (

Más detalles

7Soluciones a los ejercicios y problemas

7Soluciones a los ejercicios y problemas PÁGINA Pág. P RACTICA Sistemas lineales Comprueba si el par (3, ) es solución de alguno de los siguientes sistemas: x + y 5 x y 5 a) b) 3x y 4x + y El par (3, ) es solución de un sistema si al sustituir

Más detalles

PÁGINA 38. Son ecuaciones a) y d). Son identidades b) y c).

PÁGINA 38. Son ecuaciones a) y d). Son identidades b) y c). PÁGINA 38 Entrénate 1 Indica, de estas epresiones algebraicas, cuáles son identidades y cuáles ecuaciones: a) + 3 = 8 b) ( + 3) = + 6 c) + 5 (1 ) = + 4 d) + 4 = + 4 Son ecuaciones a) y d). Son identidades

Más detalles

MATEMÁTICAS 6º. Actividades para Vacaciones

MATEMÁTICAS 6º. Actividades para Vacaciones MATEMÁTICAS 6º Actividades para 1.- Descompón estos números. Fíjate en el ejemplo: 4.168 = 4 UM + 1 C + 6 D + 8 U 51.245 = 754.390 = 3.790.050 = 2.- Rodea con rojo los múltiplos de 2, de azul los múltiplos

Más detalles

4 Ecuaciones y sistemas

4 Ecuaciones y sistemas Solucionario Ecuaciones y sistemas ACTIVIDADES INICIALES.I. Comprueba si las siguientes ecuaciones tienen como soluciones,,. a) 0 b) 5 () 8 a) 0 () () es solución. 0 8 9 6 0 6 0 0 9 5 5 6 5 es solución.

Más detalles

ACTIVIDADES RECUPERACIÓN VERANO MATEMÁTICAS 2º E.S.O

ACTIVIDADES RECUPERACIÓN VERANO MATEMÁTICAS 2º E.S.O Matemáticas º E.S.O. ACTIVIDADES RECUPERACIÓN VERANO MATEMÁTICAS º E.S.O NOMBRE: NÚMERO: GRUPO: Matemáticas º E.S.O. TEMA Ejercicio nº.- Resuelve las siguientes operaciones con números enteros: a 6 8 9

Más detalles

π. C. Calcula la fracción generatriz de los siguientes decimales periódicos:

π. C. Calcula la fracción generatriz de los siguientes decimales periódicos: NÚMEROS RACIONALES e IRRACIONALES A. Clasifica los siguientes números situándolos en el siguiente diagrama en el conjunto correspondiente:!!. π Q R Z B. Calcula y simplifica: C. Calcula la fracción generatriz

Más detalles

Tema: Ecuaciones, inecuaciones y sistemas

Tema: Ecuaciones, inecuaciones y sistemas y sistemas. MateB ºESO Tema: Ecuaciones, inecuaciones y sistemas 1. Las siguientes ecuaciones tienen alguna solución entera. Intenta encontrarlas tanteando. Qué tipo de ecuación es cada una?. a) x + 6

Más detalles

EJERCICIOS Y PROBLEMAS PARA EL ALUMNADO PENDIENTE DE MATEMÁTICAS DE 3º ESO. DPTO DE MATEMÁTICAS. IES CRISTÓBAL COLÓN

EJERCICIOS Y PROBLEMAS PARA EL ALUMNADO PENDIENTE DE MATEMÁTICAS DE 3º ESO. DPTO DE MATEMÁTICAS. IES CRISTÓBAL COLÓN 1. Resuelve las siguientes ecuaciones: a) ( + ) = 16,64 +1 4 b) 6 3 1 = + 4. Resuelve gráficamente y por otro de los métodos el siguiente sistema: 5y = 1 3 + y = 7 3. Observa como se forman casitas adosadas

Más detalles

TRABAJO DE MATEMÁTICAS B

TRABAJO DE MATEMÁTICAS B TRABAJO DE MATEMÁTICAS B º ESO NOTA: EL TRABAJO SE ENTREGARÁ EL DÍA DEL EXAMEN DE SEPTIEMBRE. PUEDE SUBIR HASTA UN PUNTO LA NOTA, SIEMPRE Y CUANDO EN EL EXAMEN TENGAS UNA NOTA ENTRE Y. RECUERDA QUE TAMBIÉN

Más detalles

PÁGINA Resuelve las siguientes ecuaciones: a) 10x 2 3x 1 = 0 b) x 2 20x = 0 c) 3x 2 + 5x + 11 = 0 d) 2x 2 8x + 8 = 0

PÁGINA Resuelve las siguientes ecuaciones: a) 10x 2 3x 1 = 0 b) x 2 20x = 0 c) 3x 2 + 5x + 11 = 0 d) 2x 2 8x + 8 = 0 Soluciones a las actividades de cada epígrafe PÁGINA Pág. 1 1 Resuelve las siguientes ecuaciones: a) 10x x 1 0 b) x 0x + 100 0 c) x + 5x + 11 0 d) x 8x + 8 0 a) x ± 9 + 0 0 ± 9 0 ± 7 0 Las soluciones son:

Más detalles

Revisora: María Molero

Revisora: María Molero 57 Capítulo 5: INECUACIONES. Matemáticas 4ºB ESO 1. INTERVALOS 1.1. Tipos de intervalos Intervalo abierto: I = (a, b) = {x a < x < b}. Intervalo cerrado: I = [a, b] = {x a x b}. Intervalo semiabierto por

Más detalles

5) Aproxima a las décimas las siguientes raíces utilizando la aproximación por defecto, exceso y redondeo:

5) Aproxima a las décimas las siguientes raíces utilizando la aproximación por defecto, exceso y redondeo: Números ) Calcula: a) [8 (6 ) ] : ( 7) b) (8 ) ( 7) ( 6) c) 8 0 : ( ) 6 : d) ( ) 8 (6 ) ( 7) ) Epresa en forma de única potencia: a) ( ) ( ) b) () ( ) c) ( ) : ( ) d) ( ) 6 : ( ) ) Simplifica las epresiones:

Más detalles

P RACTICA. 1 Opera y simplifica las siguientes expresiones: a) 3x(2x 1) (x 3)(x + 3) + (x 2) 2 b)(2x 1) 2 +(x 1)(3 x) 3(x +5) 2

P RACTICA. 1 Opera y simplifica las siguientes expresiones: a) 3x(2x 1) (x 3)(x + 3) + (x 2) 2 b)(2x 1) 2 +(x 1)(3 x) 3(x +5) 2 Pág. P RACTICA Operaciones con polinomios Opera y simplifica las siguientes epresiones: 3( ) ( 3)( + 3) + ( ) ( ) +( )(3 ) 3( +5) 4 ( 3) (3 )(3 + ) (4 3 + 35) 3 3 3 Efectúa las siguientes operaciones y

Más detalles

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS Ejercicio 1 De la función se sabe que tiene un máximo en, y que su gráfica corta al eje OX en el punto de abscisa y tiene un punto de inflexión en el punto

Más detalles

MATEMÁTICAS 2º ESO. Ejercicios de recuperación para Septiembre ESTOS EJERCICIOS DEBERÁN SER ENTREGADOS AL COMIENZO DEL EXÁMEN DE SEPTIEMBRE.

MATEMÁTICAS 2º ESO. Ejercicios de recuperación para Septiembre ESTOS EJERCICIOS DEBERÁN SER ENTREGADOS AL COMIENZO DEL EXÁMEN DE SEPTIEMBRE. MATEMÁTICAS º ESO Ejercicios de recuperación para Septiembre ESTOS EJERCICIOS DEBERÁN SER ENTREGADOS AL COMIENZO DEL EXÁMEN DE SEPTIEMBRE. SU PRESENTACIÓN SE VALORARÁ CON UN MAXIMO DE UN 10% DE LA NOTA

Más detalles

POLINOMIOS ECUACIONES - INECUACIONES

POLINOMIOS ECUACIONES - INECUACIONES º ESO ACADÉMICAS POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. POLINOMIOS ECUACIONES - INECUACIONES.- Calcula el valor de k para que el polinomio P() = 6 + k sea divisible por el binomio ( + ). k =.- Calcula

Más detalles

19 f) = (Sol: x = -3 )

19 f) = (Sol: x = -3 ) EJERCICIOS REPASO ÁLGEBRA con soluciones 1.- Resuelve las siguientes ecuaciones: x + a = 1 (Sol: x = 1 5x + 1 x + 5 x b = (Sol: x = 5 14 5 x x + 1 x + c + = (Sol: x = 0 6 x x + 1 x d = (Sol: x = -1 4 6

Más detalles

TEMA 4 EL LENGUAJE ALGEBRAICO

TEMA 4 EL LENGUAJE ALGEBRAICO 4.1 Epresiones algebraicas TEMA 4 EL LENGUAJE ALGEBRAICO PÁGINA 78 ACTIVIDADES 1. Describe mediante una epresión algebraica los enunciados siguientes: d Gasté en un traje 3 de lo que tenía y 0 euros en

Más detalles

SOLUCIONES: PROBLEMAS CON ECUACIONES E INECUACIONES

SOLUCIONES: PROBLEMAS CON ECUACIONES E INECUACIONES DPTO DE MATEMÁTICAS T: ALGEBRA - 1 SOLUCIONES: PROBLEMAS CON ECUACIONES E INECUACIONES 1. Los lados de un rectángulo se diferencian en m. Si aumentáramos m cada lado, el área se incrementaría en 40 m.

Más detalles

GUÍA DE TRABAJO N 2 FUNCIONES POLINÓMICAS Y RACIONALES. 2) Determine si los números propuestos son ceros de la función polinómica: 4 3 2

GUÍA DE TRABAJO N 2 FUNCIONES POLINÓMICAS Y RACIONALES. 2) Determine si los números propuestos son ceros de la función polinómica: 4 3 2 GUÍA DE TRABAJO N FUNCIONES POLINÓMICAS Y RACIONALES. 1) Dados los polinomios Halle, si es posible: P( ) + Q( ) Q( ) R( ) R( ) Q( ) d) P( ) Q( ) e) P( ) R( ) f) Q( ) : P( ) g) R( ) : Q( ) P( ) + 1, Q (

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Ejercicio -Sea f: R R la función definida por f ( ) = + a + b + a) [ 5 puntos] Determina a, b R sabiendo que la gráfica de f pasa por el punto (, ) y tiene un punto de infleión

Más detalles

RECUPERACIÓN DE MATEMÁTICAS PENDIENTES DE 2º ESO

RECUPERACIÓN DE MATEMÁTICAS PENDIENTES DE 2º ESO RECUPERACIÓN DE MATEMÁTICAS PENDIENTES DE º ESO BLOQUE I. NÚMEROS. * Divisibilidad y números enteros Ejercicio nº 1.- Calcula todos los divisores de 5. Ejercicio nº.- Calcula: a mín.c.m. 0, 60, 90 b máx.c.d.

Más detalles

Ecuaciones y sistemas

Ecuaciones y sistemas Ecuaciones y sistemas E S Q U E M A D E L A U N I D A D.. Concepto de polinomio página. Polinomios página.. peraciones con polinomios página.. Teorema del resto página 6.. Descomposición factorial página

Más detalles

Ejercicio nº 2.-Efectúa estas operaciones y simplifica el resultado:

Ejercicio nº 2.-Efectúa estas operaciones y simplifica el resultado: ALGEBRAIC LANGUAGE. POLYNOMIAL (ACTIVIDADES AMPLIACION 2 ESO) Ejercicio nº 1.-Efectúa las siguientes operaciones: Ejercicio nº 2.-Efectúa estas operaciones y simplifica el resultado: (3x 2 1) (2x 2 + 5x)

Más detalles

DEPARTAMENTO DE MATEMÁTICAS PLAN DE TRABAJO PARA SEPTIEMBRE

DEPARTAMENTO DE MATEMÁTICAS PLAN DE TRABAJO PARA SEPTIEMBRE DEPARTAMENTO DE MATEMÁTICAS PLAN DE TRABAJO PARA SEPTIEMBRE A los padres del alumno/a de º de la ESO Puesto que su hijo no ha superado los objetivos de º de la ESO en el área de Matemáticas, es necesario

Más detalles

1 Ecuaciones con dos incógnitas

1 Ecuaciones con dos incógnitas a las Enseñanzas Aplicadas Ecuaciones con dos incógnitas Página 99. Representa las rectas correspondientes a estas ecuaciones: a) y = b) + y = Cuál es la solución común a ambas ecuaciones? a) y = y = y

Más detalles

MATEMÁTICAS 3º E.S.O.

MATEMÁTICAS 3º E.S.O. CUADERNO DE VERANO. MATEMÁTICAS º E.S.O. LA FONTAINE EDUCATIONIS LA FONTAINE (Burjassot) Colegio de Educación Infantil, Primaria y Secundaria Obligatoria 1 1. Calcula: 7 + 1 b) 11 + (5-) c) (11+) (5-1)

Más detalles

Materia: MATEMÁTICAS. Curso: 3º ESO Nº:

Materia: MATEMÁTICAS. Curso: 3º ESO Nº: REPASO GLOBAL COLEGIO HISPANO INGLES Rambla General Franco, 9-800 Santa Cruz de Tenerife + 9 76 06 - Fa: + 9 78 77 Materia: MATEMÁTICAS Evaluación: Fecha: Curso: º ESO Nº: NÚMEROS REALES: ) Aproima el

Más detalles

1. Efectúa las siguientes operaciones, simplificando el resultado lo máximo posible:

1. Efectúa las siguientes operaciones, simplificando el resultado lo máximo posible: 4ºESO 1. Efectúa las siguientes operaciones, simplificando el resultado lo máimo posible: a. 18 50 8 b. 7 3 180 c. 4 3 64 d. e. 3 3 3 5 88 : 1 3 4 7 5. Racionaliza las siguientes epresiones, simplificando

Más detalles

EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.

EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress. FUNCIONES I: LÍMITES, CONTINUIDAD Y DERIVAVILIDAD 1- Sea : definida por a) Halla a, b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1/2 y que la recta tangente en el punto de

Más detalles

Kg que compró en última tienda = =Kg que necesitaba - kg comprados en tiendas anteriores = = 12 - ( 4,5 + 2,75 ) = 12-7,25 = 4,75 kg

Kg que compró en última tienda = =Kg que necesitaba - kg comprados en tiendas anteriores = = 12 - ( 4,5 + 2,75 ) = 12-7,25 = 4,75 kg 61.> Vamos a cercar una finca de 145,75 m. y queremos colocar un poste cada 2,5 m. Cuántos postes necesitaremos? Partimos 145,75 m en trozos de 2,5 m = 145,75 : 2,5 = =1457,5 : 25 = 58,3 trozos y por tanto

Más detalles

2Soluciones a los ejercicios y problemas PÁGINA 53

2Soluciones a los ejercicios y problemas PÁGINA 53 Soluciones a los ejercicios y problemas PÁGINA 5 Pág. P RACTICA Operaciones con polinomios Opera y simplifica las siguientes epresiones ( ) ( )( ) ( ) ( ) ( )( ) ( 5) 4 ( ) ( )( ) (4 5) 6 9 4 4 6 7 4 4

Más detalles

ACTIVIDADES MATEMÁTICAS 2º E.S.O.

ACTIVIDADES MATEMÁTICAS 2º E.S.O. ACTIVIDADES DE MATEMÁTICAS 2º E.S.O. CURSO 2009/2010 TRABAJO DE MATEMÁTICAS 2º E.S.O. Realiza estos trabajos de verano. Haz algunos ejercicios variados cada día. No hagas los de un mismo tema de una vez.

Más detalles

Ejercicios ( ) EJERCICIOS PRIMERA EVALUACIÓN PARA ALUMNOS CON MATEMATICAS DE 3º DE ESO PENDIENTE

Ejercicios ( ) EJERCICIOS PRIMERA EVALUACIÓN PARA ALUMNOS CON MATEMATICAS DE 3º DE ESO PENDIENTE Pendientes º ESO Primera evaluación Pág. / 9 Temario TEMA.- NÚMEROS RACIONALES. Repaso breve de números racionales y operaciones en forma de fracción. Repaso de las formas decimales y de la fracción generatriz.

Más detalles

4ºB ESO Capítulo 5: Inecuaciones LibrosMareaVerde.tk

4ºB ESO Capítulo 5: Inecuaciones LibrosMareaVerde.tk ºB ESO Capítulo : Inecuaciones 10 1. INTERVALOS 1.1. TIPOS DE INTERVALOS 1.. SEMIRRECTAS REALES. INECUACIONES.1. INECUACIONES EQUIVALENTES: Índice. INECUACIONES CON UNA INCÓGNITA.1. INECUACIONES DE PRIMER

Más detalles

Tema 3: Expresiones algebraicas

Tema 3: Expresiones algebraicas .1 Polinomios Tema : Expresiones algebraicas Determina cuáles de las siguientes expresiones son polinomios. Cuando lo sean, dí cuáles son sus monomios(términos), su grado, término principal, término independiente,

Más detalles

MATEMÁTICAS 6º PRIMARIA

MATEMÁTICAS 6º PRIMARIA CUADERNO DE ACTIVIDADES MATEMÁTICAS 6º PRIMARIA Nombre: Curso: 1 Descompón estos números. Fíjate en el ejemplo. 4.168 = 4 UM + 1 C + 6 D + 8 U 51.245 = 754.390 = 3.790.050 = 2 Rodea con rojo los múltiplos

Más detalles

TRABAJO DE REPASO PARA 2º ESO

TRABAJO DE REPASO PARA 2º ESO TRABAJO DE REPASO PARA º ESO NOTA: EL TRABAJO SE ENTREGARÁ EL DÍA DEL EXAMEN DE SEPTIEMBRE. PUEDE SUBIR HASTA UN PUNTO LA NOTA, SIEMPRE Y CUANDO EN EL EXAMEN TENGAS UNA NOTA ENTRE 4 Y. RECUERDA QUE TAMBIÉN

Más detalles

P RACTICA. 1 Opera y simplifica las siguientes expresiones: 2 Efectúa las siguientes operaciones y simplifica el resultado:

P RACTICA. 1 Opera y simplifica las siguientes expresiones: 2 Efectúa las siguientes operaciones y simplifica el resultado: P RACTICA Operaciones con polinomios Opera y simplifica las siguientes epresiones ( ) ( )( ) ( ) ( ) ( )( ) ( 5) 4 ( ) ( )( ) (4 5) 6 9 4 4 6 7 4 4 4 0 75 0 77 4 ( 6 9) (9 ) (4 5) 4 8 4 5 4 5 8 Efectúa

Más detalles

(26)2x(3x 4) (1 3x)$(1 +x) = 2

(26)2x(3x 4) (1 3x)$(1 +x) = 2 Resuelve las siguientes ecuaciones ECUACIONES, INECUACIONES Y SISTEMAS. (1)25x 4 29x 2 +4 =0 (2)x 4 5x 2 +4 =0 (3)x 4 a(a +b)x 2 +a 3 b =0 (4)(x 2 5)$(x 2 3) =0 (5)x +2 = 4x +13 (6) x 1 12 = 2 x+1 (7)

Más detalles

a) El beneficio es el resultado de restar los ingresos y gastos. Esto es,

a) El beneficio es el resultado de restar los ingresos y gastos. Esto es, Análisis: Máimos, mínimos, optimización 1. Una multinacional ha estimado que anualmente sus ingresos en euros vienen dados por la función I( ) 8 6000, mientras que sus gastos (también en euros) pueden

Más detalles

IES Concha Méndez Cuesta. Matemáticas 3º ESO. Nombre:

IES Concha Méndez Cuesta. Matemáticas 3º ESO. Nombre: Tema 1 1. Calcula las siguientes operaciones con enteros: 5 4 8: 7 3 10 6 6 54 7 3. Calcula las siguientes operaciones con fracciones: 4 1 3 1 1 : 3 4 3 3 5 5 1 1 5 : 1 6 3 4 3 3. Los 5 1 de las entradas

Más detalles

EJERCICIOS DE RECUPERACIÓN

EJERCICIOS DE RECUPERACIÓN EJERCICIOS DE RECUPERACIÓN Números Reales a) Halla, con ayuda de la calculadora, dando el resultado en notación científica con tres cifras significativas:, 48 10,54 10 4,5 10, 4 10 9 8 b) Da una cota para

Más detalles

TEMA 10. CÁLCULO DIFERENCIAL

TEMA 10. CÁLCULO DIFERENCIAL TEMA 0. CÁLCULO DIFERENCIAL Problemas que dieron lugar al cálculo diferencial. (Estos dos problemas los resolveremos más adelante) a) Consideremos la ecuación de movimiento de un móvil en caída libre en

Más detalles

MATEMÁTICAS 3º ESO PENDIENTES HOJA 1 GEOMETRÍA PLANA. 1.- Calcular el área y el perímetro de los siguientes polígonos:

MATEMÁTICAS 3º ESO PENDIENTES HOJA 1 GEOMETRÍA PLANA. 1.- Calcular el área y el perímetro de los siguientes polígonos: MATEMÁTICAS º ESO PENDIENTES HOJA GEOMETRÍA PLANA.- Calcular el área y el perímetro de los siguientes polígonos: a) Un cuadrado de lado 5 cm de lado b) Un cuadrado de diagonal 0 cm. c) Un rectángulo de

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA : FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

POLINOMIOS. 1. Si P(x)= 4x 3-3x 2 +1 y Q(x)= 3x 2-3x+2, opera: a) P-Q b) 3P+2Q c) P+Q d) P.Q. b) 3P+2Q= 12x 3-3x 2-6x+7. Sol: a) P-Q= 4x 3-6x 2 +3x-1

POLINOMIOS. 1. Si P(x)= 4x 3-3x 2 +1 y Q(x)= 3x 2-3x+2, opera: a) P-Q b) 3P+2Q c) P+Q d) P.Q. b) 3P+2Q= 12x 3-3x 2-6x+7. Sol: a) P-Q= 4x 3-6x 2 +3x-1 POLINOMIOS 1. Si P()= +1 y Q()= +, opera: a) PQ b) P+Q c) P+Q d) P.Q Sol: a) PQ= 6 +1 b) P+Q= 1 6+7 c) P+Q= + d) P.Q= 1 5 1 +17 +. Si P()= +1, Q()= +1 y R()= 6 +61, opera: a) P+Q; b) PQ+R; c) PR; d) P.QR;

Más detalles

ECUACIONES E INECUACIONES

ECUACIONES E INECUACIONES ECUACIONES E INECUACIONES 1.- Escribe las expresiones algebraicas que representan los siguientes enunciados: a) Número de ruedas necesarias para fabricar x coches. b) Número de céntimos para cambiar x

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 7 PIENSA Y RESUELVE 8 Calcula dos números cuya suma sea 191 y su diferencia 67. Llamamos e y a los números que buscamos. Tenemos que: Sumando: = 58 = 58 = 19 y = 191 = 6 Solución: = 19; y = 6 9 Dos

Más detalles

Tema 7: Sistemas de ecuaciones lineales. 1.- Resuelve los siguientes sistemas mediante el método de sustitución: = =

Tema 7: Sistemas de ecuaciones lineales. 1.- Resuelve los siguientes sistemas mediante el método de sustitución: = = Matemáticas º ESO Ejercicios Tema Bloque II: Álgebra Tema : Sistemas de ecuaciones lineales..- Resuelve los siguientes sistemas mediante el método de sustitución: 9 0 0 0.- Resuelve los siguientes sistemas

Más detalles

Ecuaciones e inecuaciones

Ecuaciones e inecuaciones Ecuaciones e inecuaciones EJERCICIOS 00 Indica los elementos de estas ecuaciones. a) ( + ) ( 5) + 7 b) + ( ) 9 + a) Incógnita: Miembros: ( + ) ( 5) + ; 7 Grado: b) Incógnita: Miembros: + ( ) 9; + Grado:

Más detalles

TRABAJO DE VERANO DE 4º DE ESO NOMBRE:...CURSO:. Página 1 Trabajo de Verano Matemáticas 4º ESO B. Curso 2014/15 REPASO DE FRACCIONES Y POTENCIAS

TRABAJO DE VERANO DE 4º DE ESO NOMBRE:...CURSO:. Página 1 Trabajo de Verano Matemáticas 4º ESO B. Curso 2014/15 REPASO DE FRACCIONES Y POTENCIAS TRABAJO DE VERANO DE 4º DE ESO NOMBRE:....CURSO:. REPASO DE FRACCIONES Y POTENCIAS ) Efectúa: 6) Realiza las siguientes operaciones: ) Opera: ) Indica el conjunto numérico más pequeño entre N, Z, Q y R

Más detalles

CUADERNO DE REPASO DE VERANO

CUADERNO DE REPASO DE VERANO CUADERNO DE REPASO DE VERANO MATEMÁTICAS 1º ESO Las actividades deben realizarse en estos folios, si algún proceso no te cabe en el hueco destinado para ello, lo haces en otra hoja o por detrás. Hay que

Más detalles

TEMA 05 - EXPRESIONES ALGEBRAICAS

TEMA 05 - EXPRESIONES ALGEBRAICAS º ESO TEMA 05 - EXPRESIONES ALGEBRAICAS 1º. Indica las expresiones algebraicas correspondientes a los siguientes enunciados, utilizando una sola letra (x): a) El siguiente de un número, más tres unidades.

Más detalles

Propiedades de las funciones derivables. Representación gráfica de funciones. Determinar los puntos de inflexión. (Junio 1997)

Propiedades de las funciones derivables. Representación gráfica de funciones. Determinar los puntos de inflexión. (Junio 1997) Matemáticas II. Curso 008/009 de funciones 1 1. Determinar las asíntotas de f () =. Estudiar la concavidad y conveidad. 1 + Determinar los puntos de infleión. (Junio 1997) 1 Por un lado, lim 1 = 0 y =

Más detalles

1. DIVISIBILIDAD. NÚMEROS ENTEROS.

1. DIVISIBILIDAD. NÚMEROS ENTEROS. 1.- Calcula: a) (-) + (-) + (+6) = b) (-6) (+) (-) = c) 8 + = d) 10 + 1 + = e) 8 7 + 11 7 = f) 0 1 + 0 =.- Calcula: a) 8 (-) = b) (-) : (-6) = c) (-) (-) (-) = 1. DIVISIBILIDAD. NÚMEROS ENTEROS..- Resuelve

Más detalles

1. Ordena los números de menor a mayor: 2. Completa la siguiente serie: 3. Calcula estas sumas y restas:

1. Ordena los números de menor a mayor: 2. Completa la siguiente serie: 3. Calcula estas sumas y restas: TEMA 1 ACTIVIDADES DE REFUERZO 1. Ordena los números de menor a mayor: 2. Completa la siguiente serie: 2 4 12 3. Calcula estas sumas y restas: 47 32 96 64 78 23 + 41 35 + 22 17............... 4. Rodea

Más detalles

mismo número consecutivos cualesquiera r) Dos números consecutivos h) La cuarta parte de un número

mismo número consecutivos cualesquiera r) Dos números consecutivos h) La cuarta parte de un número MATEMÁTICAS ª ESO LENGUAJE ALGEBRAICO. ECUACIONES. Epresa algebraicamente los siguientes enunciados verbales: Ejemplo Un número cualquiera a a) El doble de un número b) Un número aumentado en. c) Un número

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales 9 Sistemas de ecuaciones lineales 1. Sistemas lineales. Resolución gráfica Comprueba si = 2, = 3 es solución del siguiente sistema: 2 + 4 3 = 14 5 2 + 3 = 13 P I E N S A C A L C U L A + 4 = 14 5 + = 13

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 58 PRACTICA Funciones cuadráticas Representa las siguientes funciones haciendo, en cada caso, una tabla de valo- y res como esta, y di cuál es el vértice de cada parábola: a) y = + b) y = c)

Más detalles

UNIDAD 2 Polinomios y fracciones algebraicas

UNIDAD 2 Polinomios y fracciones algebraicas Pág. 1 de 3 I. Sabes operar polinomios con agilidad y obtener el cociente y el resto de una división? 1 Multiplica y simplifica las siguientes epresiones: 4( 4) 2 + 3( 2 2 + 3) 2( 2 + 5) = b) (3y 1)(3y

Más detalles

1.OPERACIONES CON NÚMEROS

1.OPERACIONES CON NÚMEROS 1.OPERACIONES CON NÚMEROS DECIMALES Y FRACCIONES 1. Expresa en forma de fracción: a) 37 6. b) 5 23. c) 7 0 38. OPERACIONES CON FRACCIONES 2. a) 8 ( 1 6 + 4 3 ) b) 3 4 1 2 5 8 + 3 16 c) 1 1 3 5 4 1 2 d)

Más detalles

Departamento de Matemáticas Actividades de recuperación 3º ESO (Pendientes 2º)

Departamento de Matemáticas Actividades de recuperación 3º ESO (Pendientes 2º) FICHA 1 NÚMEROS I Fecha límite de entrega: 3 de noviembre 1. Calcula el resultado de las siguientes sumas de enteros positivos y negativos: a) 5+(-)= b) 5+(-7)= c) (-)+5= d) (-7)+5= e) (-5)+(-7)=. Calcula

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales 7 Sistemas de ecuaciones lineales 1. Sistemas lineales. Resolución gráfica a) En qué punto se cortan la gráfica roja la azul del dibujo de la izquierda? b) Tienen algún punto en común las rectas de la

Más detalles

1. Clasifica en identidades o ecuaciones las siguientes igualdades: 3. Escribe en lenguaje algebraico:

1. Clasifica en identidades o ecuaciones las siguientes igualdades: 3. Escribe en lenguaje algebraico: 1. Clasifica en identidades o ecuaciones las siguientes igualdades: (a) 7(4 2x) 4(5 3x) =2(5 x) 2 (b) (x 1)$(x +1) x$(x +2) =3x (c) 5(x 1) 4(x +2) =3(x 1) 2(x +5) (d) x+1 2 x 2 3 =5 2. Resuelve las siguientes

Más detalles

1. ESQUEMA - RESUMEN Página EJERCICIOS DE INICIACIÓN Página EJERCICIOS DE DESARROLLO Página EJERCICIOS DE REFUERZO Página 25

1. ESQUEMA - RESUMEN Página EJERCICIOS DE INICIACIÓN Página EJERCICIOS DE DESARROLLO Página EJERCICIOS DE REFUERZO Página 25 1. ESQUEMA - RESUMEN Página. EJERCICIOS DE INICIACIÓN Página 6. EJERCICIOS DE DESARROLLO Página 17 5. EJERCICIOS DE REFUERZO Página 5 1 1. ESQUEMA - RESUMEN Página 1.1. EXPRESIONES ALGEBRAICAS. 1.. VALOR

Más detalles

1. Números naturales y enteros

1. Números naturales y enteros . Números naturales y enteros EJERCICIO. Resuelve las siguientes operaciones con números enteros: 7 9 + + 7 + = 7 + + 8 = EJERCICIO. Calcula los siguientes productos y divisiones de números enteros: (

Más detalles

EJERCICIOS 3º E.S.O. (Con Soluciones)

EJERCICIOS 3º E.S.O. (Con Soluciones) EJERCICIOS º E.S.O. (Con Soluciones) NÚMEROS.- Reduce a común denominador las siguientes fracciones: 0 m.c.m () (simplificando) 0 () m.c.m. (simplificando).- Calcula el valor de la siguiente expresión:

Más detalles

Dibuja dos segmentos que tengan un extremo común..

Dibuja dos segmentos que tengan un extremo común.. Recuerda. m A En qué divide el punto A a la recta m?... n B C Qué determinan los puntos B y C en la recta n?... Dibuja dos semirrectas con el mismo origen. Dibuja dos segmentos que tengan un extremo común..

Más detalles

Ejercicios de números reales

Ejercicios de números reales Ejercicios de números reales Ejercicio nº.- Clasifica los siguientes números como naturales, enteros, racionales o reales:,7 7 7 Ejercicio nº.- Considera los siguientes números: 9,000000..., 8,... Clasifícalos

Más detalles

Definiciones I. Definiciones II

Definiciones I. Definiciones II Definiciones I Una ecuación es una igualdad algebraica que se verifica únicamente para un conjunto determinado de valores de las variables o indeterminadas que forman la ecuación. Esta igualdad es una

Más detalles

Ecuaciones. Son igualdades algebraicas que se cumplen solo para algunos valores de la letra.

Ecuaciones. Son igualdades algebraicas que se cumplen solo para algunos valores de la letra. TEMA 4: EL LENGUAGE ALGEBRAICO. POLINOMIOS EXPRESIONES ALGEBRAICAS Para obtener las epresiones algebraicas hay que utilizar el lenguaje algebraico. Hay epresiones algebraicas de varios tipos: Monomios.

Más detalles

Ejercicios y problemas de ecuaciones Índice de contenido

Ejercicios y problemas de ecuaciones Índice de contenido Ejercicios y problemas de ecuaciones Índice de contenido Ejercicios y problemas de ecuaciones...1 Ejercicios de Ecuaciones...2 Problemas...4 Ejercicios y problemas de sistemas...6 Ejercicios de Ecuaciones

Más detalles

2Soluciones a las actividades de cada epígrafe PÁGINA 42

2Soluciones a las actividades de cada epígrafe PÁGINA 42 Soluciones a las actividades de cada epígrafe PÁGINA 4 Pág. 0 cm r r l l 0 cm Amparo quiere fabricar las cuatro velas que ha diseñado sobre el lienzo, pero aún no se ha decidido sobre alguna de sus dimensiones.

Más detalles

Ecuaciones e inecuaciones

Ecuaciones e inecuaciones Ecuaciones e inecuaciones 066 Jorge tiene 3 discos más que Marta, Marta tiene 3 discos más que Alberto y Alberto tiene 3 discos más que Sara. Entre los cuatro tienen 58 discos. Cuántos discos tiene cada

Más detalles

1. Sistemas lineales. Resolución gráfica

1. Sistemas lineales. Resolución gráfica 6 Sistemas de ecuaciones 1. Sistemas lineales. Resolución gráfica Dado el sistema lineal formado por las ecuaciones del gráfico de la parte derecha: a) cuántas soluciones tiene? b) halla la solución o

Más detalles

2. A continuación se presentan un grupo de polinomios y monomios:

2. A continuación se presentan un grupo de polinomios y monomios: República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Unidad Educativa Colegio Roraima Cátedra Matemática Profesora María Eugenia Benítez 2do año Guía 3 1. Efectúa los siguientes

Más detalles

Matemáticas A (4º de ESO B) Actividades de recuperación. 2) Obtén las fracciones generatrices de los siguientes números y simplifícalas cuanto puedas:

Matemáticas A (4º de ESO B) Actividades de recuperación. 2) Obtén las fracciones generatrices de los siguientes números y simplifícalas cuanto puedas: Matemáticas A (4º de ESO B) Actividades de recuperación 1) Opera y simplifica cuanto puedas el resultado: 2) Obtén las fracciones generatrices de los siguientes números y simplifícalas cuanto puedas: 3)

Más detalles