El Teorema de Cauchy

Tamaño: px
Comenzar la demostración a partir de la página:

Download "El Teorema de Cauchy"

Transcripción

1 El Teorema de Cauhy Deimos que una urva es errada si termina en el mismo punto donde empieza. Deimos que una urva es simple si no tiene autointerseiones. Uno de los primeros teoremas de topología del plano, desubierto por sus apliaiones al álulo omplejo, es el siguiente: Teorema de Jordan. Cada urva simple errada divide al plano en dos regiones onexas, llamadas el interior y el exterior de, de las que es frontera omún. Una urva simple El interior de Cada urva admite 2 orientaiones. Deimos que una urva simple está orientada positivamente si su orientaión es ontaria a la de las maneillas del reloj. Orientaión positiva Orientaion negativa El Teorema de Cauhy ontesta una pregunta fundamental del álulo omplejo: Cuando es ierto que la integral de una funión analítia f en una urva errada es 0? Sabemos que esto ourre si f tiene una antiderivada definida en toda la urva, y que a vees no ourre, por ejemplo on la integral de /z a lo largo de un írulo on entro en el origen.

2 Teorema De Cauhy. Si es una urva simple errada, y f(z) es una funión ontinua en y f(z) es analítia on derivada ontinua en el interior de entones f(z)dz = 0 Demostraion. En las notas anteriores mostramos que las integrales omplejas pueden alularse omo integrales de linea: Si z = x + iy y f(z) = u(x, y) + iv(x, y) entones f(z)dz = (u + iv)(dx + idy) = udx vdy + i vdx + udy Reordar ahora el Teorema de Green para integrales reales: Si es una urva simple errada orientada positivamente y M y N son funiones reales ontinuas en y derivables on derivadas pariales ontinuas en la región interior R de, entones Mdx + Ndy = R ( N x M y ) dxdy Si apliamos el Teorema de Green a las funiones M = v y N = u obtenemos vdx + udy = ( u x v y ) dxdy y si lo apliamos a M = u y N = v queda udx vdy = R R ( v x u y ) dxdy Pero por las euaiones de Cauhy Riemann u x = v y y v x = u y, asi que las dos integrales de la dereha son 0. Ejemplo. Si es ualquier urva simple errada en el plano entones e z2 dz = 0 ya que f(z) = e z2 es analítia en todo C. Ejemplo. Si es una urva simple errada uyo interior no ontiene al origen entones /z dz = 0 ya que /z es analítia en C 0. Pero si el interior de sí ontiene a 0 entones la integral no es 0, omo veremos mas adelante. 2

3 El Teorema de Cauhy puede apliarse también, on uidado, a urvas erradas que no son simples, pero que pueden partirse en urvas erradas simples. La orientaión de la urva indue una orientaión en ada uno de las urvas partidas, y puede verse de la definiión de la integral ompleja que la integral de es la suma de las integrales de los pedazos. Asi que si la funión f es analítia en el interior de ada uno de las urvas simples en las que se parte, entones la integral de f en debe ser 0. Corolario. Si f es una funión analítia on derivada ontinua en una región A y si y son dos urvas simples erradas y ajenas en A tales que una puede deformarse a la otra dentro de A sin ambiar su orientaion, entones f(z)dz = f(z)dz Demostraion. Si las urvas y son ajenas, podemos onetarlas on dos aros a y a en A para obtener dos urvas simples s y s uyos interiores estan ontenidos en A. Por el Teorema de Cauhy las integrales de f en s y en s son 0. Pero si y tienen la misma orientaión entones f f = f + f = 0 s s ya que las integrales sobre los aros a y a se anelan. 3

4 Ejemplos. Si es una urva simple errada orientada positivamente y el interior de ontiene al origen, entones /z dz = 2πi ya que podemos deformar la urva a un irulo entrado en el origen. Tambien podemos alular las integrales de /z sobre urvas no simples ortándolas para obtener urvas simples on la misma orientaión: /zdz = 2πi /zdz = 4πi Una urva en una región A es ontraible en A si puede deformarse ontinuamente a un punto en A. Una región A es simplemente onexa si todas las urvas erradas en A son ontraibles. Intuitivamente las regiones simplemente onexas del plano son las regiones sin hoyos. Curvas ontraibles y no ontraibles Región simplemente onexa Teorema de Cauhy (segunda versión). Si f(z) es una funión analítia on derivada ontinua en una región simplemente onexa A, entones para toda urva errada en A, f(z) dz = 0. 4

5 Corolario. Si f(z) es una funión analítia on derivada ontinua en una región simplemente onexa A, entones f tiene una antiderivada en A. Demostraion. Por el Teorema de Cauhy todas las integrales de f sobre urvas erradas en A son 0. Por el teorema de independenia de la trayetoria, esto implia que las integrales de f sobre urvas que unen 2 puntos en A no dependen de las trayetorias, y que la funión F (z) = γz f(z)dz (donde γz es ualquier trayetoria de un punto fijo en A al punto z) es una antiderivada de f. Ejemplo. Si A es ualquier región simplemente onexa del plano que no ontiene a 0 entones f(z) = /z tiene una antiderivada en A. Hay una rama del logaritmo definida en esta región Problemas. Para uales urvas simples erradas es ierto que z 2 + z + dz = 0? 2. Si es el írulo on entro en y radio 2, orientado positivamente, alula: z dz z dz z + 2 dz 5

6 3. Si la funión f(z) es analítia en la región verde que relaión hay entre las integrales de f a lo largo de las siguientes urvas? 4. Calula las integrales de la funión /z en las siguientes urvas (el punto es el 0): 5. Si log(z) es la rama del logaritmo definida en la región gris on log() = 0, evalúa: log(2) log(3) log(i) log(2i) log(3i). 6

7 El teorema de Cauhy-Goursat Toda funión real f(x) que es ontinua en un intervalo es la derivada real de una funión F (x) en ese intervalo: podemos onstruir la antiderivada de f(x) omo F (x) = x a f(t)dt. No toda funión ompleja f(z) que es ontinua en una región A es la derivada ompleja de una funión F (z) en A: por el teorema fundamental para que esto sueda es neesario que la integral de f(z) sea 0 en toda urva errada en A. El Teorema de Cauhy nos die que esto suede si f(z) es derivable omo funión ompleja y su derivada es ontinua. Pedir que f tenga derivada ompleja y que esta sea ontinua paree una hipotesis muy fuerte omparada on la hipotesis en el aso real (que f sea ontinua). Goursat pudo probar el Teorema de Cauhy sin pedir que la derivada de f sea ontinua, y este pequeño ambio tiene onseuenias muy importantes. Teorema. Si f es una funión analítia en una región simplemente onexa A entones para ada urva errada en A f(z) dz = 0 La demostraión de este teorema está basada en el siguiente lema: Lema de Goursat. Si f es una funión analítia en una región que ontiene a un triángulo y su interior, entones f(z)dz = 0 Demostraión. Dividamos a en 4 triángulos semejantes de la mitad del tamaño, a, b, y d, orientados todos positivamente, omo en la figura. Entones f(z)dz = f(z)dz + f(z)dz + f(z)dz + f(z)dz a b d Para alguno de los 4 triángulos, llamemoslo, debe ourrir que f(z)dz 4 f(z)dz Si dividimos ahora a en 4 triángulos, entones para alguno de ellos, llamemoslo 2 debe ourrir que 2 f(z)dz 4 f(z)dz. 4 f(z)dz 2 7

8 Repitiendo esta onstruión obtenemos triángulos 2... n... tales que para ada n, diam n = 2 n diam perim n = 2 n perim n f(z)dz 4 f(z)dz n Como los triángulos n estan anidados y su diámetro se aproxima a 0, su interseión es un punto z 0. Ahora podemos usar la hipótesis de que f(z) es derivable en z 0 para aotar el tamaño de la integral f(z) f(z n f(z)dz uando n es muy pequeño. Como lim 0 ) z z0 z z 0 f (z 0 ) = 0 entones para ada ɛ > 0, existe un δ > 0 tal que f(z) f(z 0) z z 0 f (z 0 ) < ɛ siempre que z z 0 < δ. Ahora si n es lo sufiientemente grande para que diam n < δ entones f(z) f(z 0 ) f (z 0 )(z z 0 ) < ɛ z z 0 ɛ diam n Ahora observemos que f(z)dz = f(z) f(z 0 ) f (z 0 )(z z 0 ) dz n n ya que las funiones f(z 0 ) y f (z 0 )(z z 0 ) son las derivadas de las funiones f(z 0 )z y f (z 0 ) 2 (z z 0 ) 2 y por lo tanto sus integrales en ontornos errados son 0. Por lo tanto f(z)dz = f(z) f(z 0 ) f (z 0 )(z z 0 ) dz ɛ z z 0 dz ɛ diam n perim n n n n asi que f(z)dz 4 n f(z)dz 4 n ɛ diam n perim n = ɛ diam perim n Como esto vale para todo ɛ > 0, entones f(z)dz = 0 8

9 Corolario. Toda funión analítia f(z) en una región simplemente onexa A tiene una antiderivada en A. Demostraión. Definamos F (z) = f(ζ) dζ τ z donde τ z es una trayetoria poligonal en A que va de un punto fijo z 0 hasta z (trayetoria poligonal = formada de un número finito de segmentos de reta). Tenemos que probar que F (z) esta bien definida y que F (z) = f(z). Para ver que F (z) esta bien definida neesitamos mostrar que F (z) no depende de la trayetoria poligonal que elijamos de z 0 a z, y para esto basta ver que si P es una urva poligonal errada en A entones P f(ζ)dζ = 0. Si P es una urva poligonal errada entones P es el borde de un polígono que puede partirse en un número finito de triángulos, 2,..., k. Como A es simplemente onexa el interior de P está ontenido en A. Si P y los triángulos i s estan orientados positivamente entones P i=k f(ζ)dζ = i= i f(ζ)dζ Como ada i está en A y f es analítia en A entones por el lema de Goursat i f(ζ)dζ = 0 y por lo tanto P f(ζ)dζ = 0. Para ver que F (z) es una antiderivada de f(z) neesitamos mostrar que lim w z F (z) F (w) z w f(z) = lim w z F (z) F (w) f(z)(z w) z w = 0 Por definiión F (z) y F (w) se obtienen integrando f(z) a lo largo de trayetorias poligonales de z 0 a z y a w, y por el lema podemos elegir las trayetorias que mas nos onvengan. Elijamos ualquier trayetoria de z 0 a z en A y si w esta sufiientemente era de z entones la trayetoria en linea reta de z a w está en A. Entones F (z) F (w) = f(ζ)dζ Por lo tanto F (z) F (w) f(z)(z w) = f(ζ)dζ f(z)dζ = f(ζ) f(z) dζ Como f es ontinua en z (ya que f es analítia) entones dado ɛ > 0 existe δ > 0 tal que ζ z < δ implia que f(ζ) f(z) < ɛ. Asi que si z w < δ entones ζ z < δ para toda ζ en, asi que f(ζ) f(z)dζ z w ɛ 9

10 por lo tanto F (z) F (w) f(z)(z w) z w z w f(ζ) f(z) dζ z w ɛ = ɛ z w Como esto ourre para ada ɛ > 0 siempre que z w < δ, entones lim w z F (z) F (w) z w f(z) = 0 asi que F (z) = f(z) Corolario Si f(z) es funión analítia en una región simplemente onexa A entones para ada urva errada en A, f(z)dz = 0 Demostraión Por el orolario anterior f tiene una antiderivada en A, asi que por el teorema fundamental las integrales de f solo dependen de los extremos de las urvas. Problemas 6. Si r el írulo on entro en 0 y radio r, orientado positivamente y a C, alula r z a dz z z a dz (ojo: hay varios asos dependiendo de r) 7. Para ada urva simple errada orientada positivamente, alula z i dz z 2 + dz (dibuja las urvas en los distintos asos) 8. Muestra que la integral de la funión z en una urva simple errada no es 0, sino que z dz = 2i (area enerrada por ) (hint: teorema de green) r 0

Fórmula integral de Cauchy

Fórmula integral de Cauchy Fórmula integral de Cauhy Fórmula integral de Cauhy. Si una funión f es analítia en una región que ontiene a urva simple errada y a su interior, entones para ada punto z 0 enerrado por, dz = 2πi f(z 0

Más detalles

6. Teoría de Cauchy local.

6. Teoría de Cauchy local. Funciones de variable compleja. Eleonora Catsigeras. 24 Abril 2006. 59 6. Teoría de Cauchy local. Dado un abierto Ω C, se denota con R Ω a un rectángulo contenido en Ω. R indica el conjunto de puntos que

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS Tipos de Discontinuidades en un Punto 1 - Tiene ramas infinitas en un punto

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS Tipos de Discontinuidades en un Punto 1 - Tiene ramas infinitas en un punto LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS Tipos de Disontinuidades en un Punto - Tiene ramas infinitas en un punto y 5 La reta 5 es una asíntota vertial - Presenta un salto en un punto, si y

Más detalles

Integración de formas diferenciales

Integración de formas diferenciales Capítulo 9 Integraión de formas difereniales. Complejos en R n En esta seión definiremos los objetos más simples en R n : los ubos, y los omplejos que forman. Es en estos objetos donde, más adelantes,

Más detalles

Integración de formas diferenciales

Integración de formas diferenciales Capítulo 9 Integraión de formas difereniales 1. Complejos en R n En este apítulo iniiamos el estudio de la integraión de formas difereniales sobre omplejos en R n. Un omplejo es una ombinaión de ubos en

Más detalles

7. Teoría de Cauchy global.

7. Teoría de Cauchy global. 68 Funciones de variable compleja. Eleonora Catsigeras. 25 Abril 26. 7. Teoría de Cauchy global. 7.. Teorema de Cauchy global. Sea un abierto no vacío Ω C. Teorema 7... Teorema de Cauchy global. Sea f

Más detalles

Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica. Cálculo Vectorial Tarea 5

Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica. Cálculo Vectorial Tarea 5 Integrales Múltiples álulo Vetorial Tarea 5 1. Evalúe las siguientes integrales: 1.1 0 1 4 ( 1 8 dd 1. 1 0 sin 1. 0 0 (Res. 57 ( 1 dd (Res. 0/ (1 os (Res. dd 1 1 1.4 os( sen( 0 (Res. dd 7 9. Utilie una

Más detalles

Ejemplos: 180 = media circunferencia = π radianes. 45 = 180 / 4 = π / 4 radianes

Ejemplos: 180 = media circunferencia = π radianes. 45 = 180 / 4 = π / 4 radianes Trigonometría ngulos Los ángulos pueden medirse viendo que parte de una irunferenia oupan. Los ailonios reían que la tierra tardaa 360 días en dar una vuelta al sol, así que dividieron al írulo en 360

Más detalles

Tema 6: Semejanza en el Plano.

Tema 6: Semejanza en el Plano. Tema 6: Semejanza en el Plano. 6.1 Semejanza de Polígonos. Definiión 6..1.- Cuatro segmentos a, b, y d son proporionales si se umple la siguiente igualdad: a =. A ese oiente omún se le llama razón de proporionalidad.

Más detalles

Matemáticas III Andalucía-Tech. Integrales múltiples

Matemáticas III Andalucía-Tech. Integrales múltiples Matemátias III Andaluía-Teh Tema 4 Integrales múltiples Índie. Preliminares. Funión Gamma funión Beta. Integrales dobles.. Integral doble de un ampo esalar sobre un retángulo................ Integral doble

Más detalles

Variable compleja para calcular integrales racionales trigonomtricas

Variable compleja para calcular integrales racionales trigonomtricas Variable compleja para calcular integrales racionales trigonomtricas Juan Carlos Ponce Campuzano poncecampuzanocarlos@gmail.com Universidad de Colima 4 de mayo de 3. Problemática Los sistemas de cómputo

Más detalles

Teorema de Cauchy y aplicaciones

Teorema de Cauchy y aplicaciones Arco simple de Jordan Curva cerrada simple de Jordan: arco simple de Jordan / Son suaves si: Contorno (cerrado) simple: arco o curva cerrada simple con derivadas continuas a trozos y Teorema de la curva

Más detalles

TEMA III: FUNCIONES DE VARIABLE COMPLEJA

TEMA III: FUNCIONES DE VARIABLE COMPLEJA TEMA III: FUNIONES DE VARIABLE OMPLEJA Números complejos Se define el conjunto de los números complejos como = { z = (a, b) = a + ib : a, b R, i = }. Al número real a se le denomina parte real de z y se

Más detalles

Lección 4. Ecuaciones diferenciales. 4. Propiedades algebraicas de las soluciones. Fórmulas de Abel y Liouville.

Lección 4. Ecuaciones diferenciales. 4. Propiedades algebraicas de las soluciones. Fórmulas de Abel y Liouville. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0. 4. Proiedades algebraias de las soluiones. Fórmulas de Abel y Liouville. A lo largo de esta seión suondremos que P, Q y R son funiones ontinuas en un intervalo

Más detalles

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0),

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0), NÚMEROS COMPLEJOS 1. Preliminares Definición. Se llama número complejo a todo par ordenado de números reales. Si z = (a, b) es un número complejo, se dice que a es la parte real de z y b es la parte imaginaria

Más detalles

CÁLCULO III. Pablo Torres. Parte 4: Integrales curvilíneas. Facultad de Ciencias Exactas, Ingeniería y Agrimensura - Universidad Nacional de Rosario

CÁLCULO III. Pablo Torres. Parte 4: Integrales curvilíneas. Facultad de Ciencias Exactas, Ingeniería y Agrimensura - Universidad Nacional de Rosario ÁLULO III Pablo Torres Facultad de iencias Exactas, Ingeniería y Agrimensura - Universidad Nacional de Rosario Parte 4: Integrales curvilíneas URVAS Una trayectoria o camino en R n es una función α : [a,b]

Más detalles

11 La teoría de la relatividad

11 La teoría de la relatividad La teoría de la relatividad de Einstein Atividades del interior de la unidad. Desde una nave que se mueve a 50 000 km/s se emite un rayo de luz en la direión y sentido del movimiento. Calula la veloidad

Más detalles

1. Funciones matriciales. Matriz exponencial

1. Funciones matriciales. Matriz exponencial Dpto. Matemátia Apliada, Faultad de Informátia, UPM EDO Sistemas Lineales. Funiones matriiales. Matriz exponenial.. Funiones vetoriales Sea el uerpo IK que puede ser IC ó IR y sea I IR un intervalo. Entones

Más detalles

Modulo de Desigualdades e Inecuaciones. 3º Medio

Modulo de Desigualdades e Inecuaciones. 3º Medio Modulo de Desigualdades e Ineuaiones. º Medio TEMA : Orden, Valor Absoluto y sus propiedades Definiión : La desigualdad a < b es una relaión de orden en el universo de los números reales. Por lo tanto

Más detalles

Recursión y Relaciones de Recurrencia. UCR ECCI CI-1204 Matemáticas Discretas M.Sc. Kryscia Daviana Ramírez Benavides

Recursión y Relaciones de Recurrencia. UCR ECCI CI-1204 Matemáticas Discretas M.Sc. Kryscia Daviana Ramírez Benavides Reursión y Relaiones de Reurrenia UCR ECCI CI-04 Matemátias Disretas M.S. Krysia Daviana Ramírez Benavides Algoritmos Reursivos Un algoritmo es reursivo si se soluiona un problema reduiéndolo a una instania

Más detalles

Supercies Regladas. Ejemplo El cilíndro y el cono circular son ejemplos de supercies regladas

Supercies Regladas. Ejemplo El cilíndro y el cono circular son ejemplos de supercies regladas Unidad 1. Superies Cuádrias 1.6 Superies Regladas Superies Regladas Deniión 1. Una superie on la propiedad de que para ada punto en ella hay toda una reta que está ontenida en la superie y que pasa por

Más detalles

Construcción de conjuntos B h módulo m y particiones

Construcción de conjuntos B h módulo m y particiones Vol. XIV No 2 Diiembre (2006) Matemátias: 65 70 Matemátias: Enseñanza Universitaria Esuela Regional de Matemátias Universidad del Valle - Colombia Construión de onjuntos B h módulo m y partiiones Gilberto

Más detalles

Integración en Variable Compleja

Integración en Variable Compleja Semana 4 - lase 36/3 Tema 2: Variable ompleja Integración en Variable ompleja. Integrales complejas omo siempre, luego de definir la derivada, construimos el concepto de integral a partir de la suma de

Más detalles

D. Teorema de Cauchy Goursat: Práctica 4

D. Teorema de Cauchy Goursat: Práctica 4 Analiticidad y transformaciones conformes ondiciones de auchy Riemann Transformaciones conformes Integración en el Plano omplejo Parametrización de arcos e integrales de contorno auchy, auchy Goursat y

Más detalles

Una inecuación lineal con 2 incógnitas puede tener uno de los siguientes aspectos:

Una inecuación lineal con 2 incógnitas puede tener uno de los siguientes aspectos: TEMA 3: PROGRAMACIÓN LINEAL ÍNDICE 3.1.- Ineuaiones lineales on 2 inógnitas. 3.2.- Sistemas de ineuaiones lineales on 2 inógnitas. 3.3.- La programaión lineal. 3.4.- Soluión gráfia de un problema de programaión

Más detalles

CONJUNTOS. Según se ha visto en el ejercicio anterior, para que la intersección de dos conjuntos A y B sea A, se tiene que verificar que A B.

CONJUNTOS. Según se ha visto en el ejercicio anterior, para que la intersección de dos conjuntos A y B sea A, se tiene que verificar que A B. CONJUNTOS 1. Si se umple: a) = b) = ) = (Convoatoria junio 2001. Examen tipo E ) Es laro que la opión orreta es la a). Cuando un onjunto está dentro de otro, la interseión es el onjunto pequeño y la unión

Más detalles

Comenzamos recordando algunos conceptos de la topología de l - R 2. Dado a lc y ɛ > 0 se llama bola abierta de centro a y radio ɛ al conjunto

Comenzamos recordando algunos conceptos de la topología de l - R 2. Dado a lc y ɛ > 0 se llama bola abierta de centro a y radio ɛ al conjunto Capítulo 2 Funciones analíticas. Funciones armónicas. En este capítulo iniciamos el estudio de las funciones de variable compleja. Comenzamos con los conceptos de límite y continuidad en lc, conceptos

Más detalles

Se suponen conocidos los siguientes conceptos previos desarrollados en las secciones 1, 2, 3.1 y 3.2:

Se suponen conocidos los siguientes conceptos previos desarrollados en las secciones 1, 2, 3.1 y 3.2: 112 Funciones de variable compleja. Eleonora Catsigeras. 15 Mayo 2006. TERCERA PARTE. SINGULARIDADES Y TEORÍA DE LOS RESIDUOS. Resumen Se estudian las singularidades aisladas: evitables, polos y esenciales

Más detalles

UNIDAD 1.- PROBABILIDAD

UNIDAD 1.- PROBABILIDAD UNIDAD 1.- PROBABILIDAD 1. EXPERIMENTOS ALEATORIOS. ESPACIO MUESTRAL. Definiión: Un fenómeno o experienia se die aleatorio uando al repetirlo en ondiiones análogas no se puede predeir el resultado. Si

Más detalles

Funciones de Variable Compleja - Clase 27-28/08/2012 ( ) 4) Acotación del módulo de la integral. Demostrar

Funciones de Variable Compleja - Clase 27-28/08/2012 ( ) 4) Acotación del módulo de la integral. Demostrar Funciones de Vrile omplej - lse 7-8/08/01 [ ] ω : I =, R t I ω Donde : ω = u + iv( y) L derivd de ω se define como: [ ] ω : I =, R t I ω Donde : ω = u + iv L integrl definid de funciones ω sore t, se define

Más detalles

El teorema de los residuos

El teorema de los residuos Tema 2 El teorema de los residuos 2. Singularidades aisladas de una función Definición 2. Sea f: A C. Se dice que f tiene una singularidad aislada en el punto α A, si existe un E(α, r tal que la función

Más detalles

16. Ejercicios resueltos sobre cálculo de residuos.

16. Ejercicios resueltos sobre cálculo de residuos. 7 Funciones de variable compleja. Eleonora Catsigeras. 3 Junio 26. 6. Ejercicios resueltos sobre cálculo de residuos. En esta sección se dan ejemplos de cálculo de integrales de funciones reales, propias

Más detalles

DERIVACIÓN COMPLEJA. Sea f definida en todos los puntos z de algún entorno z 0

DERIVACIÓN COMPLEJA. Sea f definida en todos los puntos z de algún entorno z 0 1. DERIVACIÓN COMPLEJA Límites Sea f definida en todos los puntos z de algún entorno z 0 f(z) ω 0 es decir, el punto ω f(z) puede quedar próximo a ω 0 si elegimos z suficientemente próximo a z 0, pero

Más detalles

Universidad de los Andes Departamento de Física. Métodos Matemáticos. Gabriel Téllez

Universidad de los Andes Departamento de Física. Métodos Matemáticos. Gabriel Téllez Universidad de los Andes Departamento de Física Métodos Matemáticos Gabriel Téllez ii c 2002 Gabriel Téllez Acosta. Todos los derechos reservados por el autor. Se autoriza el uso para estudio personal

Más detalles

ECUACIONES DIFERENCIALES ORDINARIAS DE SEGUNDO

ECUACIONES DIFERENCIALES ORDINARIAS DE SEGUNDO ECUACIONES DIFERENCIALES ORDINARIAS DE SEGUNDO ORDEN. RESOLUCIÓN REDUCIÉNDOLA A UNA ECUACIÓN DIFERENCIAL ORDINARIA DE PRIMER ORDEN Miguel Angel Nastri, Osar Sardella miguelangelnastri@ahoo.om.ar, osarsardella@ahoo.om.ar

Más detalles

15. Teoría de los residuos.

15. Teoría de los residuos. 162 Funciones de variable compleja. Eleonora Catsigeras. 12 Julio 2006. 15. Teoría de los residuos. 15.1. Residuos. Definición 15.1.1. Residuo de una función en una singularidad aislada. Dada una función

Más detalles

ANÁLISIS DE LA EXTENSIÓN DE LA GRÁFICA DE UNA FUNCIÓN

ANÁLISIS DE LA EXTENSIÓN DE LA GRÁFICA DE UNA FUNCIÓN ANÁLISIS DE LA EXTENSIÓN DE LA GRÁFICA DE UNA FUNCIÓN Sugerenias al Profesor: Trabajar úniamente on funiones polinomiales y raionales, alarando que generalmente al bosquejar sus gráfias solo se muestra

Más detalles

Notas de Cálculo Avanzado I y II. Richard G. Wilson Departamento de Matemáticas, Universidad Autónoma Metropolitana-Iztapalapa

Notas de Cálculo Avanzado I y II. Richard G. Wilson Departamento de Matemáticas, Universidad Autónoma Metropolitana-Iztapalapa Notas de Cálulo Avanzado I y II Rihard G. Wilson Departamento de Matemátias, Universidad Autónoma Metropolitana-Iztapalapa Marzo del 2005 2 Contenido 1 La onstruión de los Números Reales 5 1.1 Los Números

Más detalles

UNIDAD 2.- PROBABILIDAD CONDICIONADA

UNIDAD 2.- PROBABILIDAD CONDICIONADA UNIDAD.- PROBABILIDAD CONDICIONADA. PROBABILIDAD CONDICIONADA. SUCESOS DEPENDIENTES E INDEPENDIENTES Las probabilidades ondiionadas se alulan una vez que se ha inorporado informaión adiional a la situaión

Más detalles

f(t)dt para todo x [a, b].

f(t)dt para todo x [a, b]. ANÁLISIS MATEMÁTICO BÁSICO. EL TEOREMA FUNDAMENTAL DEL CÁLCULO. L integrl lnz todo su poder undo se li on l derivd. Esto ourre en el Teorem Fundmentl del Cálulo. Funiones definids trvés de l integrl. Dd

Más detalles

Tema 4.2: Teorema de Cauchy para el triángulo. Versión elemental del teorema de Cauchy y de la fórmula de Cauchy

Tema 4.2: Teorema de Cauchy para el triángulo. Versión elemental del teorema de Cauchy y de la fórmula de Cauchy Tema 4.: Teorema de Cauchy para el triángulo. Versión elemental del teorema de Cauchy y de la fórmula de Cauchy Facultad de Ciencias Experimentales, Curso 008-09 E. de Amo Comenzamos con este tema toda

Más detalles

14. Funciones meromorfas y teoremas de aproximación.

14. Funciones meromorfas y teoremas de aproximación. Funciones de variable compleja. Eleonora Catsigeras. 15 Mayo 2006. 145 14. Funciones meromorfas y teoremas de aproximación. 14.1. Funciones meromorfas. Definición 14.1.1. Funciones meromorfas. Una función

Más detalles

Tema 3. TRABAJO Y ENERGÍA

Tema 3. TRABAJO Y ENERGÍA Tema 3. TRABAJO Y ENERGÍA Físia, J.. Kane, M. M. Sternheim, Reverté, 989 Tema 3 Trabajo y Energía Cap.6 Trabajo, energía y potenia Cap. 6, pp 9-39 TS 6. La arrera Cap. 6, pp 56-57 . INTRODUCCIÓN: TRABAJO

Más detalles

2. Derivación y funciones holomorfas.

2. Derivación y funciones holomorfas. 18 Funciones de variable compleja. Eleonora Catsigeras. 24 Abril 2006. 2. Derivación y funciones holomorfas. 2.1. Derivación de funciones complejas y funciones holomorfas. Sea Ω abierto contenido en C,

Más detalles

* FUERZAS EN VIGAS Y CABLES

* FUERZAS EN VIGAS Y CABLES UNIVERSIDAD NAIONAL DEL ALLAO FAULTAD DE INGENIERÍA ELÉTRIA Y ELETRÓNIA ESUELA PROFESIONAL DE INGENIERÍA ELÉTRIA * FUERZAS EN VIGAS Y ALES ING. JORGE MONTAÑO PISFIL ALLAO, 1 FUERZAS EN VIGAS Y ALES 1.

Más detalles

NOTAS SOBRE LOS MÉTODOS DE INTEGRACIÓN

NOTAS SOBRE LOS MÉTODOS DE INTEGRACIÓN NOTAS SOBRE LOS MÉTODOS DE INTEGRACIÓN Alberto Gómez-Lozano Universidad Cooperativa de Colombia Sede Ibagué Doumentos de doenia Course Work oursework.u.e.o No. 5. Nov, 05 http://d.doi.org/0.695/greylit.6

Más detalles

CAP. 5 DISEÑO DE MIEMBROS EN TORSIÓN OBJETIVOS:

CAP. 5 DISEÑO DE MIEMBROS EN TORSIÓN OBJETIVOS: CAP. 5 DISEÑO DE MIEMBROS EN TORSIÓN OBJETIVOS: TEMAS: - Demostrar la euaión de la tensión de torsión, su apliaión y diseño de miembros sometidos a tensiones de torsión 5.1. Teoría de torsión simple 5..

Más detalles

INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES. Tema 1

INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES. Tema 1 INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES Tema 1 1.1 BREE INTRODUCCIÓN A LA LÓGICA MATEMÁTICA Bibliografía: Smith, Karl J.- Introduión a la Lógia simbólia.- Grupo Editorial Iberoaméria.- Méio, 1991. Espinosa

Más detalles

Núcleo e Imagen de una Transformación Lineal

Núcleo e Imagen de una Transformación Lineal Núleo e Imagen de una Transformaión Lineal Departamento de Matemátias CCIR/ITESM 8 de junio de Índie 7.. Núleo de una transformaión lineal................................. 7.. El núleo de una matri la

Más detalles

AN ALISIS MATEM ATICO B ASICO. C ALCULO DE PRIMITIVAS. FUNCIONES RACIONALES.

AN ALISIS MATEM ATICO B ASICO. C ALCULO DE PRIMITIVAS. FUNCIONES RACIONALES. AN ALISIS MATEM ATICO B ASICO. C ALCULO DE PRIMITIVAS. FUNCIONES RACIONALES. Cuando tenemos el problema de alular la primitiva de una funion raional P (x) an x n + a n x n + + a x + a 0 b m x m + b m x

Más detalles

Ecuaciones de primer grado

Ecuaciones de primer grado Euaiones de primer grado. Resuelve las siguientes euaiones de primer grado on paréntesis. 3( + ) + ( 3 ) = 7 3( ) ( 3 ) ( + ) = 3( ) ( + ) ( + 3) = 3 + = 5 ( 7 ). Resuelve las siguientes euaiones de primer

Más detalles

El Teorema de Green. Una curva dada por r(t) = x(t) i + y(t) j, a t b, se dice simple si no se corta consigo misma, es decir, r(c) Curva no simple

El Teorema de Green. Una curva dada por r(t) = x(t) i + y(t) j, a t b, se dice simple si no se corta consigo misma, es decir, r(c) Curva no simple El Teorema de Green Una curva dada por r(t) x(t) i + y(t) j, a t b, se dice simple si no se corta consigo misma, es decir, r(c) r(d) si c d. urva simple urva no simple urva orientada positivamente La curva

Más detalles

El desarrollo de la teoría de funciones de variable compleja sigue un

El desarrollo de la teoría de funciones de variable compleja sigue un 69 Análisis matemático para Ingeniería. M. MOLERO; A. SALVADOR; T. MENARGUEZ; L. GARMENDIA CAPÍTULO 4 Integración en el plano complejo El desarrollo de la teoría de funciones de variable compleja sigue

Más detalles

2. CARGA Y DESCARGA DE UN CONDENSADOR

2. CARGA Y DESCARGA DE UN CONDENSADOR 2. ARGA Y DESARGA DE UN ONDENSADOR a. PROESO DE ARGA La manera más senilla de argar un ondensador de apaidad es apliar una diferenia de potenial V entre sus terminales mediante una fuente de.. on ello,

Más detalles

Series Sucesiones y series en C

Series Sucesiones y series en C Series En este capítulo vamos a estudiar desarrollos en serie de funciones holomorfas, para lo cual vamos en primer lugar a revisar resultados de la teoría de series, adaptándolos a series de términos

Más detalles

LEY DE SENOS. Ya hemos visto como resolver triángulos rectángulos ahora veremos todas las técnicas para resolver triángulos generales.

LEY DE SENOS. Ya hemos visto como resolver triángulos rectángulos ahora veremos todas las técnicas para resolver triángulos generales. LEY DE SENOS Ya hemos visto omo resolver triángulos retángulos ahora veremos todas las ténias para resolver triángulos generales a γ α Este es un triángulo el ángulo α se esrie en el vértie de, el ángulo

Más detalles

MATEMÁTICA I Capítulo 2 CONJUNTOS Y FUNCIONES

MATEMÁTICA I Capítulo 2 CONJUNTOS Y FUNCIONES MATEMÁTICA I - 01- Capítulo CONJUNTOS Y FUNCIONES Comenzaremos on algunos omentarios generales aera de las demostraiones de enuniados matemátios. Se sugiere que repasen y relean el apunte de lógia visto

Más detalles

Controles de Calidad en la Fabricación de un Rodete Pelton. Murray Garcia, Harry Ernesto CAPITULO II MARCO TEORICO

Controles de Calidad en la Fabricación de un Rodete Pelton. Murray Garcia, Harry Ernesto CAPITULO II MARCO TEORICO CAPITULO II MARCO TEORICO Reordemos que las Turbinas Pelton son Turbinas de Aión, y son apropiadas para grandes saltos y pequeños audales; por lo ual sus números espeífios son bajos. Referente a las partes

Más detalles

R se puede descomponer en un número finito de regiones simples (ó de tipo 3, como en matemáticas 5), El Teorema de Green

R se puede descomponer en un número finito de regiones simples (ó de tipo 3, como en matemáticas 5), El Teorema de Green El Teorema de Green 1 El Teorema de Green Enunciaremos el teorema de Green primero para un tipo especial de región de que llamaremos simple luego se extenderá a regiones más generales que se puedan descomponer

Más detalles

FUNCIONES MEROMORFAS. EL TEOREMA DE LOS RESIDUOS Y ALGUNAS DE SUS CONSECUENCIAS

FUNCIONES MEROMORFAS. EL TEOREMA DE LOS RESIDUOS Y ALGUNAS DE SUS CONSECUENCIAS FUNCIONES MEROMORFAS. EL TEOREMA DE LOS RESIDUOS Y ALGUNAS DE SUS CONSECUENCIAS. FUNCIONES MEROMORFAS Definición.. Se dice que una función es meromorfa en un abierto Ω de C si f es holomorfa en Ω excepto

Más detalles

KMN : JKL : Pagina 1 de 16 SOLUCIONES OCTUBRE 2016

KMN : JKL : Pagina 1 de 16 SOLUCIONES OCTUBRE 2016 agina de 6 UIE URE 06 utor: Riard eiró i Estruh tubre - entro de un retángulo se han insrito 6 irunferenias de igual radio r (ver figura) eterminar la medida de los lados del retángulo oluión: ea el retángulo

Más detalles

Solución: Observamos que los números de la sucesión se pueden escribir de la siguiente L de esta manera la suma de los primeros

Solución: Observamos que los números de la sucesión se pueden escribir de la siguiente L de esta manera la suma de los primeros roblema : uánto suman los primeros 008 términos de la suesión 0,,,,, L? Soluión: Observamos que los números de la suesión se pueden esribir de la siguiente 0 manera,,,,, L de esta manera la suma de los

Más detalles

Integral de norma M. C. Fausto Arturo Contreras Rosales Departamento de Matemáticas y Física Universidad Autónoma de Aguascalientes

Integral de norma M. C. Fausto Arturo Contreras Rosales Departamento de Matemáticas y Física Universidad Autónoma de Aguascalientes Integral de norma M. C. Fausto Arturo Contreras Rosales Departamento de Matemáticas y Física Universidad Autónoma de Aguascalientes Es bien sabido que la integral de Lebesgue es muy superior a la de Riemann

Más detalles

PRIMERA PARTE. FUNCIONES DE VARIABLE COMPLEJA, DERIVACIÓN E INTEGRACIÓN.

PRIMERA PARTE. FUNCIONES DE VARIABLE COMPLEJA, DERIVACIÓN E INTEGRACIÓN. Funciones de variable compleja. Eleonora Catsigeras. 15 Mayo 2006. 5 PRIMERA PARTE. FUNCIONES DE VARIABLE COMPLEJA, DERIVACIÓN E INTEGRACIÓN. Resumen Se estudian algunas funciones complejas de variable

Más detalles

3.- Límites y continuidad

3.- Límites y continuidad 3.- ímites y ontinuidad El límite de una unión está íntimamente unido a su representaión gráia y a la interpretaión de la misma debido a que lo que nos india es el omportamiento o tendenia de la gráia.

Más detalles

An alisis Complejo Rafael Potrie Andr es Sambarino 15 de junio de 2009

An alisis Complejo Rafael Potrie Andr es Sambarino 15 de junio de 2009 Análisis Complejo Rafael Potrie Andrés Sambarino 15 de junio de 2009 Resumen Notas basadas en el curso dictado por el Dr. Miguel Paternain en la Facultad de Ciencias, Montevideo, Uruguay. Índice general

Más detalles

10. Series de potencias

10. Series de potencias FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 7-2 Basado en el apunte del curso Cálculo (2do semestre), de Roberto Cominetti, Martín Matamala y Jorge San

Más detalles

SESIÓN DE APRENDIZAJE

SESIÓN DE APRENDIZAJE INSTITUCIÓN EDUCATIVA INMACULADA DE LA MERCED SESIÓN DE APRENDIZAJE APRENDIZAJE ESPERADO Determina la regla de orrespondenia de una funión Representa e Identifia funiones Resuelve operaiones on funiones

Más detalles

Algunos resultados importantes de Geometría Euclidiana en el plano:

Algunos resultados importantes de Geometría Euclidiana en el plano: lgunos resultados importantes de Geometría Eulidiana en el plano: Grados y radianes El despeje de la siguiente euaión permite realizar la onversión de la unidad angular: grados 180º radianes π Triángulo

Más detalles

Derivadas Parciales de Orden Superior

Derivadas Parciales de Orden Superior Capítulo 9 Derivadas Parciales de Orden Superior La extensión a funciones de varias variables del concepto de derivada de orden superior, aunque teóricamente no ofrece ninguna dificultad, presenta ciertas

Más detalles

Cálculo Integral: Guía I

Cálculo Integral: Guía I 00 Cálulo Integral: Guía I Profr. Luis Alfonso Rondero Garía Instituto Politénio Naional Ceyt Wilfrido Massieu Unidades de Aprendizaje del Área Básia 0/09/00 Introduión Esta guía tiene omo objetivo darte

Más detalles

Matemáticas Avanzadas para Ingeniería: Integrales de Contorno. Departamento de Matemáticas. Intro. Suma. c f (z) dz.

Matemáticas Avanzadas para Ingeniería: Integrales de Contorno. Departamento de Matemáticas. Intro. Suma. c f (z) dz. Integrales ontorno Integrales ontorno MA3002 Integrales ontorno En esta lectura veremos la integral contorno o la integral compleja ĺınea. Recuer la integral ĺınea en dos variables: F dr = f (x(t), y(t))

Más detalles

Parametrización de curvas Integrales de linea. h"p://www.sc.ehu.es/sqwpolim/metodos_matema6cos/

Parametrización de curvas Integrales de linea. hp://www.sc.ehu.es/sqwpolim/metodos_matema6cos/ Parametrización de curvas Integrales de linea h"p://www.sc.ehu.es/sqwpolim/metodos_matema6cos/ Curvas en el espacio En el espacio, una curva se define por el corte de dos superficies. La forma más general

Más detalles

Clase 3: Ecuaciones de Cauchy-Riemann

Clase 3: Ecuaciones de Cauchy-Riemann Clase 3: Ecuaciones de Cauchy-Riemann 16 de agosto de 2016 1. Introducción Consideramos una función f : U C (donde U es un abierto de C) que queremos estudiar cerca de un punto z 0 U. Para esto podemos

Más detalles

1 2 +! $ = # 1$ $ Pensamiento Algebraico GUÍA DE PARA LOS ASPIRANTES A LA MME Temas que debe dominar:

1 2 +! $ = # 1$ $ Pensamiento Algebraico GUÍA DE PARA LOS ASPIRANTES A LA MME Temas que debe dominar: Pensamiento lgebraio Temas que debe dominar: GUÍ DE PR LOS SPIRNTES L MME-06 Definiión, operaiones y propiedades de: Números Naturales Números Enteros Números raionales Números irraionales Números omplejos

Más detalles

R. Alzate Universidad Industrial de Santander Bucaramanga, marzo de 2012

R. Alzate Universidad Industrial de Santander Bucaramanga, marzo de 2012 Resumen de las Reglas de Diseño de Compensadores R. Alzate Universidad Industrial de Santander Buaramanga, marzo de 202 Sistemas de Control - 23358 Esuela de Ingenierías Elétria, Eletrónia y Teleomuniaiones

Más detalles

Teoremas de convergencia y derivación bajo el signo integral

Teoremas de convergencia y derivación bajo el signo integral Capítulo 8 Teoremas de convergencia y derivación bajo el signo integral En este capítulo estudiaremos sucintamente bajo qué circunstancias puede intercambiarse el orden de la integral con las operaciones

Más detalles

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL (Curso 00-00) HOJA Ejercicio. Determina en qué recintos es holomorfa la siguiente función: f(x + iy) x + ay + i(bx + cy) En este caso consideramos: u(x, y) x + ay

Más detalles

La teoría de Einstein-Infeld-Hoffmann Einstein-Infeld-Hoffmann s theory

La teoría de Einstein-Infeld-Hoffmann Einstein-Infeld-Hoffmann s theory Weneslao Segura González La teoría de Einstein-Infeld-Hoffmann Einstein-Infeld-Hoffmann s theory Weneslao Segura González Investigador independiente e-mail: weneslaoseguragonzalez@yahooes web: http://weneslaoseguragonwixom/weneslao-segura

Más detalles

3. FUNCIÓN ZETA DE RIEMANN.

3. FUNCIÓN ZETA DE RIEMANN. 3. FUNCIÓN ZETA DE RIEMANN.. FUNCIÓN GAMMA. Los libros de Funciones de Variable Compleja suelen incluir un estudio de la función Gamma. 3,, Definición. La integral Γs = + 0 t s e t dt, Res > 0 define una

Más detalles

Calor específico Calorimetría

Calor específico Calorimetría Calor espeíio Calorimetría Físia II Lieniatura en Físia 2003 Autores: Andrea Fourty María de los Angeles Bertinetti Adriana Foussats Calor espeíio y alorimetría Cátedra Físia II (Lieniatura en Físia) 1.-

Más detalles

Variable Compleja para Ingeniería

Variable Compleja para Ingeniería Variable ompleja para Ingeniería William La ruz VERSIÓN PRELIMINAR para el uso en el curso Variable ompleja y álculo Operacional Escuela de Ingeniería Eléctrica Departamento de Electrónica, omputación

Más detalles

Espacios conexos. 6.1 Conexos

Espacios conexos. 6.1 Conexos Capítulo 6 Espacios conexos 6.1 Conexos Definición 6.1.1 (Conjuntos separados). Dado un espacio topológico (X, τ) y dos subconjuntos A, B X, diremos que A y B están separados si A B = A B = Es evidente

Más detalles

Cónicas. = 0 son rectas que pasan por su centro y tienen de pendiente m tal que: a) m = a

Cónicas. = 0 son rectas que pasan por su centro y tienen de pendiente m tal que: a) m = a .- Las asíntotas de la hipérbola a x + a y + axy + a 0x + a 0y + a 00 = 0 son retas que pasan por su entro y tienen de pendiente m tal que: a a) m = a b) m es raíz de m + a m + a 0 a = a + am + a m = )

Más detalles

Análisis del lugar geométrico de las raíces

Análisis del lugar geométrico de las raíces Análii del lugar geométrio de la raíe La araterítia báia de la repueta tranitoria de un itema en lazo errado e relaiona etrehamente on la ubiaión de lo polo en lazo errado. Si el itema tiene una ganania

Más detalles

Lugar geométrico de las raíces

Lugar geométrico de las raíces Lugar geométrio de la raíe Análii del lugar geométrio de la raíe La araterítia báia de la repueta tranitoria de un itema en lazo errado e relaiona etrehamente on la ubiaión de lo polo en lazo errado. Si

Más detalles

1. Teorema de Fubini. Teorema de Fubini.

1. Teorema de Fubini. Teorema de Fubini. 1. El teorema de Fubini nos va a dar una técnica para el cálculo de integrales de funciones de varias variables mediante el cálculo de varias integrales de funciones de una variable. partir de ahí se podrán

Más detalles

Ley del Coseno 1. Ley del Coseno. Dado un triángulo ABC, con lados a, b y c, se cumple la relación:

Ley del Coseno 1. Ley del Coseno. Dado un triángulo ABC, con lados a, b y c, se cumple la relación: Ley del Coseno 1 Ley del Coseno Dado un triángulo ABC, on lados a, b y, se umple la relaión: = a + b abosc (Observe que la relaión es simétria para los otros lados del triángulo.) Para demostrar este teorema,

Más detalles

Clase 2. Las ecuaciones de Maxwell en presencia de dieléctricos.

Clase 2. Las ecuaciones de Maxwell en presencia de dieléctricos. Clase Las euaiones de Maxwell en presenia de dielétrios. A diferenia de los metales (ondutores elétrios) existen otro tipo de materiales (dielétrios) en los que las argas elétrias no son desplazadas por

Más detalles

Problemas resueltos de los teoremas de Rolle, valor medio y Cauchy

Problemas resueltos de los teoremas de Rolle, valor medio y Cauchy Problemas resueltos de los teoremas de Rolle, valor medio y Cauchy 1 Es aplicable el teorema de Rolle a la función f(x) = x 1 en el intervalo [0, 2]? 2 Estudiar si la función f(x) = x x 3 satisface las

Más detalles

Matemáticas Avanzadas para Ingeniería Resultados sobre Integrales de Contorno en Variable Compleja, problemas resueltos

Matemáticas Avanzadas para Ingeniería Resultados sobre Integrales de Contorno en Variable Compleja, problemas resueltos . alcule la integral indicada: Matemáticas Avanzadas para Ingeniería Resultados sobre Integrales de ontorno en Variable ompleja, problemas resueltos 2+3 i 3 2 i ( 3 3 i + ( 3 + 4 i) z + 3 z 2 ) dz Reporte

Más detalles

Tema 2: Funciones anaĺıticas. Conjuntos abiertos y conjuntos cerrados. Ejemplos. Marisa Serrano. 6 de octubre de 2009

Tema 2: Funciones anaĺıticas. Conjuntos abiertos y conjuntos cerrados. Ejemplos. Marisa Serrano. 6 de octubre de 2009 Índice Universidad de Oviedo 6 de octubre de 2009 1 2 3 4 email: mlserrano@uniovi.es Conjuntos abiertos y conjuntos cerrados B(a, ɛ) = {z C : z a < ɛ} = D(a, ɛ). Dado A C se dice que un punto a C es interior

Más detalles

FIGURAS PLANAS. ÁREAS

FIGURAS PLANAS. ÁREAS FIGURAS PLANAS. ÁREAS 2º DE ESO JUAN MIGUEL MÉNDEZ LÓPEZ IES Puerta de Pehina 29 de aril de 2012 Índie de Contenidos 1 TEOREMA DE PITÁGORAS Justiaión de la Expresión del Teorema de Pitágoras 2 APLICACIONES

Más detalles

A'' D'' C'' B'' A' C' Figura 1. Verdadera Magnitud de ángulos de rectas.

A'' D'' C'' B'' A' C' Figura 1. Verdadera Magnitud de ángulos de rectas. Tema 5: Ángulos entre retas y planos. Triedros Angulo de dos retas. El ángulo de dos retas es una de las magnitudes de las formas planas, y para obtener su verdadera magnitud se aplia el ambio de plano,

Más detalles

4. RELACIONES CONSTITUTIVAS. LEY DE HOOKE GENERALIZADA

4. RELACIONES CONSTITUTIVAS. LEY DE HOOKE GENERALIZADA 4. RLACIONS CONSTITUTIVAS. LY D HOOK GNRALIZADA 4. Ley de Hooke. Robert Hooke planteó en 678 que existe proporionalidad entre las fuerzas apliadas a un uerpo elástio y las deformaiones produidas por dihas

Más detalles

CÁLCULO INTEGRAL. HOJA 12.

CÁLCULO INTEGRAL. HOJA 12. ÁLULO INTEGRAL. HOJA 12. EL TEOREMA E GREEN. 1. efinición. iremos que una curva R 2 es regular a trozos si se puede parametrizar mediante un camino γ que a su vez puede escribirse como concatenación γ

Más detalles

Tema 2 La elección en condiciones de incertidumbre

Tema 2 La elección en condiciones de incertidumbre Ejeriios resueltos de Miroeonomía. Equilibrio general y eonomía de la informaión Fernando Perera Tallo Olga María Rodríguez Rodríguez Tema La eleión en ondiiones de inertidumbre http://bit.ly/8l8ddu Ejeriio

Más detalles

Hexágono. Los polígonos de cuatro lados, como rectángulos y cuadrados, se llaman cuadriláteros. Los cuadriláteros tienen propiedades especiales.

Hexágono. Los polígonos de cuatro lados, como rectángulos y cuadrados, se llaman cuadriláteros. Los cuadriláteros tienen propiedades especiales. CUADRILÁTEROS " Wow!" Exlamó Juanita mirando una estrutura de ristal a las afueras del museo de arte. "Vamos a ver eso," le dijo a su amiga Samantha. Samantha se aeró a ver lo que Juanita estaba observando

Más detalles

Teorema de la Divergencia (o de Gauss) y la Ecuación de

Teorema de la Divergencia (o de Gauss) y la Ecuación de E.E.I. CÁLCULO II Y ECUACIONE IFEENCIALE Curso 2016-17 Lección 13 (Lunes 13 mar 2017) Teorema de la ivergencia (o de Gauss) y la Ecuación de ifusión. 1. Teorema de la ivergencia (o Teorema de Gauss). 2.

Más detalles

Ecuación Solución o raíces de una ecuación.

Ecuación Solución o raíces de una ecuación. Euaión Igualdad que ontiene una o más inógnitas Soluión o raíes de una euaión. Valores de las inógnitas que umplen la igualdad. 15 = 3x + 6 15 6 = 3x 9 = 3x 3 = x on Existen diversos métodos de hallar

Más detalles