Cónicas singulares y degeneradas. Elementos principales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Cónicas singulares y degeneradas. Elementos principales"

Transcripción

1 Son cuvs plns sguno go. Tmbién s ls llm Sccions ónics, poqu son l sulto intsct con un plno un cono volución. Ls cuvs cónics popimnt ichs son ts: Elips, ábol Hipébol, unqu ltno l cono o l posición l plno pun buscs ots figus, nt lls l cicunfnci. ELISE RÁOL HIÉROL ónics singuls y gns Elmntos pincipls ocos : son los puntos contcto l scción con ls sfs tngnts l plno qu l pouc inscits n l cono. iámtos : cts qu psn po l cnto gomético. os iámtos son conjugos cuno c uno ps po l pol l outo. Ejs : myo (o focl) y mno. Son los únicos iámtos conjugos ppniculs. étic : culqui punto l j myo sob l cuv. icunfnci focl : io igul l j myo, y cnto n uno los focos. En l ábol l lmnto osponint s l ct ictiz. icunfnci pincipl (o cicunscit): tin como iámto l j myo. Un ct tngnt un lips s cot n ll con ls ppniculs qu s tcn s los focos. Rios vctos : sgmntos qu unn un punto l cuv con los os focos. OLONIO ERG E s consib l intscción l cono con un plno ppnicul un gntiz, y l cónic sultnt pní qu l ángulo st spcto l j fus igul (pábol), mno (lips) o myo (hipébol) 5º. stónomo y gómt, fu iscípulo químs y l scul Euclis. Su ob pincipl s un tto 8 libos sob ls cuvs cónics, tn complto qu unt gncions fu conocio como l gn gómt. u l pimo n mpl los téminos ELISE HIÉROL, y n most qu los ts tipos pincipls cónics pun poucis n l mismo cono volución. ntiomnt l solo finió los pincipls lmntos y popis ls cuvs, tminó tngnts y nomls (ls líns más cots qu s pun tz s un punto un cónic), y fomuló gn cnti toms y mostcions. Ent sus potcions pis hbí un métoo ápio p clcul l longitu l cicunfnci pti l iámto. Tom polonio : L sum los cuos os iámtos conjugos n un lips (l ifnci, n l cso l hipébol) s constnt igul, po tnto, l sum los cuos los js.

2 cicunfncis focls Es l lug gomético los puntos los qu l sum istncis otos os fijos s constnt (los puntos fijos son los focos, y l sum istncis s igul l iámto myo) cicunfnci pincipl + = Tmbién s l lug gomético los cntos ls cicunfncis tngnts ot qu psn po un punto intio st, o los puntos qu quiistn un cicunfnci y un punto intio. Ej mno j myo onstucción os los focos y l j myo: Loclizción puntos sánonos n l pim finición, colocmos vis mcs bitis (,,,) nt l cnto y un los focos. Ests ivisions pmitn tom con l compás ps istncis (/, /), qu sumn l mi. Tzno cos s los focos con mis pcils toms s y, loclizmos los puntos l cuv. u finis tmbién con cts tngnts qu sán ppniculs n l cicunfnci pincipl ots tzs s los vétics (ch). onstucción os los js myo y mno: En l pim cso s utiliz l tom Thls p lcion ls os mis imtls, y tsvs ls smicus ppniculs l cicunfnci Tzo nvolvnts cosponint l j mno, l j myo. En l tc métoo s tz un ctángulo qu tin los En l figu cntl s colocn ls cicunfncis los iámtos myo y mno concéntics, qu son fins l lips. S loclizn puntos l cuv tzno pimo vios ios comuns. js como mins. S ivi s l punto mio uno los js n l mismo númo pts iguls qu l lo pllo l oto. Los xtmos st último, linos con ls ivisions, án los puntos buscos. opocionli nt los js myo y mno fini uc poyccions

3 ' onstucción os los iámtos conjugos: l mismo moo qu un cicunfnci vist n pspctiv s un lips, os iámtos ppn- O iculs pcán con un ángulo ifnt, y sán iámtos conjugos. Si imginmos qu l conjugl mno nts l mismo tmño y ppnicul l myo, pomos plic l supusto splzminto sus xtmos (' =, '=) l sto los puntos un cicunfnci inicil. Tmbién pomos inscibi los iámtos conjugos n un omboi los p llos llos y ' plic l métoo cuc poyccions. ictiz Es un cuv pln, bit y un m. S fin como l lug gomético los puntos qu quiistn oto punto y un ct (oco y ct ictiz). cuv u comps un lips n l qu uno los focos s splz l infinito. L ct ictiz cospon l cicunfnci focl. foco Ej u constuis cotno con cos s l foco cts plls l ictiz, tomno como io l vétic = istnci ést c un ls plls. Tmbién po cuc poyccions si conocmos l j, l vétic y un punto l cuv, o finil unino l foco con Tngnt pincipl istintos puntos l tngnt pincipl y tzno s stos puntos cts ppniculs, qu sán tngnts l cuv Loclizción puntos oyccions Envolvnts

4 síntots L Hipébol s un cuv pln, bit y con os ms. Es l lug gomético los puntos los qu l ifnci istncis otos os fijos s constnt. cicunfnci pincipl Tmbién s l lug gomético los cntos ls cicunfncis tngnts ot qu psn po un punto xtio ést, o los puntos qu quiistn un cicunfnci y un punto xtio. L mi nominl l j myo sigu sino l istnci nt los vétics l cuv. Ls síntots son ls tng nts l cuv n l infinito. pnino los tos, su constucción s hc po métoos sncilmnt iguls los mplos n ls ots cuvs cónics. - = cic. ocls Loclizción puntos, os l j myo y los focos o poyccions, os l j myo, los focos y un punto. o nvolvnts, os l j myo y los focos opis ls cuvs cónics : ulqui ct tz s un foco un lips sá flj n icción l oto foco. En l pábol toos los fljos sán pllos l j. sí, ls ntns pbólics pmitn l misión o cpción uniiccionl ls ons. En l hipébol, los fljos fomán un hz ivgnt polizo po l foco contio. Ls stuctus convxs bss n cuvs cónics psntn un muy bun sistnci ls psions xtios, sino utilizs, nt ots coss, n l constucción cos y punts.

5 TNGENTES Y NORMLES n n n Tngnt y noml n un punto l cuv: son ls bisctics los ángulos poucios po ls cts qu psn po y po c uno los focos. Su posición n l Hipébol s invs qu n l Elips. En l ábol s consi l sguno foco n l infinito. T E T E E T T T T Tngnts s un punto xtio l cuv: Tács un cicunfnci con cnto n E qu ps po uno los focos, y cicunfnci focl con cnto n l oto (ct ictiz, n l ábol). Ls cts tngnts son ls mitics los sgmntos finios po c intscción nt los os cos y l pim foco. Los puntos tngnci stán linos con los intscción y l cnto l cicunfnci focl. T T T T T Tngnts plls un icción : Tács po un foco un ppnicul l icción, y l cicunfnci focl con cnto n l oto foco. Ls tngnts (un n l cso l ábol) y los puntos tngnci qun finios l mism mn qu n l cso ntio.

6 INTERSEIÓN ON RET I I M M I I S conocn l j y los focos y l lips, sí como l ct scnt. Mint un ppnicul, s locliz l simético l foco spcto l ct:, S tz un cicunfnci qu ps po los os puntos siméticos con cnto n culqui punto, con tl qu cot l focl. S tz l j icl mbs psno po los puntos cot, y s locliz n cnto icl on cot l polongción. S un l cnto con y s l punt o mio M s tz un tc cicunfnci qu cot l focl n los puntos y. Unino c uno llos con, s obtinn n ls intsccions I I. Un métoo lgo más bv consist n scog culqui punto n l ct y tz l cicunfnci iámto. Ls mitics los sgmntos y n n l ct los puntos intscción. I M I T I I S conocn l j y los focos y l hipébol, sí como l ct scnt. Mint un ppnicul, s locliz l simético l foco spcto l ct:, S tz un cicunfnci qu ps po los os puntos siméticos con cnto n culqui punto, con tl qu cot l focl. S tz l j icl mbs psno po los puntos cot, y s locliz n cnto icl on cot l polongción. S un l cnto con y s l p unto mio M s tz un tc cicunfnci qu cot l focl n los puntos y. Unino c uno llos con, s obtinn n ls intsccions I I. S conocn l j un pábol, l foco y l ct ictiz, sí como l ct scnt. Mint un ppnicul, s locliz, simético spcto, y s polong hst cot l ictiz n. S tz un cicunfnci con cnto n qu tin como iámto, sí como l cu ppnicul qu ps po. on cnto n s tz ot cicunfnci qu ps tmbién po y, qu cot l ictiz n los puntos y. Tzno po llos plls l j tnmos n los puntos intscción.

TRANSFORMACIONES GEOMÉTRICAS Proyectividad y homografía Homología y afinidad Inversión TEMA4. Objetivos y orientaciones metodológicas. 1.

TRANSFORMACIONES GEOMÉTRICAS Proyectividad y homografía Homología y afinidad Inversión TEMA4. Objetivos y orientaciones metodológicas. 1. TRNSRMINES GEMÉTRIS Poyctivi y homogfí Homologí y fini Invsión TEM4 IUJ GEMÉTRI bjtivos y ointcions mtoológics Est Tm tin como objtivos intouci l lumno n los conocimintos poyctivi, homogfí, homologí, fini

Más detalles

SEPTIEMBRE 2001 INSTRUCCIONES:

SEPTIEMBRE 2001 INSTRUCCIONES: SEPTIEMBRE INSTRUCCIONES El mn psnt os opcions B; l lumno bá lgi un lls contst zonmnt los cuto jcicios qu const ich opción n h. min. OPCIÓN Ejcicio. Clificción máim puntos. Dtmin l cución ctsin l lug gomético

Más detalles

Por dos puntos pasan infinitas circunferencias secantes formando un haz. La recta que une los dos puntos es su eje radical.

Por dos puntos pasan infinitas circunferencias secantes formando un haz. La recta que une los dos puntos es su eje radical. TNNI. onceptos, popieddes y noms. Po un punto psn infinits cicunfeencis tngentes. L ect tngente ells po dicho punto es su eje dicl. Po dos puntos psn infinits cicunfeencis secntes fomndo un hz. L ect que

Más detalles

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL Cpít ulo RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL Dfiniions Pvis: I. ÁNGULO EN POSICIÓN NORMAL Llmo tmién n posiión nóni o stán. Es quél ángulo tigonométio uo véti oini on l oign l sistm

Más detalles

Ecuaciones de Poisson y Laplace

Ecuaciones de Poisson y Laplace Elctc y Mgntsmo / Elctostátc Dfncón Los conuctos n lctostátc. mpo un cg puntul. plccons l Ly Guss Intgls supposcón. Potncl lctostátco Dfncón Intptcón. Intgls supposcón. Ecucons Posson y Lplc. oncons Intfs.oncons

Más detalles

SEPTIEMBRE Tiempo: 90 minutos OPCIÓN A ( ) ( )

SEPTIEMBRE Tiempo: 90 minutos OPCIÓN A ( ) ( ) SEPTIEMRE 5 INSTRUCCIONES El mn psn os opcions ; l lumno bá lgi un sólo un lls solv los cuo jcicios qu cons. No s pmi l uso clculos con cpci psnción gáfic. PUNTUCIÓN L clificción máim c jcicio s inic n

Más detalles

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO Tems Geometí en el espcio Mtemátics II º Bchilleto TEMAS Y GEOMETRÍA EN EL ESACIO ECUACIONES DE RECTAS Y LANOS EJERCICIO es plelo plno que contiene l ect Escibe l ecución del. s hll l ecución de un plno,

Más detalles

Matemáticas II Bloque VI Carlos Tiznado Torres

Matemáticas II Bloque VI Carlos Tiznado Torres Mtmátis II loqu VI rlos Tizno Torrs IRUNFERENI El írulo y l irunfrni son os ojtos gométrios qu hn llmo l tnión y hn sio l ojto stuio un grn númro mtmátios s timpos ntiguos, sino más grn utili práti pr

Más detalles

4πε. q r 2. q r C 2 2

4πε. q r 2. q r C 2 2 . ) A un distnci d. cm dl cnto d un sf conducto con cg cuyo dio s d. cm, l cmpo léctico s d 48 N/. uál s l cmpo léctico.6 cm dl cnto d l sf? ) A un distnci d. cm dl j d un cilindo conducto muy lgo con

Más detalles

GEOMETRÍA 3º E.S.O. FIGURAS SEMEJANTES SEMEJANZA DE TRIÁNGULOS SEMEJANZA DE TRIÁNGULOS

GEOMETRÍA 3º E.S.O. FIGURAS SEMEJANTES SEMEJANZA DE TRIÁNGULOS SEMEJANZA DE TRIÁNGULOS GEOMETRÍ DEL PLNO 3º E.S.O. FIGURS SEMEJNTES Dos figus son semejntes cundo sólo difieen en tmño. Los segmentos coespondientes son popocionles. d longitud de un de ells se otiene multiplicndo l longitud

Más detalles

marco teórico. capítulo 1 Geometría Descriptiva Ing. Alberto M. Pérez G.

marco teórico. capítulo 1 Geometría Descriptiva Ing. Alberto M. Pérez G. omtí sciptiv In. lto M. éz. cpítulo 1 mco tóico. Toos los ojtos cos po l hom, s un simpl lfil hst l más complj mquini, plnt inustil, o civil, tc, son concios inicilmnt n fom mntl, y nts su ficción n s

Más detalles

Tema 5B. Geometría analítica del plano

Tema 5B. Geometría analítica del plano Tem 5B. Geometí nlític del plno L geometí nlític estudi ls elciones ente puntos, ects, ángulos, distncis, de un modo lgebico, medinte fómuls lgebics y ecuciones. P ello es impescindible utiliz un sistem

Más detalles

Practico 7 Fuerza y Leyes de Newton

Practico 7 Fuerza y Leyes de Newton 008 Pctico 7 uez y Leyes de Newton ) Un bloque de 5.5 Kg. está inicilmente en eposo sobe un supeficie hoizontl sin ficción. Es empujdo con un fuez hoizontl constnte de 3.8 N. ) Cuál es su celeción? b)

Más detalles

y ) = 0; que resulta ser la

y ) = 0; que resulta ser la º BT Mt I CNS CÓNICAS Lugr geométrico.- Es el conjunto de los puntos que verificn un determind propiedd p. Considermos un determindo sistem de referenci crtesino del plno. Diremos que l ecución f(x,)=0

Más detalles

LUGARES GEOMÉTRICOS Y ÁNGULOS

LUGARES GEOMÉTRICOS Y ÁNGULOS REPASO Y APOYO OBJETIVO 1 LUGARES GEOMÉTRICOS Y ÁNGULOS Nombe: Cuso: Fec: Se llm lug geomético l conjunto de todos los puntos que cumplen un detemind popiedd geométic. EJEMPLO Cuál es el lug geomético

Más detalles

INTEGRALES MÚLTIPLES

INTEGRALES MÚLTIPLES APITULO VI I. INTEGALE OBLE INTOUION INTEGALE MÚLTIPLE En l stuio intgls oinis f l función f s fini n un intvlo co [ ] p l cso stuimos ls intgls cuvilíns G c l función s fini so l cuv ho stuimos los intgls

Más detalles

1) Halla La ecuación del lugar geométrico de los puntos del plano cuya distancia a P(1,2) es doble que su distancia a Q(-1,8).

1) Halla La ecuación del lugar geométrico de los puntos del plano cuya distancia a P(1,2) es doble que su distancia a Q(-1,8). CÓNICS º BCHILLERTO ) Hll L ecución d lugr geométrico los puntos d plno cu distnci P(,) doble que su distnci Q(-,). d ( R, P) d( R, Q) ( ) ( ) ( ) ( ) ( ) 0 0 0 ) Encuentr l circunferenci circunscrit l

Más detalles

ESQUEMA. Las unidades de la velocidad de reacción son M/s o mol / l s. podemos definir las siguientes velocidades de reacción:

ESQUEMA. Las unidades de la velocidad de reacción son M/s o mol / l s. podemos definir las siguientes velocidades de reacción: TEMA 6. CINÉTICA QUÍMICA. I. VELOCIDAD DE UNA REACCIÓN. Después e estui l temoinámic e un ección, los intecmbios e enegí que conlle, pece que tiene sentio estui con qué eloci se pouce un ección. L eloci

Más detalles

CUADRILÁTEROS. I.E.S. Las Salinas de Laguna de Duero DIBUJO TÉCNICO CLASIFICACIÓN. PARALELOGRAMOS (dos pares de lados paralelos) Diagonales.

CUADRILÁTEROS. I.E.S. Las Salinas de Laguna de Duero DIBUJO TÉCNICO CLASIFICACIÓN. PARALELOGRAMOS (dos pares de lados paralelos) Diagonales. PRLLOGROS (os pas aos paaos) URILÁTROS LSIFIIÓN uaao Laos Iuas os 4 aos nuos 90 º iaonas Iuas as 2 nuos 90 º isctics os ánuos cuaao. Iuas os aos paaos (2 a 2) nuos 90 º Iuas as 2 nuos 90 º Rctánuo Rombo

Más detalles

Solución de la ecuación de Schödinger para una partícula libre.

Solución de la ecuación de Schödinger para una partícula libre. Solución d l cución d Schöding un tícul lib. Vmos nliz l volución tmol d l función d ond d un tícul lib con un jmlo concto. Ptimos d l siguint condición inicil: (; ) ik dond y k son dos constnts ls. Lo

Más detalles

TEMA II: POSICIONES RELATIVAS ENTRE ELEMENTOS

TEMA II: POSICIONES RELATIVAS ENTRE ELEMENTOS TEA II: POSICIONES RELATIVAS ENTRE ELEENTOS..D Ente dos ects Dos ects en el espcio pueden se: ) plels (sus poecciones homónims son plels) b) secntes (tienen un único punto en común) c) o cuse Ejemplo 4

Más detalles

LA ELIPSE DEFINICIÓN ELEMENTOS DE LA ELIPSE

LA ELIPSE DEFINICIÓN ELEMENTOS DE LA ELIPSE 1 LA ELIPSE DEFINICIÓN L elipse es el lugr geométrico de todos los puntos P del plno cuy sum de distncis dos puntos fijos, F 1 y F, llmdos focos es un constnte positiv. Es decir: L elipse es l curv cerrd

Más detalles

Siempre verifica que a 2 = b 2 + c 2 (Th. Pitágoras)

Siempre verifica que a 2 = b 2 + c 2 (Th. Pitágoras) Págin 1 FIGURAS EN EL PLANO POLÍGONOS FIGURAS EN EL PLANO Y EN EL ESPACIO 1.- Polígono de 3 ldos: Tiángulo. B Los ángulos inteioes de culquie tiángulo sumn siempe 180º. El áe de culquie tiángulo se puede

Más detalles

Ejercicio 1. x a. Ejercicio 2.

Ejercicio 1. x a. Ejercicio 2. Sptim 5 - Opción A (Molo 6) Ejcicio. D un función f: R R s s qu f() y qu f (. () [ punto] Dtmin f. () [ 5 puntos] Clcul l á l ión limit po l áfic f, po l j sciss y po ls cts cucions - y. () Aplicno l Tom

Más detalles

6.2 DISTANCIA ENTRE DOS PUNTOS Consideremos la siguiente figura: Según el teorema de Pitágoras se tiene que: d x. y 2

6.2 DISTANCIA ENTRE DOS PUNTOS Consideremos la siguiente figura: Según el teorema de Pitágoras se tiene que: d x. y 2 UNIDAD 6: GEOMETRIA ANALÍTICA 6. SISTEMA DE COORDENADAS RECTANGULARES Un sistem de coordends rectngulres divide l plno en cutro cudrntes por medio de dos rects perpendiculres que se cortn en el punto O.

Más detalles

Lámina 01. Ejercicio 3. Con la ayuda del compás, trazar: ( AB + CD) - EF, a partir del punto N, y

Lámina 01. Ejercicio 3. Con la ayuda del compás, trazar: ( AB + CD) - EF, a partir del punto N, y E F G I J H M K M L N N Q P R S Ejecicio 1. Medi con un egl estos segmentos y not, encim de cd uno de ellos, el esultdo en milímetos. T Ejecicio 2. on l yud del compás, tz: +, pti del punto M, -, pti del

Más detalles

el blog de mate de aida: MATE I. Cónicas pág. 1

el blog de mate de aida: MATE I. Cónicas pág. 1 el blog de mte de id: MATE I. Cónics pág. 1 SECCIONES CÓNICAS Un superficie cónic se obtiene l girr un rect g (llmd genertriz), lrededor de otr rect e, llmd eje de giro, l que cort en un punto V (vértice).

Más detalles

Método de las Imágenes.

Método de las Imágenes. Electici Mgnetismo Cuso 5/6 Métoo e ls Imágenes. Es un métoo potente ue pemite esolve lgunos polems complicos. Consiste en moific el polem, mplino el ecinto, e fom ue:» Resulte más sencillo.» Se sign cumplieno

Más detalles

Álgebra I Práctica 1 - Conjuntos, Relaciones y Funciones

Álgebra I Práctica 1 - Conjuntos, Relaciones y Funciones FEyN - U - uso Vno 206 onjuntos Álg I Páti - onjuntos, Rlions y Funions Si s un suonjunto un onjunto nil V, notmos po l omplmnto spto V.. Do l onjunto = {, 2, 3}, tmin uáls ls siguints imions son vs i)

Más detalles

1) Halla La ecuación del lugar geométrico de los puntos del plano cuya distancia a P(1,2) es doble que su distancia a Q(-1,8).

1) Halla La ecuación del lugar geométrico de los puntos del plano cuya distancia a P(1,2) es doble que su distancia a Q(-1,8). ÓNIS º BHILLERTO ) Hll L uión lugr gométrio los untos lno u istni P(,) s ol qu su istni Q(-,). ( R, P) ( R, Q) ( ) ( ) ( ) ( ) ( ) ) Enuntr l irunfrni irunsrit l triángulo vértis (-,); B(-,); (-,). lul

Más detalles

TEMA 5: CÁLCULO VECTORIAL

TEMA 5: CÁLCULO VECTORIAL IES Al-Ándlus. Dpto. Físic Químic. F.Q. 1º Bchilleto. Tem 5: Cálculo vectoil - 1-5.1 VECTORES TEMA 5: CÁLCULO VECTORIAL 5.1 Vectoes 5. Sistems de efeenci. Coodends. Componentes de un vecto. 5.3 Opeciones

Más detalles

Resolución de Problemas: Trapajo Práctico nº 4

Resolución de Problemas: Trapajo Práctico nº 4 Resolución e Poblems: Tpjo Páctico nº 4 Poblem 2: En el cento e un cubo e 1cm e lo se coloc un cg puntul Q5mC. Cuánto vle el flujo eléctico tvés e un c? Y si l cg se ubic en un vétice el cubo? P clcul

Más detalles

2πε. V b a. b a. dr r 850V E 3

2πε. V b a. b a. dr r 850V E 3 3.6 El tuo e un conto Geige tiene un cilino metálico lgo y hueco e cm e iámeto. too lo lgo el eje el tuo hy un lme e.7 mm e iámeto. uno el tuo está funcionno, se plic un voltje e 85 V ente los conuctoes.

Más detalles

A r SOLUCION. v M. a) Circunferencia fija. Movimiento sobre la circunferencia

A r SOLUCION. v M. a) Circunferencia fija. Movimiento sobre la circunferencia Un ct B s mu n dicción ppndicul su dicción cn lcidd cnstnt. En su mimint, ct un cicunfnci fij d cnt di n l punt ibl. Supnind qu l ct l cicunfnci pmncn n un pln únic n td instnt: B Hll l lcidd clción dl

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II IES CASTELAR BADAJOZ Emn Junio d (Gnrl) Antonio ngino Corbcho UNIVERSIDAD DE ETREADURA ATEÁTICAS II ATEÁTICAS II Timpo máimo: hor minutos Instruccions: El lumno lgirá un d ls dos opcions propusts Cd un

Más detalles

Álgebra I Práctica 1 - Conjuntos

Álgebra I Práctica 1 - Conjuntos FEyN - U - Sguno utimst 203 Álg I Páti - onjuntos Si s un suonjunto un onjunto nil V, notmos po l omplmnto spto V.. Do l onjunto = {, 2, 3}, tmin uáls ls siguints imions son vs i) ii) {} iii) {2, } iv)

Más detalles

Método de las Imágenes.

Método de las Imágenes. Electici Mgnetismo 9/ Electostátic efinición Los conuctoes en electostátic. Cmpo e un cg puntul. plicciones e l Le e Guss Integles e supeposición. Potencil electostático efinición e Intepetción. Integles

Más detalles

Método de las Imágenes.

Método de las Imágenes. Electomgnetismo /3 Electostátic efinición Los conuctoes en electostátic. Cmpo e un cg puntul. plicciones e l Le e Guss Integles e supeposición. Potencil electostático efinición e Intepetción. Integles

Más detalles

la integral de línea de B alrededor de un trayecto cerrado

la integral de línea de B alrededor de un trayecto cerrado LEY DE AMPERE L ley de Guss de los cmpos elécticos implic el flujo de E tvés de un supeficie ced; estlece que este flujo es igul l cociente de l cg totl enced dento de l supeficie ente l constnte ε. En

Más detalles

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: Deptmento de Físic, UTFSM Físic Genel II / of: A. Bunel. FIS10: FÍSICA GENERAL II GUÍA #3: otencil Eléctico. Objetivos de pendizje Est guí es un hemient que usted debe us p log los siguientes objetivos:

Más detalles

Representar las dos proyecciones y la tercera proyección de los puntos dados a continuación:

Representar las dos proyecciones y la tercera proyección de los puntos dados a continuación: Repesent ls dos poyecciones y l tece poyección de los puntos ddos continución: pto. lej. cot A + 0 B + = + C + < + D 0 + E - > + F - = + G - > + H - 0 I - > - J - = - K L - 0 < - - M + < - N + = - + >

Más detalles

FIGURAS EN EL PLANO Y EN EL ESPACIO

FIGURAS EN EL PLANO Y EN EL ESPACIO Consejeí de Educción, Cultu y Depotes CENTRO DE EDUCACIÓN DE PERSONAS ADULTAS. Simienz C/ Fncisco Gcí Pvón, 16 Tomelloso 1700 (C. Rel) Teléfono Fx: 96 51 9 9 Págin 1 FIGURAS EN EL PLANO POLÍGONOS FIGURAS

Más detalles

BLOQUE 2: MOVIMIENTO RELATIVO

BLOQUE 2: MOVIMIENTO RELATIVO LOQUE 2: MOVIMIENTO RELTIVO Sistems e efeenci en tslción Sistems e efeenci en otción LOQUE 2: Moimiento eltio El moimiento e un ptícul epene el S.R. elegio. sí, os obseoes (S.R. ifeentes) no tienen po

Más detalles

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y L Elipse Regresr Wikispces L elipse es el conjunto de todos los puntos P de un plno, tles que l sum de ls distncis de culquier punto dos puntos fijos del plno es constnte y su ecución se llm ecución ordinri.

Más detalles

CASTILLA LEÓN / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CASTILLA LEÓN / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO OCIÓN A Cd lumno lgiá obligtoimnt un d ls dos opcions qu s poponn. L puntución máxim s d 3 puntos p cd poblm y d puntos p cd custión. OBLEMAS. ) Si l luz sol td n pomdio 8,33 minutos n llg l Ti,,7 minutos

Más detalles

2πR π =

2πR π = PÁGIN 11 Pág. 1 oodends geogáfi cs 19 os ciuddes tienen l mism longitud, 15 E, y sus ltitudes son 7 5' N y 5' S. uál es l distnci ente ells? R b 7 5' b 5' Tenemos que ll l longitud del co coespondiente

Más detalles

Secciones cónicas CONO. Un cono es la superficie que se obtiene girando una recta alrededor de un eje que la cruza.

Secciones cónicas CONO. Un cono es la superficie que se obtiene girando una recta alrededor de un eje que la cruza. Secciones cónics Un cono es l superficie que se obtiene girndo un rect lrededor de un eje que l cruz. Un sección cónic es l curv que se obtiene intersectndo un cono con un plno. CONO Los griegos comenzron

Más detalles

SEGUNDO TALLER DE REPASO

SEGUNDO TALLER DE REPASO Docnt: Ángl Aita Jiménz SEGUNDO TALLER DE REPASO EJERCICIOS DE LEY DE GAUSS 1. Una sfa aislant d adio R tin una dnsidad d caga unifom ρ y una caga positiva total Q. Calcula l campo léctico n las gions.

Más detalles

Tema 4: Potencial eléctrico

Tema 4: Potencial eléctrico 1/38 Tem 4: Potencil Eléctico Fátim Msot Conde Ing. Industil 2007/08 Tem 4: Potencil Eléctico 2/38 Índice: 1. Intoducción 2. Enegí potencil eléctic 1. de dos cgs puntules 2. de un sistem de cgs 3. Intepetción

Más detalles

UTalca - Versión Preliminar

UTalca - Versión Preliminar 1. Definición L hipérbol es el lugr geométrico de todos los puntos del plno cuyo vlor bsoluto de l diferenci de ls distncis dos puntos fijos es constnte. Más clrmente: Ddos (elementos bses de l hipérbol)

Más detalles

Álgebra I Práctica 1 - Conjuntos, Relaciones y Funciones

Álgebra I Práctica 1 - Conjuntos, Relaciones y Funciones FEyN - U - Vno 204 onjuntos Álg I Páti - onjuntos, Rlions y Funions Si s un suonjunto un onjunto nil V, notmos po l omplmnto spto V.. Do l onjunto = {, 2, 3}, tmin uáls ls siguints imions son vs i) ii)

Más detalles

EL ESPACIO AFÍN. Respecto del sistema de referencia, las coordenadas del punto A= a, a, a

EL ESPACIO AFÍN. Respecto del sistema de referencia, las coordenadas del punto A= a, a, a Geometí Anlític: El Espcio Afín Pofeso:Mí José Sánchez Queedo. EL ESPACIO AFÍN SISTEMA DE REFERENCIA EN EL ESPACIO AFÍN Un sistem de efeenci del espcio fín está compuesto po un punto fijo O del espcio

Más detalles

Física. g u a y F R. Entonces : tg

Física. g u a y F R. Entonces : tg Físic g u y. Clcul l istnci el equiliio ente ls os esfes e l figu, e ms m, cgos con q coulomios, si se supone que el ángulo con l veticl es muy pequeño, y los hilos que los sujetn no tienen ms. SOLUCIÓN:

Más detalles

Hattar el centno del arco. Trazar las rectas tangente y normal a la circunferencia en el punto T de ella.

Hattar el centno del arco. Trazar las rectas tangente y normal a la circunferencia en el punto T de ella. n rct y un circunfrnci, ds circunfrncis, sn tngnts ntr sí, si tinn un únic punt cmún, lmd punt d tngnci. n rct y un circunfrnci, ds circunfrncis, sn xtrirsi n tinn ningún punt cmún, y scntsi tinn ds punts

Más detalles

RESOLUCIÓN RESOLUCIÓN SEMANA 6 CIRCUNFERENCIA RPTA.: C. 2r 2k = 2R 5k r 2 = R 5 RPTA.: A

RESOLUCIÓN RESOLUCIÓN SEMANA 6 CIRCUNFERENCIA RPTA.: C. 2r 2k = 2R 5k r 2 = R 5 RPTA.: A SEMN 6 IRUNFERENI. En un tiángulo ectángulo cuyos ángulos gudos miden 7 y 5. lcule l elción ente ls medids indio y el cicundio. ) /5 ) /5 )/0 D) /5 E) /7 Indio R = icundio Dto: + b + c = 4. R =.. : Teoem

Más detalles

Gráficamente se representan mediante un punto en una escala (de ahí el nombre).

Gráficamente se representan mediante un punto en una escala (de ahí el nombre). 1.- Intoducción. L Cinemátic es l pte de l ísic que descibe los movimientos de los cuepos sin bod ls cuss que los poducen, ls cules son objeto de ot pte de l ísic: l Dinámic. L Cinemátic esponde l necesidd

Más detalles

( ) ( ) ( ) ( ) BLOQUE A + = + IES Mediterráneo de Málaga Solución Junio 2012 Juan Carlos Alonso Gianonatti

( ) ( ) ( ) ( ) BLOQUE A + = + IES Mediterráneo de Málaga Solución Junio 2012 Juan Carlos Alonso Gianonatti IES Mditáno d Málg Solución Junio Jun Clos Alonso Ginontti BLOQUE A CUESTIÓN A..- ) Discut l guint stm d cucions n unción dl pámto [ 5 puntos] ) Rsul l stm cundo s comptil [ punto] λ λ λ Solución 8 Con

Más detalles

dt Igualando la fuerza de inercia en el satélite con la fuerza gravitacional, tenemos:

dt Igualando la fuerza de inercia en el satélite con la fuerza gravitacional, tenemos: ECUACIONES DE LA ORBITA LAS ECUACIONES DE LA ORBITA Lys d Kpl Las óbitas son planas y l satélit dscib una lips con un foco n l cnto d masa d la Tia. El adio vcto dscib áas iguals n timpos iguals. Los cuadados

Más detalles

3. SISTEMAS DE ECUACIONES LINEALES

3. SISTEMAS DE ECUACIONES LINEALES Sistems de Ecuciones Hemients infomátics p el ingenieo en el estudio del lgeb linel SISEMAS DE ECUACIONES LINEALES 1 DEFINICIONES PREVIAS 2 EOREMA DE ROUCHÉ-FROBENIUS MÉODO DE RESOLUCIÓN DE GAUSS 4 MÉODO

Más detalles

CÓMO SE USA ESTE LIBRO

CÓMO SE USA ESTE LIBRO 38 Fig. 8 Fig. 9 Fig. 4 Sgmnto ppnicula común a o cta. Fig. 20 Fig. 2 " " " " ' " ' " " ' ' Fig. 3 Fig. 5 Fig. 22 Fig. 23 ' ' Fig. 5 Fig. 6 Fig. Fig. 2 Fig. 4 Fig. 6 Fig. 24 Fig. 25 Fig. 26 ÓM SE US ESTE

Más detalles

2. Conversión de Coordenadas.

2. Conversión de Coordenadas. Cvsó Cs Ctí Mtátc A Stll Vázquz Cvsó Cs Pccó C Sst cs sétc sétc Pl l Pccó,, Elps supc c ptz, φ, Cálcul lítc ucó Alítc vbl cplj λ = λ λ,sλ l ltu l M Ctl l Hus, φ l lttu Isétc cspt l lttu ésc ϕ s S s ucs

Más detalles

Cálculo con vectores

Cálculo con vectores Unidd didáctic 1 Cálculo con vectoes 1.- Mgnitudes escles vectoiles. Son mgnitudes escles quells, como l ms, l tempetu, l enegí, etc., cuo vlo qued fijdo po un númeo (con su unidd coespondiente). Gáficmente

Más detalles

Más información: Grupo DIA. Teléfono: 91 398 54 00. Nieves Álvarez. Lara Vadillo. Ginés Cañabate. comunicación@diagroup.com

Más información: Grupo DIA. Teléfono: 91 398 54 00. Nieves Álvarez. Lara Vadillo. Ginés Cañabate. comunicación@diagroup.com Doi pn Má infomción: Gpo DIA. Tléfono: 91 398 54 00 Niv Álvz. L Villo. Giné Cñbt comnicción@igop.com Román y Aocio. Tléfono: 91 591 55 00 Jvi Agil: j.gil@omnyocio. Silvi Sotomyo:.otomyo@omnyocio. INDICE:

Más detalles

IES Mediterráneo de Málaga Solución Septiembre 2006 Juan Carlos Alonso Gianonatti PRUEBA A PROBLEMAS

IES Mediterráneo de Málaga Solución Septiembre 2006 Juan Carlos Alonso Gianonatti PRUEBA A PROBLEMAS IES Mditáno d Málg Solución Spti 6 Jun Clos lonso Ginontti PRUEB PROBLEMS PR-- - ) Hálls l lo d p l qu l ct l plno sn pllos ) P clcúls l cución dl plno qu contin s ppndicul ) Los ctos dictos d ct plno

Más detalles

APUNTES DE CRISTALOGRAFÍA: RETÍCULO RECÍPROCO Màrius Vendrell RETÍCULO RECÍPROCO

APUNTES DE CRISTALOGRAFÍA: RETÍCULO RECÍPROCO Màrius Vendrell RETÍCULO RECÍPROCO RETÍCULO RECÍPROCO A pti el etíulo efinio nteiomente, en el que omo nuo oespone un motivo o llmemos etíulo ieto, es posible efini oto etíulo (que llmemos eípoo) en el ul los tes vetoes funmentles son:

Más detalles

RODAMIENTOS DE RODILLOS CÓNICOS

RODAMIENTOS DE RODILLOS CÓNICOS B 106 RODAMIENTOS DE RODILLOS CÓNICOS RODAMIENTOS DE RODILLOS CÓNICOS DE DISEÑO MÉTRICO Diámeto Inteio 15~100mm...................... Págins B116~B123 Diámeto Inteio 105~240mm.................... Págins

Más detalles

HIPÉRBOLA. Las componentes principales de la hipérbola se pueden obtener de la figura anterior, las cuales son: Focos: Vértices: Pág.

HIPÉRBOLA. Las componentes principales de la hipérbola se pueden obtener de la figura anterior, las cuales son: Focos: Vértices: Pág. HIPÉRBOLA. Es el conjunto de todos los puntos con l propiedd de que l diferenci de ls distncis de los puntos del conjunto dos puntos fijos ddos es un constnte, positiv y menor que l distnci entre los focos.

Más detalles

Estrategia FOVISSSTE en productos

Estrategia FOVISSSTE en productos Estt FOVISSSTE n poutos Inmnt l númo otomnto étos Hoy usos popos lmtos Más usos FOVISSSTE qun más lo nst Los usos los étoonls s pln p los smntos tos qu ms los nstn Búsqu nnmnto Mo l vvn lobos Los smntos

Más detalles

3. Explica en qué consisten la miopía y la hipermetropía. Qué lentes se usan para su corrección?

3. Explica en qué consisten la miopía y la hipermetropía. Qué lentes se usan para su corrección? CANARIAS / JUNIO 0. LOGS / ÍSICA / XAMN COMPLTO D las dos opcions popustas, sólo hay qu dsaolla una opción complta. Cada poblma cocto val po ts puntos. Cada custión cocta val po un punto. OPCIÓN A Poblmas.

Más detalles

Óvalo dados los dos ejes: óvalo óptimo

Óvalo dados los dos ejes: óvalo óptimo l óvlo es un urv err y pln que está ompuest por utro, o más, ros e irunferéni simétrios entre sí. Suele venir efinio por os ejes que mrn sus imensiones y sirven e ejes e simetrí e los ros. Se emple freuentemente

Más detalles

PROBLEMAS RESUELTOS DE CORRIENTE ELÉCTRICA

PROBLEMAS RESUELTOS DE CORRIENTE ELÉCTRICA UNVERSDD NCONL DEL CLLO FCULTD DE NGENERÍ ELÉCTRC Y ELECTRÓNC ESCUEL PROFESONL DE NGENERÍ ELÉCTRC CURSO: TEORÍ DE CMPOS ELECTROMGNÉTCOS PROFESOR: ng. JORGE MONTÑO PSFL PROBLEMS RESUELTOS DE CORRENTE ELÉCTRC

Más detalles

ELIPSE E HIPERBOLA DEFINICIONES Y EJERCICIOS

ELIPSE E HIPERBOLA DEFINICIONES Y EJERCICIOS ELIPSE E HIPERBOLA DEFINICIONES Y EJERCICIOS Chí, Octubre de 015 Señores Estudintes grdos Décimos Adjunto encontrrán ls definiciones y los ejercicios que deben relizr de los dos tems pendientes pr l evlución

Más detalles

Proyecciones ortogonales (diédricas y triédricas)

Proyecciones ortogonales (diédricas y triédricas) Proyccions ortogonls (diédrics y triédrics) Pro. Rúl F. ongiorno S dnominn proyccions ortogonls l sistm d rprsntción qu nos prmit diujr n dirnts plnos un ojto situdo n l spcio. undo hlmos d sistms d rprsntción

Más detalles

CÓNICAS ESTUDIO ANALÍTICO DE LAS CÓNICAS

CÓNICAS ESTUDIO ANALÍTICO DE LAS CÓNICAS ESTUDIO ANALÍTICO DE LAS CÓNICAS Definición: Cónic es el lugr geométrico de los puntos de un plno cu rzón de distncis un punto fijo (que llmremos foco) un rect fij (que llmremos directriz) es constnte.

Más detalles

Por tanto,p(r) es la probabilidad de encontrar al electrón en esta envolvente.

Por tanto,p(r) es la probabilidad de encontrar al electrón en esta envolvente. LAS FUNCIONES DE ONDA PARA EL HIDROGENO qq Ddo qu : U k dpnd solnt d l distnci dil nt l núclo y l lctón, lgunos d los stdos pitidos p st átoo pudn s psntdos dint funcions d ond qu solo dpndn d L s sipl

Más detalles

Se le define como toda situación física producida por una masa m en el espacio que lo rodea y que es perceptible debido a la fuerza que ejerce sobre

Se le define como toda situación física producida por una masa m en el espacio que lo rodea y que es perceptible debido a la fuerza que ejerce sobre Cpo vitcionl Se le define coo tod situción físic poducid po un s en el espcio que lo ode y que es peceptible debido l fuez que ejece sobe un s colocd en dicho espcio. Dd un s en el espcio y un s en difeentes

Más detalles

Análisis Vectorial. Escalares y campos escalares. Algebra vectorial. Vectores y campos vectoriales. v v v v. A v

Análisis Vectorial. Escalares y campos escalares. Algebra vectorial. Vectores y campos vectoriales. v v v v. A v Escles cmpos escles nálisis Vectoil Teoí Electomgnétic 1 Dipl.-Ing. noldo Rojs oto Escl: ntidd cuo lo puede se epesentdo po un simple númeo el positio o negtio mpos escles: Función mtemátic del ecto que

Más detalles

f v P v r v =t v GEOMETRÍA A v DESCRIPTIVA h v B v A r r h B h t h B d h h M h P h A h Ing. Alberto M. Pérez G.

f v P v r v =t v GEOMETRÍA A v DESCRIPTIVA h v B v A r r h B h t h B d h h M h P h A h Ing. Alberto M. Pérez G. . f P =t GEOMETRÍ DESRIPTIV DESRIPTIV P M t g P M f Ing. lto M. Péz G. GEOMETRÍ DESRIPTIV Unisi los ns Núlo Unisitio Rfl Rngl Dptmnto Ingnií Tujillo-Vnzul Tjo psnto on fins snso l tgoí sistnt n l slfón

Más detalles

TRIANGULOS RECTÁNGOS Y TRIGONOMETRÍA

TRIANGULOS RECTÁNGOS Y TRIGONOMETRÍA FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS GRADO: 10 TALLER Nº: SEMESTRE 1 TRIANGULOS RECTÁNGOS Y TRIGONOMETRÍA RESEÑA HISTÓRICA HISTORIA DE LA TRIGONOMETRÍA. L histoi de l tigonometí

Más detalles

GUIA DE TRABAJO DE MATEMÁTICA DE REPASO GENERAL

GUIA DE TRABAJO DE MATEMÁTICA DE REPASO GENERAL REPUBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACION INSTITUTO TÉCNICO JESUS OBRERO CATIA - CARACAS. CATEDRA: MATEMÁTICA 6to. Año. Docente: Lic. An C. López e Aris GUIA DE

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA VECTORES EJERCICIOS DE GEOMETRÍA 1. Hllr un vector unitrio u r r r r de l mism dirección que el vector v = 8i 6j.Clculr otro vector ortogonl v r y de módulo 5.. Normliz los vectores: u r = ( 1, v r = (-4,3

Más detalles

2. Impedancia Serie de Líneas de Transmisión

2. Impedancia Serie de Líneas de Transmisión ANEXO. Impenci Serie e Línes e Trnsmisión Prolem # Un conuctor e luminio ientifico con el nomre e Mgnoli est compuesto por 7 hilos conuctores e iámetro 0.606 pulgs. Ls tls crcterístics pr conuctores e

Más detalles

Tema 8. Funciones vectoriales de variable real.

Tema 8. Funciones vectoriales de variable real. Tem 8. Funciones vecoiles de vile el. 8.1 Cuvs ecuciones pméics. Cálculo en pméics. 8. Funciones vecoiles: límie, coninuidd, deivción e inegción. 8.3 Cuvs en coodends poles. Aneo: cónics. E. U. Poliécnic

Más detalles

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a.

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a. INSTITUTO VALLADOLID PREPARATORIA Págin 11 7 LA HIPÉRBOLA 7.1 DEFINICIONES L hipérol es el lugr geométrico de todos los puntos cuy diferenci de distncis dos puntos fijos, llmdos focos, es constnte e igul.

Más detalles

Tomamos el menor formado por las dos primeras columnas y la primera y tercera filas. 1 1

Tomamos el menor formado por las dos primeras columnas y la primera y tercera filas. 1 1 Blu I. Álg Mtmátis II Autvluión Págin D l mti M m m : ) Hll ls vls m u ls vts il M sn linlmnt innints. ) Estui l ng M sgún ls vls m. ) P m, lul l invs M. ) P u ls vts il M sn linlmnt innints, n (M ) tin

Más detalles

11.1. CAMBIO DE COORDENADAS RECTANGULARES A POLARES.

11.1. CAMBIO DE COORDENADAS RECTANGULARES A POLARES. Integcón ol lccones CÁLCUL DIFEENCIL E INTEGL I.. CMBI DE CDENDS ECTNGULES LES. Cooens oles El lno Euclno tene socs os ects eencules un hozontleje e ls scss X ot vetcleje e ls oens Y con nteseccón en un

Más detalles

Tema 8: Integral de Riemann Monotoníadelaintegral Si f y g son funciones integrables en [a, b] tales que

Tema 8: Integral de Riemann Monotoníadelaintegral Si f y g son funciones integrables en [a, b] tales que Tem 8: Integl de iemnn Monotonídelintegl Si f y g son funciones integbles en [, b] tles que f(x) g(x) x [, b] entonces b b f Como cso pticul p g =se obtiene que si f es un función integble en [, b] tl

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

2 Representar el plano que definen las rectas r y s que se cortan en A. 4 Hallar el punto A del plano de cota 16 y alejamiento 10

2 Representar el plano que definen las rectas r y s que se cortan en A. 4 Hallar el punto A del plano de cota 16 y alejamiento 10 1 Repesent el plno que definen l ect R y el punto. 2 Repesent el plno que definen ls ects y s que se cotn en A 3 Hll ls tzs del plno que definen ls ects y s 4 Hll el punto A del plno de cot 16 y lejmiento

Más detalles

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : DISEÑO AYUD. C. RAMIREZ N. AÑO : 2007 LA HIPERBOLA

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : DISEÑO AYUD. C. RAMIREZ N. AÑO : 2007 LA HIPERBOLA ASIGNATURA : MATEMATICAS MATERIAL DE APOYO NIVEL : er. AÑO PROF. L. ALTIMIRAS R. CARRERA : DISEÑO AYUD. C. RAMIREZ N. AÑO : 007 LA HIPERBOLA Definición : Un Hipérol es el lugr geométrico de un punto en

Más detalles

FUNDAMENTOS MATEMÁTICOS TEMA 1: CURVAS

FUNDAMENTOS MATEMÁTICOS TEMA 1: CURVAS FUNDAMENTOS MATEMÁTICOS TEMA 1: CURVAS TEMA 1: CURVAS 1. CÓNICAS * Prábols * Elipses * Hipérbols * Ecución Generl de un cónic. ECUACIONES PARAMÉTRICAS DE UNA CURVA 3. COORDENADAS POLARES EN EL PLANO *

Más detalles

Grupo: Nombre: Fecha: Lámina nº : 1 Contenido: PARALELISMO Y PERPENDICULARIDAD Nota:

Grupo: Nombre: Fecha: Lámina nº : 1 Contenido: PARALELISMO Y PERPENDICULARIDAD Nota: Tz lines ects plels en posición hoizontl Tz lines ects plels en posición veticl Tz lines ects pependicules ls dds Tz lines ects plels l diección indicd Tz lines ects pependicules ls dds Tz lines ects pependicules

Más detalles

MOVIMIENTO CIRCULAR. r en cualquier punto de su trayectoria. v 2 / R

MOVIMIENTO CIRCULAR. r en cualquier punto de su trayectoria. v 2 / R MOVIMIENTO CIRCULAR Es un ipo de movimieno en el plno, en el cul l pícul gi un disnci fij lededo de un puno llmdo ceno. El movimieno cicul puede se de dos ipos: Movimieno cicul unifome Movimieno cicul

Más detalles

1 sen. f Solución: 3 ; 1. sen. 2 sen. f Solución: ; Solución: CONTINUIDAD Y DERIVABILIDAD

1 sen. f Solución: 3 ; 1. sen. 2 sen. f Solución: ; Solución: CONTINUIDAD Y DERIVABILIDAD Frnndo Frnádz-Rmos Mrín º.- Clcul l continuidd d ls guints uncions. ) 8 7 ) 8 6 c) d) sn ) º.- Dtrminr l vlor d los prámtros d ls uncions pr qu sn continus n todo ) sn Solución: ) Solución: c) cos sn sn

Más detalles

a a a P P r r ( razones de simetría) Circulación del campo eléctrico (Campo central conservativo) r 4πε = = 4 r En efecto:

a a a P P r r ( razones de simetría) Circulación del campo eléctrico (Campo central conservativo) r 4πε = = 4 r En efecto: 3..- Ciculción del cmpo eléctico Tem 3..-- ottenciill ellécttiico q = e (Cmpo centl consevtivo) n efecto: e d q e d q d q d= = = = q q = = ( ) = 4 πε L ciculción del cmpo ente dos puntos es independiente

Más detalles

Reducción de. Estados equivalentes. Reducción de estados equivalentes. Ejemplo. Tabla de estados Mario Medina C. 1

Reducción de. Estados equivalentes. Reducción de estados equivalentes. Ejemplo. Tabla de estados Mario Medina C. 1 Ruión stos quivlnts Mrio Min. mriomin@u.l Ruión stos quivlnts Proso isño ntrior no sgur l númro mínimo stos Ruión númro stos Ru l númro lip-lops Ru l lógi ominionl Asignión vrils sto tmién pu ruir lógi

Más detalles

POTENCIA Eje radical y centro radical Sección áurea Rectángulo áureo TEMA2

POTENCIA Eje radical y centro radical Sección áurea Rectángulo áureo TEMA2 ( EI Ej adical y cnto adical Scción áua Rctángulo áuo E DIUJ GEÉRI bjtivos y ointacions todológicas En sta unidad s adquiiá con claidad l concpto d potncia d un punto spcto d una cicunfncia oo aplicación,

Más detalles

^

^ Pocntj d ls mujs d 2 y ms fios qu tinn d 3 hijos ncidos vivos, po tmno d loclidd, 00 000 y ms H b 50 000 99 999 i t 5 000 49 999 n t 2 500 4 999 s 45.9 42.7 4.4 ^ 40.8 Oto d los spctos qu influy n l nivl

Más detalles

4πε. r 1. r 2. E rˆ La carga puntual q 1

4πε. r 1. r 2. E rˆ La carga puntual q 1 .3 L cg puntul q -5. nc está en el oigen l cg puntul q 3 nc está sobe el eje de ls en 3 cm. l punto P está en 4 cm. ) Clcule los cmpos elécticos debidos ls dos cgs en P. b) Obteng el cmpo eléctico esultnte

Más detalles

Tema 4: Células de McCulloch-Pitts

Tema 4: Células de McCulloch-Pitts Tem 4: Céluls de McCulloc-Pitts Céluls de McCulloc-Pitts. Ccteístics 1. Dos estdos ctivdo, excitdo, ctivo (se epesent po 1) Desctivdo, inibido, psivo (se epesent po 0) 2. Un o vis entds Excitdos (se epesentn

Más detalles