Burgos Simón, Clara Cortés López, Juan Carlos; Navarro Quiles, Ana

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Burgos Simón, Clara Cortés López, Juan Carlos; Navarro Quiles, Ana"

Transcripción

1 Las Matemáticas para la Gestió de Carteras co Riesgo. Carteras compuestas por activos co correlacioes estadísticas arbitrarias. El caso e que se fija el redimieto esperado de la cartera Apellidos, ombre Departameto Cetro Burgos Simó, Clara Cortés López, Jua Carlos; Navarro Quiles, Aa (clabursi@posgrado.upv.es; jccortes@imm.upv.es; aaqui@posgrado.upv.es) Matemática Aplicada Istituto Uiversitario de Matemática Multidiscipliar Facultad de Admiistració y Direcció de Empresas

2 Resume de las ideas clave E estas págias se estudia el problema de la determiació de los pesos de los activos que costituye ua cartera fiaciera para miimizar el riesgo de la iversió global siedo que el redimieto de la cartera está prefijado. Este problema está muy relacioado, pero es matemática y fiacieramete distito, al que cosiste e determiar los pesos de cada uo de los activos para miimizar el riesgo de la cartera asumiedo que se cooce los riesgos idividuales de cada uo de los activos que forma la iversió global. 2 Itroducció Uo de los problemas cetrales de la Gestió del Riesgo de Carteras Fiacieras está formulado a través del siguiete programa de optimizació Ecuació. Programa de optimizació para la Gestió del Riesgo de Carteras Este problema cosiste e la determiació de los pesos 2 σ w,w 2, w de los activos fiacieros que forma ua cartera para miimizar el riesgo ( ) Miimizar w,, w sujeta a ( ) c ij w j w C w T, de la cartera, siedo C la matriz de variazas-covariazas de los activos que forma la cartera. La solució de este problema está dada por w * C C. T Ecuació. Solució del programa de optimizació de la Ec., siedo E estas págias abordamos u problema estrechamete relacioado co el formulado e la Ec., pero impoiedo ua ueva restricció al problema que la iversió global o cartera tega u redimieto prefijado. Como veremos e el desarrollo del trabajo, este uevo cotexto coduce a ua solució diferete que tiee gra iterés e las aplicacioes fiacieras. j w T. # w [ w,, w ] [,, ]. 3 Objetivos Los pricipales objetivos docetes de este artículo so que el alumo sea capaz de Describir el problema de miimizació del riesgo asociado a ua cartera de iversió cosistete e determiar los pesos de cada uo de los activos que forma la cartera de maera que se miimice el riesgo global de la iversió para u redimieto de la cartera prefijado y asumiedo para ello que se cooce cada uo de los retoros esperados idividuales de los

3 diferetes activos que forma la cartera, así como sus correlacioes estadísticas. Desarrollar los pricipales pasos algebraicos que permite obteer la expresió matemática de los pesos asociados a cada uo de los activos que forma la cartera de míimo riesgo bajo las restriccioes impuestas. 4 Plateamieto del problema El estudio del problema euciado e la Ec. cosiste e determiar los pesos w *, w* 2,, w* de cada uo de los activos a, a 2,, a, respectivamete, que forma ua cartera de modo que el riesgo de la cartera sea míimo. Desde este efoque, ua vez calculados los pesos w *, w*,, 2 w*, y coocidos los retoros esperados µ,µ 2,,µ, de cada activo, queda determiado el retoro esperado, µ, de la cartera. Si embargo, como se ha señalado e la secció Itroducció e este trabajo abordaremos otro problema estrechamete relacioado co el formulado e la Ec.. y tambié de gra iterés desde el puto de vista práctico es la determiació de los pesos w *, w* 2,, w* para u redimieto esperado, µ, de la cartera, que se haya fijado o propuesto el iversor. E este esceario, se trata de resolver el programa de miimizació de la Ec.2. Miimizar w,, w ( ) c ij w j w C w T, sujeta a w T, j µ i w m T µ. Ecuació 2. Programa de optimizació para determiar los pesos miimiza la cartera formada por los activos co matriz de variaza-covariaza, fijado u valor del retoro esperado, µ, de la cartera. Para la resolució de este programa de optimizació se aplicará el método de los multiplicadores de Lagrage []. La fució objetivo auxiliar es h h( w,, w ; α, β) c ij w j + α j ( ) + β µ ( µ i ) w C w T + α w T # w " w, w # 2,, w C que ( ) + β µ w ( m T ) Los putos críticos se determia mediate el siguiete sistema de + 2 ecuacioes.

4 h w 2C w T α T β m T 0 T, h α 0, h β µ µ i 0, ( 2C w T α T + β m T, w T, µ m w T, ( cuyas icógitas so w,w 2,,w,α obtiee y β. De la primera ecuació aterior se 2C w T α T + β m T w T 2 C ( α T + β m T ) w ( 2 α + β m )C, Ecuació 3. Expresió de w para el programa de optimizació dado e la Ec.2. es simétrica, por serlo la matriz de variazas- dode se ha utilizado que C covariazas C. Sustituyedo estas expresioes de w y w T e las ecuacioes de las restriccioes se obtiee u sistema de dos ecuacioes que determia α y β w T ( 2 α + β m ) C T ( C T )α + ( m C T )β 2, µ m w T m 2 C ( α T + β m T ) ( m C T )α + ( m C m T )β 2µ. Para calcular α y β se puede aplicar la regla de Cramer ˆα 2 m C T µ m C m T C T m C T m C T m C m T C T 2 m C T µ, ˆβ C T m C T m C T m C m T. Fialmete, el vector de pesos w, que miimiza el programa de optimizació dado e la Ec., se determia sustituyedo estos dos valores e la expresió de w obteida e Ec.3 µ ŵ m C T m C m C + T C T m C T C T m C T µ m C T m C m T m C Ecuació 4. Vector de pesos que miimiza el riesgo de ua cartera co retoro esperado, µ, prefijado..

5 Co todo ello, se acaba de establecer el siguiete Resultado pricipal I Fijado u retoro esperado,, la cartera co míimo riesgo está determiada por el vector de pesos dado e la Ec.4. 5 La frotera eficiete de Markowitz A partir de este resultado se deriva alguas cosecuecias iteresates que pasamos a cometar. Ateriormete hemos visto que los putos ( σ mi,µ), siedo µ u valor prefijado del retoro esperado de la cartera, determia, al variar el valor de µ, u cojuto que se deomia frotera eficiete de Markowitz. Gracias al resultado aterior se describe este cojuto de putos. E particular, la Ec.4 revela que los pesos de míimo riesgo, ŵ, so ua fució lieal del retoro esperado, µ, de la cartera. Esto implica que al variar µ etre los valores (,+ ), mietras que los pesos de ( ) míimo riesgo dibuja ua líea recta e el hiperplao de pesos, los putos σ mi,µ describe la curva de Markowitz (la raíz cuadrada de ua parábola tumbada ). Esto justifica fialmete el proceso realizado previamete, y dibujado e la Fig.. De este modo, y siguiedo la otació de la Fig., las coordeadas del puto A de la frotera eficiete de Markowitz determia los pesos co meor riesgo, σ de etre todas las carteras que tiee u redimieto esperado dado μ (y que perteece a la recta l ); y recíprocamete, las coordeadas del puto A de la frotera eficiete de Markowitz determia los pesos co mayor redimieto esperado μ de etre todas las que tiee el mismo riesgo, σ. E térmios técicos, el puto A domia al puto B. Las coclusioes ateriores se resume e el siguiete Resultado pricipal II Cualquier puto alcazable (es decir coteido e la parábola de Markowitz) está domiado por u puto alcazable de la frotera eficiete de Markowitz. Por tato, los iversores que busca miimizar el riesgo para u retoro esperado prefijado, solo debe fijarse e la frotera eficiete de Markowitz.

6 Figura. Represetació gráfica de la Frotera Eficiete de Markowitz. 6 U ejemplo E esta secció se ilustra los coceptos y resultados ateriores mediate u ejemplo umérico. Se determiará los pesos de ua cartera de riesgo míimo de modo que la cartera tega u riesgo esperado prefijado, por ejemplo, μ (μ 0.0). Supodremos que la cartera está formada por tres activos para los cuales, se asume que se cooce (a partir de series históricas de cotizacioes y métodos estadísticos) sus retoros esperados m µ,µ 2,µ 3 E R,E R 2,E R 3 0.2,0.,0.3, los riesgos de cada activo, mediate las desviacioes típicas de los retoros σ,,σ 3 + Var R,+ Var R 2,+ Var R 3 0.2,0.0,0.0, y sus coeficietes de correlació de los retoros ρ i, j ρ j,i E (R i E[R i ])(R j E[R j ]), i, j 3, i j, ρ,2 ρ 2, 0.0; ρ,3 ρ 3, 0.05; ρ 2,3 ρ 3, Por tato, tambié se cooce su matriz de variazas-covariazas y su iversa 2 σ ρ,2 σ ρ,3 σ σ 3 C 2 ρ,2 σ ρ 2,3 σ 3 2 ρ,3 σ σ 3 ρ 2,3 σ 3 σ 3 C

7 Utilizado la Ec.4 se obtiee el vector de pesos de la cartera (para lo cual detallamos los cálculos itermedios) m C -. / m C -. m / w C -. C -. / m C , , , , , Como se ha obteido valores egativos para los pesos de los activos y 3, esto sigifica que la cartera debe estar formado por posicioes cortas (short-positio) de dichos activos. 7 Cierre E este trabajo se ha estudiado u problema de iterés e el ámbito de la Gestió de Riesgos Fiacieros, abordado la determiació de los pesos de los activos subyacetes que debe compoer ua cartera iversora de modo que ésta tega u riesgo míimo y u redimieto esperado prefijado. La resolució de este problema se basa e la aplicació de técicas de optimizació de matemática y el uso de u cálculo matricial compacto para maejar de forma efectiva los cálculos operacioales implicados. Si duda el estudio es u excelete ejemplo de la efectividad de las matemáticas e otras disciplias y que debe servir para estimular al lector e las aplicacioes de las Matemáticas e la Gestió de Riesgos Fiacieros. 8 Bibliografía [] Barbollá, R., Cerdá, E. Y Saz, P. Optimizació. Cuestioes, Ejercicios y Aplicacioes a la Ecoomía, Pretice-Hall, Se trata de u texto excelete e el cual a través de umerosos ejercicios se revisa los aspectos más importates de la optimizació libre, co restriccioes de igualdad y co restriccioes de desigualdad.

Las Matemáticas para la Gestión del Riesgo en Carteras Financieras. Carteras compuestas por n activos con correlaciones estadísticas arbitrarias

Las Matemáticas para la Gestión del Riesgo en Carteras Financieras. Carteras compuestas por n activos con correlaciones estadísticas arbitrarias Las Matemáticas para la Gestió del Riesgo e Carteras Fiacieras. Carteras compuestas por activos co correlacioes estadísticas arbitrarias Apellidos, ombre Departameto Cetro Cortés López, Jua Carlos; Navarro

Más detalles

Las Matemáticas para la Gestión del Riesgo en Carteras Financieras. Carteras con dos activos con correlaciones estadísticas extremas

Las Matemáticas para la Gestión del Riesgo en Carteras Financieras. Carteras con dos activos con correlaciones estadísticas extremas Las Matemáticas para la Gestió del Riesgo e Carteras Fiacieras Carteras co dos activos co correlacioes estadísticas extremas Apellidos, ombre Departameto Cetro Cortés López, Jua Carlos; Navarro Quiles,

Más detalles

Capítulo 3. El modelo de regresión múltiple. Jorge Feregrino Feregrino. Econometría Aplicada Utilizando R

Capítulo 3. El modelo de regresión múltiple. Jorge Feregrino Feregrino. Econometría Aplicada Utilizando R Capítulo 3. El modelo de regresió múltiple. Jorge Feregrio Feregrio Idetificació del modelo La idetificació del objeto de ivestigació permitirá realizar ua búsqueda exhaustiva de los datos para llevar

Más detalles

Guía Semana 9 1. RESUMEN. Universidad de Chile. Ingeniería Matemática

Guía Semana 9 1. RESUMEN. Universidad de Chile. Ingeniería Matemática 1. RESUMEN Igeiería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo e Varias Variables 08-1 Igeiería Matemática Guía Semaa 9 Teorema de los multiplicadores de Lagrage

Más detalles

ANEXO B. Se define como Regresión al estudio de la fuerza, consistencia o grado de asociación de la

ANEXO B. Se define como Regresión al estudio de la fuerza, consistencia o grado de asociación de la ANEXO B B.. Regresió Se defie como Regresió al estudio de la fuerza, cosistecia o grado de asociació de la correlació de variables idepedietes [6]. B... Regresió Lieal Simple El objeto de u aálisis de

Más detalles

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:......

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:...... 1. Sistemas de m ecuacioes lieales co icógitas U sistema de m ecuacioes lieales co icógitas es u cojuto de m igualdades del tipo: a11x 1 a1 x... a1 x b1 a1x1 ax... ax b (1)... am1x1 amx... amx bm Los úmeros

Más detalles

4.- Aproximación Funcional e Interpolación

4.- Aproximación Funcional e Interpolación 4- Aproximació Fucioal e Iterpolació 4 Itroducció Ua de las mayores vetajas de aproximar iformació discreta o fucioes complejas co fucioes aalíticas secillas, radica e su mayor facilidad de evaluació y

Más detalles

MINITAB y MODELOS DE REGRESIÓN

MINITAB y MODELOS DE REGRESIÓN Prácticas de Fudametos Matemáticos para el estudio del Medio Ambiete www.um.es/docecia/jpastor jpastor@um.es MINITAB y MODELOS DE REGRESIÓN 1. Itroducció Ua de las cuestioes de mayor iterés e las Ciecias

Más detalles

2 Conceptos básicos y planteamiento

2 Conceptos básicos y planteamiento ESTADÍSTICA DESCRIPTIVA: DOS VARIABLES Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció E muchos casos estaremos iteresados e hacer u estudio cojuto de varias características de ua població.

Más detalles

b) Encontrar: τ o σ ; π o σ ; σ y τ. 2. Usar la definición de determinante para encontrar: 4. Calcular los determinantes de las siguientes matrices:

b) Encontrar: τ o σ ; π o σ ; σ y τ. 2. Usar la definición de determinante para encontrar: 4. Calcular los determinantes de las siguientes matrices: EJERCICIOS PROPUESTOS. Tarea 3. Cosiderar las siguietes particioes de S 5 σ = 354 τ = 354 π = 453. a) Determiar el sigo de cada ua de las ateriores particioes. b) Ecotrar: τ o σ ; π o σ ; σ y τ.. Usar

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

Prácticas de Matemáticas I y Matemáticas II con DERIVE 136

Prácticas de Matemáticas I y Matemáticas II con DERIVE 136 Prácticas de Matemáticas I y Matemáticas II co DERIVE 6. DIGONLIZCIÓN... PRINCIPLES FUNCIONES DE DERIVE PR L DIGONLIZCION: CLCULO DE UTOVLORES Y UTOVECTORES. tes de iiciar el estudio de los pricipales

Más detalles

GUIA DE ESTUDIO Nro 1

GUIA DE ESTUDIO Nro 1 MATERIA: MATEMÁTICA I CURSO: I AÑO EJE ESTRUCTURAL I: CONCEPTOS FUNDAMENTALES DEL ALGEBRA GRUPOS CONCEPTUALES: - Epresioes algebraicas. Poliomios. - Ecuacioes. Iecuacioes. TEMARIO: GUIA DE ESTUDIO Nro

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadística Descriptiva TEMA 1 Estadística Descriptiva 1. Variables estadísticas uidimesioales a) Itroducció b) Estudio descriptivo de ua variable c) Represetacioes gráficas d) Medidas de tedecia cetral

Más detalles

CUADRATURA GAUSSIANA

CUADRATURA GAUSSIANA CUADRATURA GAUSSIANA Este método de basa e muestrear el itegrado de la fució cuya itegral se desea ecotrar, a valores que represeta raíces de poliomios ortogoales Los más populares de éstos so los poliomios

Más detalles

Métodos Numéricos (SC 854) Ajuste a curvas. 2. Ajuste a un polinomio mediante mínimos cuadrados

Métodos Numéricos (SC 854) Ajuste a curvas. 2. Ajuste a un polinomio mediante mínimos cuadrados Métodos Numéricos SC 854 Auste a curvas c M Valezuela 007 008 7 de marzo de 008 1 Defiició del problema E el problema de auste a curvas se desea que dada ua tabla de valores i,f i ecotrar ua curva que

Más detalles

Prácticas de Matemáticas I y Matemáticas II con DERIVE-5 138

Prácticas de Matemáticas I y Matemáticas II con DERIVE-5 138 Prácticas de Matemáticas I y Matemáticas II co DERIVE-5 8. DIGONLIZCIÓN... PRINCIPLES FUNCIONES DE DERIVE PR L DIGONLIZCION: CLCULO DE UTOVLORES Y UTOVECTORES. tes de iiciar el estudio de los pricipales

Más detalles

DISTRIBUCIONES BIDIMENSIONALES

DISTRIBUCIONES BIDIMENSIONALES Matemáticas 1º CCSS 1 RESUMEN DISTRIBUCIONES BIDIMENSIONALES Distribucioes bidimesioales Se estudia a la vez dos variables aleatorias (geéricamete X e Y; sus valores será ( i, y i )). Correlació Al estudiar

Más detalles

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN I. CONTENIDOS: 1. Regresió lieal simple.. Iterpretació de gráficas de regresió. 3. Cálculo de coeficiete de correlació. 4. Iterpretació del coeficiete de correlació.

Más detalles

4.4 Sistemas mal condicionados

4.4 Sistemas mal condicionados 7 4.4 Sistemas mal codicioados l resolver u sistema de ecuacioes lieales usado u método directo, es ecesario aalizar si el resultado calculado es cofiable. E esta secció se estudia el caso especial de

Más detalles

Capítulo 9. Método variacional

Capítulo 9. Método variacional Capítulo 9 Método variacioal 9 Miimizació de la eergía 9 Familia de fucioes 9 Partícula ecerrada e ua dimesió etre [-aa] 9 Oscilador armóico e ua dimesió 93 Átomo de helio 93 Combiació lieal de fucioes

Más detalles

MÓDULO 1: GESTIÓN DE CARTERAS

MÓDULO 1: GESTIÓN DE CARTERAS MÓDULO : GESTIÓN DE CARTERAS SOLUCION DEL TEST DE EVALUACIÓN El siguiete euciado hace referecia a las seis cuestioes siguietes: Las retabilidades trimestrales del pasado año del activo ABC y de u ídice

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales UNIVERSIDAD DE JAÉN FACULTAD DE CIENCIAS SOCIALES Y JURÍDICAS Departameto de Matemáticas (Área de Álgebra) Curso 24/5 PRÁCTICA Nº 4 Sistemas de ecuacioes lieales E esta práctica veremos cómo los determiates

Más detalles

) se obtiene un valor específico del estimador que recibe el nombre de estimación del parámetro poblacional θ y lo notaremos por = g ( x 1

) se obtiene un valor específico del estimador que recibe el nombre de estimación del parámetro poblacional θ y lo notaremos por = g ( x 1 ESTIMACIÓN PUNTUAL. ESTIMACIÓN POR INTERVALOS DE CONFIANZA. 1. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA El objetivo básico de la iferecia estadística es hacer iferecias o sacar coclusioes sobre la població

Más detalles

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series.

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series. R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. SUCESIONES. Ua sucesió es u cojuto umerable de elemetos, dispuestos e u orde defiido y que guarda ua determiada ley de

Más detalles

De esta forma, el problema de encontrar la mejor recta se concentra en calcular los valores de la pendiente (m) y de la ordenada al origen (b)

De esta forma, el problema de encontrar la mejor recta se concentra en calcular los valores de la pendiente (m) y de la ordenada al origen (b) MÉTODO DE MÍNIMOS CUADRADOS E muchos de los experimetos que se realiza e Física, se obtiee u cojuto de parejas de úmeros (abscisa, ordeada) por los cuales ecesitamos, para obteer u modelo matemático que

Más detalles

Resumen que puede usarse en el examen

Resumen que puede usarse en el examen Resume que puede usarse e el exame ema. Optimizació Irrestrigida. Codicioes ecesarias y suficietes de optimalidad. Proposició (C. Necesarias) Sea x* u míimo local irrestrigido de f :!! y supogamos que

Más detalles

Derivación Numérica. Ultima actualización: 15/01/2008

Derivación Numérica. Ultima actualización: 15/01/2008 Titulació: Asigatura: Autor: Igeiero Geólogo Aálisis Numérico César Meédez Ultima actualizació: 5/0/008 Derivació Numérica Plaificació: Materiales: Coocimietos previos: Teoría+ Prácticas+0.5 Laboratorio

Más detalles

************************************************************************ *

************************************************************************ * 1.- Ua barra de secció circular, de 5 mm de diámetro, está sometida a ua fuerza de tracció de 5 kg, que se supoe distribuida uiformemete e la secció. partir de la defiició de vector tesió, determiar sus

Más detalles

TEMA 10: La programación lineal como instrumento para la toma de decisiones de inversión

TEMA 10: La programación lineal como instrumento para la toma de decisiones de inversión Itroducció a las Fiazas 3º Curso de Direcció y Admiistració de Empresas TEMA 0: La programació lieal como istrumeto para la toma de decisioes de iversió E la empresa existe ua serie de restriccioes (recursos,

Más detalles

CLAUSURA ALGEBRAICA Y NÚMEROS COMPLEJOS

CLAUSURA ALGEBRAICA Y NÚMEROS COMPLEJOS Clausura algebraica y úmeros complejos CLAUSURA ALGEBRAICA Y NÚEROS COPLEJOS. Itroducció Nos pregutamos Porqué o podemos resolver ciertas ecuacioes poliómicas e u determiado campo de úmeros?. Geeralmete,

Más detalles

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica.

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica. 5 CAPIULO 0 CONCEPOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Este capítulo proporcioa u pequeño resume acerca de coceptos básicos de álgebra y programació lieal que resulta fudametales para el bue etedimieto

Más detalles

TEMA 5.-ESTIMACIÓN PUNTUAL.- (16/17) 5.1. Introducción a la Inferencia Estadística Método de los momentos

TEMA 5.-ESTIMACIÓN PUNTUAL.- (16/17) 5.1. Introducción a la Inferencia Estadística Método de los momentos TEMA 5.-ESTIMACIÓN PUNTUAL.- (16/17) 5.1. Itroducció a la Iferecia Estadística. Método Estadístico. Defiicioes previas. 5.2. Estimació putual 5.3. Métodos de obteció de estimadores: 5.3.1. Método de los

Más detalles

[e j N 2 e j N 2 ]...} (22)

[e j N 2 e j N 2 ]...} (22) Trasformadores multiseccioales de cuarto de oda. La teoría de reflexioes pequeñas descrita e la secció aterior se puede usar para aalizar trasformadores multiseccioales de u cuarto de oda. Cosidere la

Más detalles

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias INTRODUCCIÓN A LA CONVERGENCIA DE SUCESIONES DE VARIABLES ALEATORIAS Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Se puede utilizar diferetes coceptos de covergecia para las sucesioes

Más detalles

Espacio Vectorial Definición: Sea V un conjunto donde hemos definido una ley u operación interna, que

Espacio Vectorial Definición: Sea V un conjunto donde hemos definido una ley u operación interna, que Sea V u cojuto dode hemos defiido ua ley u operació itera, que desigaremos por + V V. Sea K u cuerpo (comutativo) y sea, por último, ua operació extera que desigaremos por K V V. Diremos que (V,+, ) tiee

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

Técnicas para problemas de desigualdades

Técnicas para problemas de desigualdades Técicas para problemas de desigualdades Notas extraídas del libro de Arthur Egel [] 5 de marzo de 00 Medias Comezamos co dos de las desigualdades más básicas pero al mismo tiempo más importates Sea x,

Más detalles

UNIVERSIDAD CATÓLICA DE TEMUCO FACULTAD DE INGENIERÍA DEPTO. DE CIENCIAS MATEMÁTICAS Y FÍSICAS SERIES DE POTENCIAS

UNIVERSIDAD CATÓLICA DE TEMUCO FACULTAD DE INGENIERÍA DEPTO. DE CIENCIAS MATEMÁTICAS Y FÍSICAS SERIES DE POTENCIAS UNIVERSIDAD CATÓLICA DE TEMUCO FACULTAD DE INGENIERÍA DEPTO. DE CIENCIAS MATEMÁTICAS Y FÍSICAS Asigatura : Cálculo Numérico, MAT-23. Profesor : Emilio Cariaga L. Periodo : er. Semestre 205. SERIES DE POTENCIAS

Más detalles

Matemáticas Discretas Inducción y Recursión

Matemáticas Discretas Inducción y Recursión Coordiació de Ciecias Computacioales - INAOE Matemáticas Discretas Iducció y Recursió Cursos Propedéuticos 00 Ciecias Computacioales INAOE Iducció y recursió Geeralidades Iducció de úmeros aturales Iducció

Más detalles

Tema 5. APLICACIONES DE LAS DERIVADAS: REPRESENTACIÓN GRÁFICA DE CURVAS Y FÓRMULA DE TAYLOR

Tema 5. APLICACIONES DE LAS DERIVADAS: REPRESENTACIÓN GRÁFICA DE CURVAS Y FÓRMULA DE TAYLOR Tema. ALICACIONES DE LAS DERIVADAS: RERESENTACIÓN GRÁFICA DE CURVAS Y FÓRMULA DE TAYLOR Aplicacioes de la derivada primera El sigo de la derivada primera de ua fució permite coocer los itervalos de crecimieto

Más detalles

PROBLEMA DEL USO DE FERTILIZANTE EN GRANJAS DE PRODUCCIÓN DE TOMATES.

PROBLEMA DEL USO DE FERTILIZANTE EN GRANJAS DE PRODUCCIÓN DE TOMATES. PROBLEMA DEL USO DE FERTILIZANTE EN GRANJAS DE PRODUCCIÓN DE TOMATES. E el siguiete ejercicio se tratará de expoer, de forma didáctica, el proceso de solució de u problema de regresió simple. Problema:

Más detalles

Práctica de Laboratorio. Tema: Sistemas de Regulación.

Práctica de Laboratorio. Tema: Sistemas de Regulación. iversidad Nacioal de Mar del Plata. Práctica de Laboratorio Tema: Sistemas de egulació. átedra: Medidas Eléctricas 3º año de la carrera de geiería Eléctrica. Área Medidas Eléctricas NMDP. Prof. Adjuto:

Más detalles

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Problemas de Estimació de Ua y Dos Muestras UCR ECCI CI-35 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviaa Ramírez Beavides Iferecia Estadística La teoría de la iferecia estadística cosiste e aquellos

Más detalles

La Matemática Financiera desde un enfoque de las Ecuaciones en Diferencias

La Matemática Financiera desde un enfoque de las Ecuaciones en Diferencias La Matemática Fiaciera desde u efoque de las Ecuacioes e Diferecias Luis Eresto Valdez Efraí Omar Nieva Luis Edgardo Barros Eje temático: Matemática aplicada Resume Usualmete, se preseta a la Matemática

Más detalles

Introducción a las medidas de dispersión.

Introducción a las medidas de dispersión. UNIDAD 8: INTERPRETEMOS LA VARIABILIDAD DE LA INFORMACION. Itroducció a las medidas de dispersió. Como su ombre lo idica, las medidas de dispersió so parámetros que os idica qué ta dispersos está los datos.

Más detalles

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

ÍNDICE. Prólogo Capítulo 1. Ecuaciones diferenciales ordinarias. Generalidades.. 11 Introducción teórica Ejercicios resueltos...

ÍNDICE. Prólogo Capítulo 1. Ecuaciones diferenciales ordinarias. Generalidades.. 11 Introducción teórica Ejercicios resueltos... ÍNDICE Prólogo... 9 Capítulo 1. Ecuacioes difereciales ordiarias. Geeralidades.. 11 Itroducció teórica... 13 Ejercicios resueltos.... 16 Capítulo 2. itegració de la ecuació de primer orde. La ecuació lieal...................................................................

Más detalles

Determinantes. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO

Determinantes. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Determiates Ramó Espioza Armeta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Sea A M ( K), dode 2. El i-ésimo meor de A es la matriz A i, obteida a partir de A elimiado el regló i y la columa. Eemplo. Sea 3

Más detalles

Métodos de la Minería de Datos

Métodos de la Minería de Datos This is page i Priter: Opaque this Métodos de la Miería de Datos Dr Oldemar Rodríguez Rojas 6 de mayo de 2008 ii This is page iii Priter: Opaque this Cotets Elemetos básicos de aálisis de datos exploratorio

Más detalles

Introducción al control moderno

Introducción al control moderno Igeiería e Cotrol y Automatizació Itroducció al cotrol modero Ecuacioes e variables de Estado TEORÍA DEL CONTROL III 5 de agosto de 5 Autor: M. e C. Rubé Velázquez Cuevas Escuela Superior de Igeiería Mecáica

Más detalles

Ejercicios para exámenes de Matemáticas (CCAA y CTA) Vectores

Ejercicios para exámenes de Matemáticas (CCAA y CTA) Vectores Ejercicios para exámees de Matemáticas (CCAA y CTA Vectores Jua-Miguel Gracia 7 de octubre de 014 Ejercicio Sea a, b vectores de R 5 que satisface a = 10, a + b = 11, a b = 9 Demostrar que existe u β R

Más detalles

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación. Tema 1: Números complejos

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación. Tema 1: Números complejos Grados E.T.S.I. Idustriales y Telecomuicació Asigatura: Cálculo I Coocimietos previos Para poder seguir adecuadamete este tema, se requiere que el alumo repase y poga al día sus coocimietos e los siguietes

Más detalles

Laboratorio N 10, Series de Fourier. Introducción. Para funciones ( ) cos. f x está definida en la mitad del intervalo

Laboratorio N 10, Series de Fourier. Introducción. Para funciones ( ) cos. f x está definida en la mitad del intervalo Uiversidad Diego Portales Facultad de Igeiería Istituto de Ciecias Básicas Asigatura: Ecuacioes Difereciales aboratorio N 1, Series de Fourier Itroducció Para fucioes x,, la serie de Fourier f x cotiuas

Más detalles

EVALUACIÓN DE BACHILLERATO PARA EL ACCESO A LA UNIVERSIDAD 207 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. JUNIO 2017

EVALUACIÓN DE BACHILLERATO PARA EL ACCESO A LA UNIVERSIDAD 207 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. JUNIO 2017 EBAU Juio 07 Matemáticas aplicadas a las ciecias sociales e Murcia EVALUACIÓN DE BACHILLERATO PARA EL ACCESO A LA UNIVERSIDAD 07 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. JUNIO 07 OBSERVACIONES IMPORTANTES:

Más detalles

Borrador 2a Edición - No distribuir

Borrador 2a Edición - No distribuir Apédice D Estimació Lieal de Parámetros La siguiete fució geeral es lieal respecto a par parámetros: F = + a f + a 3 f 3 + a 4 f 4 + + a par f par (D.1) r dode F es la variable depediete que puede ser:

Más detalles

UNIDAD 4 SISTEMAS COMPLEJOS DE TUBERÍAS

UNIDAD 4 SISTEMAS COMPLEJOS DE TUBERÍAS UNIDAD 4 SISTEMAS COMPLEJOS DE TUBERÍAS Capítulo 3 CONCEPTO ELEMENTAL DE BOMBA Y TURBINA COMPORTAMIENTO Y UTILIZACIÓN DE BOMBAS Curvas características Las curvas características de ua bomba, permite coocer

Más detalles

Guía de estudio Fracciones parciales Unidad A: Clase 19 y 20

Guía de estudio Fracciones parciales Unidad A: Clase 19 y 20 Guía de estudio Fraccioes parciales Uidad A: Clase 19 y 0 Camilo Eresto Restrepo Estrada, Lia María Grajales Vaegas y Sergio Ivá Restrepo Ochoa 1. 9. Fraccioes parciales Ua fracció racioal es ua expresió

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

Otro ejemplo es la tasa de cambio del tamaño de una población (N), que puede expresarse como:

Otro ejemplo es la tasa de cambio del tamaño de una población (N), que puede expresarse como: SOLUCIÓN DE ECUACIONES DIFERENCIALES Autor: Keith Gregso Traducció: José Alfredo Carrillo Salazar Muchos sistemas diámicos puede represetarse e térmios de ecuacioes difereciales. Por ejemplo, la tasa de

Más detalles

DESIGUALDADES CLÁSICAS

DESIGUALDADES CLÁSICAS DESIGUALDADES CLÁSICAS PARA EL SEMINARIO DE PROBLEMAS (CURSO 017/018) ALBERTO ARENAS 1 Desigualdades etre medias La estrategia más geeral para probar desigualdades es trasformar la desigualdad a la que

Más detalles

Tema 2. Medidas descriptivas de los datos

Tema 2. Medidas descriptivas de los datos Tema 2. Medidas descriptivas de los datos Resume del tema 2.1. Medidas de posició So valores que os sirve para idicar la posició alrededor de la cual se distribuye las observacioes. 2.1.1. Mediaa La mediaa

Más detalles

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20 Técicas Cuatitativas II 2012-2013 Muestra y Estadísticos Muestrales TC II Muestra y Estadísticos Muestrales 1 / 20 Ídice Ídice Cocepto de muestra y Alguos ejemplos de variaza de la media Cocepto de muestra

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A EXAMEN COMPLETO Istruccioes: a) Duració: 1 hora y 30 miutos. b) Elija ua de las dos opcioes propuestas y coteste los ejercicios de la opció elegida. c) E cada ejercicio, parte o apartado se idica la putuació

Más detalles

Tema 4. Estimación de parámetros

Tema 4. Estimación de parámetros Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 4. Estimació de parámetros 1. Estimació putual 1 1.1. Estimació de la proporció e la distribució Bi(m, p).......................

Más detalles

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL Viceç Fot Departamet de Didàctica de les CCEE i de la Matemàtica de la Uiversitat de Barceloa Resume: E este artículo se muestra como las trasformacioes

Más detalles

MÓDULO 1: FUNDAMENTOS DE LA INVERSIÓN

MÓDULO 1: FUNDAMENTOS DE LA INVERSIÓN MÓDULO 1: FUNDAMENTOS DE LA INVERSIÓN SOLUCIÓN DEL TEST DE EVALUACIÓN 1 1. Cuál es el criterio para aplicar la ley simple o la compuesta e las operacioes de capitalizació? A) El plazo. B) La frecuecia

Más detalles

Dinámica compleja. Conjuntos de Julia y Mandelbrot Método de Newton

Dinámica compleja. Conjuntos de Julia y Mandelbrot Método de Newton Estalmat Madrid Miguel Reyes Diámica compleja Cojutos de Julia y Madelbrot Método de Newto Los úmeros complejos Los úmeros complejos so los úmeros de la forma a dode a y b so úmeros reales e i es la uidad

Más detalles

Ejercicios Matemáticas I Pendientes 1 BCT

Ejercicios Matemáticas I Pendientes 1 BCT Ejercicios Matemáticas I Pedietes BCT ª Parte Uidad 7 Álgebra. Dado el poliomio P( ) = + k 5, calcula el valor de k para que el valor umérico del poliomio e = sea.. Halla u poliomio de tercer grado cuyo

Más detalles

Curso: 3 E.M. ALGEBRA 8

Curso: 3 E.M. ALGEBRA 8 Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: POLINOMIOS Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/ Actitudes: Respeto, Solidaridad,

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2001 (Modelo 4) Euciado Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 0-1 2 1 ( putos) Resuelva la siguiete ecuació matricial: A X - 2 B C, siedo A 1 0 1, B -2, C. 1

Más detalles

Límites en el infinito y límites infinitos de funciones.

Límites en el infinito y límites infinitos de funciones. Límites e el ifiito y límites ifiitos de fucioes. 1 Calcula 2 Límite e el ifiito Cuado se calcula el límite de ua fució e el ifiito se trata de determiar la tedecia que tedrá la fució (los valores que

Más detalles

STICA APLICADA stica Multivariada. Contenido

STICA APLICADA stica Multivariada. Contenido INSTITUTO MEXICANO DEL PETRÓLEO GEOESTADÍSTICA STICA APLICADA Tema: Geoestadística stica Multivariada Istructores: Dr. Martí A. Díaz Viera (mdiazv@imp.mx) Dr. Ricardo Casar Gozález (rcasar@imp.mx) 2004

Más detalles

Cálculo II (0252) TEMA 6 SERIES DE POTENCIAS. Semestre

Cálculo II (0252) TEMA 6 SERIES DE POTENCIAS. Semestre Cálculo II (5) Semestre - TEMA 6 SERIES DE POTENCIAS Semestre - José Luis Quitero Julio Departameto de Matemática Aplicada UCV FIUCV CÁLCULO II (5) José Luis Quitero Las otas presetadas a cotiuació tiee

Más detalles

Aplicaciones lineales. Diagonalización. . La aplicación f es lineal si se verifican las dos condiciones siguientes:

Aplicaciones lineales. Diagonalización. . La aplicación f es lineal si se verifican las dos condiciones siguientes: Aplicacioes lieales Diagoalizació Defiició: Sea V y W dos espacios vectoriales sobre el mismo cuerpo y sea la aplicació f:v W v f v w La aplicació f es lieal si se verifica las dos codicioes siguietes:

Más detalles

Tema 2: Diagonalización de matrices cuadradas

Tema 2: Diagonalización de matrices cuadradas Departameto de Aálisis Ecoómico UNIVERSIDAD DE ZARAGOZA Tema : Diagoalizació de matrices cuadradas.1. El cojuto R Defiició: Dados úmeros reales x 1, x,..., x R, se llama -tupla ordeada a x = ( x 1,, x,...,

Más detalles

No obstante, cuando intentamos hacer lo mismo con los números racionales y reales vemos que. con como lo hicimos con. es diferente de los conjuntos

No obstante, cuando intentamos hacer lo mismo con los números racionales y reales vemos que. con como lo hicimos con. es diferente de los conjuntos Departameto de Matemáticas Guía Iducció Matemática Objetivos: Eteder el pricipio del bue orde Realizar demostracioes matemáticas por medio del pricipio de iducció matemática El pricipio del bue orde: iducció

Más detalles

PyE_ EF2_TIPO1_

PyE_ EF2_TIPO1_ UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA SEGUNDO EXAMEN FINAL RESOLUCIÓN

Más detalles

1 Valores individuales del conjunto

1 Valores individuales del conjunto 5/03/00 METROLOGÍA ESTADÍSTICA ANÁLISIS DE DATOS Cuado se obtiee uo o más grupos de datos, producto de repeticioes i e ua medida, la mejor forma de represetarlas, es mediate las Medidas de tedecia cetral

Más detalles

Repaso...Último Contenidos NM 4

Repaso...Último Contenidos NM 4 Cetro Educacioal Sa Carlos de Aragó. Sector: Matemática. Prof.: Ximea Gallegos H. 1 Fucioes y relacioes. Diagrama Sagital. Sea A = { a,b, c} y B = { 1, 2, 3, 4} Repaso...Último Coteidos NM 4 A: Cojuto

Más detalles

Negativos: 3, 2, 1 = 22. ab/c 11 Æ 18

Negativos: 3, 2, 1 = 22. ab/c 11 Æ 18 Los úmeros reales.. Los úmeros reales El cojuto de los úmeros reales está formado por los úmeros racioales y los irracioales. Se represeta por la letra Los úmeros racioales so los úmeros eteros, los decimales

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

Estimadores Puntuales: Propiedades de estimadores Sebastián Court

Estimadores Puntuales: Propiedades de estimadores Sebastián Court Estadística Estimadores Putuales: Propiedades de estimadores Sebastiá Court 1.Motivació Cosideremos ua variable aleatoria X co ciertas características, como por ejemplo, u parámetro θ, y ua muestra aleatoria

Más detalles

GEOESTADÍSTICA STICA APLICADA UNIVERSIDAD NACIONAL AUTÓNOMA

GEOESTADÍSTICA STICA APLICADA UNIVERSIDAD NACIONAL AUTÓNOMA UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICOM GEOESTADÍSTICA STICA APLICADA Tema: Estimació Espacial Istructores: Dr. Martí A. Díaz Viera (mdiazv@imp.m) Dr. Ricardo Casar Gozález (rcasar@imp.m) 2009 Coteido

Más detalles

ECUACIONES DIFERENCIALES (0256)

ECUACIONES DIFERENCIALES (0256) ECUACIONES DIFERENCIALES (056) SEMANA 0 CLASE 0 LUNES 09/04/. Presetació de la asigatura. Coteido programático, pla de evaluació, software de apoyo, bibliografía recomedada. Se sugiere ver los archivos

Más detalles

Tema 9 Teoría de la formación de carteras

Tema 9 Teoría de la formación de carteras Parte III Decisioes fiacieras y mercado de capitales Tema 9 Teoría de la formació de carteras 9.1 El problema de la selecció de carteras. 9. Redimieto y riesgo de ua cartera. 9.3 El modelo de la media-variaza.

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 1999-.000 - CONVOCATORIA: SEPTIEMBRE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

GEOESTADÍSTICA APLICADA

GEOESTADÍSTICA APLICADA INSTITUTO MEXICANO DEL PETRÓLEO GEOESTADÍSTICA APLICADA Tema: Geoestadística Multivariada Istructores: Dr. Martí A. Díaz Viera (mdiazv@imp.mx) Dr. Ricardo Casar Gozález (rcasar@imp.mx) 2004 Coteido Itroducció

Más detalles

Tema II: Interpolación. Polinomios de Lagrange Diferencias Divididas Interpolación Lineal

Tema II: Interpolación. Polinomios de Lagrange Diferencias Divididas Interpolación Lineal Poliomios de Lagrage Dierecias Divididas Iterpolació Lieal Deiició: es el cálculo de valores para ua ució tabulada, e putos que o se tiee Posició X =?? 4 7 78 48 8 Tiempo Supogamos la cúbica de la siguiete

Más detalles

Tema 14: Inferencia estadística

Tema 14: Inferencia estadística Tema 14: Iferecia estadística La iferecia estadística es el proceso de sacar coclusioes de la població basados e la iformació de ua muestra de esa població. 1. Estimació de parámetros Cuado descoocemos

Más detalles

Integración IV. Revisión de Métodos Numéricos Aplicables en Simulación de Estado Estacionario 2017

Integración IV. Revisión de Métodos Numéricos Aplicables en Simulación de Estado Estacionario 2017 Itegració IV Revisió de Métodos Numéricos Aplicables e Simulació de Estado Estacioario 07 Profesor: Dr. Nicolás J. Scea JP: Dr. Néstor H. Rodríguez Au. ra: Dr. Jua I. Maassaldi Itroducció Abiertos Secate

Más detalles

TEORÍA DE LA ESTIMACIÓN

TEORÍA DE LA ESTIMACIÓN TEORÍA DE LA ESTIMACIÓN Objetivo: El objetivo de la estimació putual es usar ua muestra para obteer úmeros (estimacioes putuales) que sea la mejor represetació de los verdaderos parámetros de la població.

Más detalles

CURSO DE GEOMETRÍA ANALÍTICA. Oscar Cardona Villegas Héctor Escobar Cadavid

CURSO DE GEOMETRÍA ANALÍTICA. Oscar Cardona Villegas Héctor Escobar Cadavid CURSO DE GEOMETRÍA ANAÍTICA Oscar Cardoa Villegas Héctor Escobar Cadavid UNIVERSIDAD PONTIFICIA BOIVARIANA ESCUEA DE INGENIERÍAS 06 MÓDUO VARIEDADES INEAES Esta uidad abarca el estudio de la líea recta

Más detalles

Análisis en Componentes Principales (ACP).

Análisis en Componentes Principales (ACP). Capítulo Aálisis e Compoetes Pricipales (ACP) Como ates se ha dicho, el Aálisis e Compoetes Pricipales, ACP, cosidera ua matriz R de datos iiciales de carácter o simétrico: Sus compoetes, r ij, so valores

Más detalles

ANALISIS CONVEXO CAPITULO CONVEXIDAD

ANALISIS CONVEXO CAPITULO CONVEXIDAD CAPITULO 2 ANALISIS CONVEXO 2.1 CONVEXIDAD Bajo este título geérico, se itroduce e esta secció las ocioes de cojuto covexo, fució cócava y fució covexa. Coceptos todos ellos que juega u destacado papel

Más detalles