1 Funciones de varias variables

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1 Funciones de varias variables"

Transcripción

1 UNC - ANÁLISIS MATEMÁTICO II GUÍA DE EJERCICIOS - AÑO Funciones de varias variables 1.1 Topología 1. Dibuje B(a, r) y B(a, r) a para los siguientes casos. Interprete geométricamente. en R, a = 1, r = 1 2 en R 2, a = (0, 1), r = 1 4 en R 3, a = ( 1, 2, 1), r = Para cada uno de los siguientes conjuntos, caracterice los puntos de R 2 diciendo si son puntos interiores, eteriores, puntos limites o frontera. A = { R : 3 5} B = {(, y) R 2 : 2 + y 2 < 1} {(0, 1), (1, 2)} C = {(, y) R 2 : < 2 y 2} {(3, y) R 2 } D = {(, y, z) R 3 : 2 + y 2 < y 2 = 4 (0, 3 2, 0)} 3. Decida si los siguientes conjuntos son abiertos cerrados, ambas o ninguna de las dos cosas. A = {(, y) R 2 : (, y) (0, 1) 1} B = {(, y) R 2 : y 2 36} C = {(, y) R 2 : (, y) (0, 1) (, y) (2, 1)} D = {(, y) R 2 : y } E = {(, y, z) R 3 : z < + y} 4. Dado el conjunto A = {(, y, z) R 3 : 2 + 2y 2 + z2 3 p 1 = (0, 0, 1) p 2 = ( 2 2, 1 2, 0) p 3 = (0, 0, 5 2 ) < 1}, caracterice los siguientes puntos: 1

2 1.2 Dominio, gráficas y curvas de nivel 5. Determine el dominio de las siguientes funciones: (a) f(, y) = + y y (b) f(, y) = y (c) f(, y) = y 2 y 2 (d) f(, y) = y (e) f(, y) = 2 y 2 (f) f(, y, z) = eyz y z 6. Esboce la gráfica de las siguientes funciones: (a) f(, y) = sin, 0 2π, 0 y 1 (b) f(, y) = y 2, 1 1, 1 y 1 (c) f(, y) = 4 2 y 2, 2 + y 2 4, 0, y 0 (d) f(, y) = 4 2 (e) f(, y) = 6 2 y 7. Esquematice las curvas de nivel de las siguientes funciones: (a) f(, y) = y (b) f(, y) = y 2 (c) f(, y) = y (d) f(, y) = 2 y 8. Identifique el conjunto S R 2 definido eplícitamente por f() = 2 paramétricamente por f() = (cos, sen) implícitamente por f(, y) = + y = 3 9. Identifique el conjunto S R 3 definido paramétricamente por f() = (cos, sen, ) paramétricamente por f() = (cosy, seny, 2 ) 1.3 Límites y continuidad 10. Calcule los siguientes límites. Si no eisten, eplique por qué. (a) (b) (c) lim ( y + (,y) (2, 1) y2 ) 2 + y 2 lim (,y) (0,0) y lim (,y) (0,0) 2 + y 2 (d) (e) lim (,y) (0,1) lim (,y) (0,0) 2 (y 1) (y 1) 2 y y 2 2

3 11. Indique en que puntos las siguientes funciones no son continuas: f(, y) = 2y y f(, y, z) = ln( yz f(, y) = +z ) { y 2 +y 2 si si = ( 1 2, 0) 12. Dada la función f(, y) = 2 + y 2 3 y y 2 sea continua en todo punto de R 2. ((, y) (0, 0)), Defina f(0, 0) de manera que ésta 13. Estudie la continuidad de las siguientes funciones: f(, y) = tg(y) f(, y, z) = 1 2 +y 2 +z 2 f(, y) = e y f(, y, z) = y sen(y) 1.4 Derivadas parciales 14. Calcule las siguientes derivadas parciales y evalúelas en el punto dado: (a) f(, y) = y + z, (3, 2) (b) f(, y) = y + 2, (2, 0) (c) f(, y, z) = 3 y 4 z 5, (0, 1, 1) (d) f(, y, z) = z, (1, 1, 1) y + z (e) z = arctan(y/), ( 1, 1) 15. Calcule la derivada parcial en (0,0) usando la definición: { 2 3 y 3 (, y) (0, 0) f(, y) = 2 +3 y 2 0 (, y) = (0, 0) 16. Muestre que las funciones satisfacen la ecuación diferencial dada: (a) z = e y (b) z = + y y (c) z = 2 + y 2 z = z y z + y z y = 0 z + y z y = z (d) z = f( 2 + y 2 ) (con f diferenciable) y z z y = Encuentre las ecuaciones del plano tangente y de la normal al gráfico de las siguientes funciones en los puntos especificados: (a) f(, y) = 2 y 2 en ( 2, 1) (b) f(, y) = cos(/y) en (π, 4) (c) f(, y) = 2 + y 2 en (1, 2) 3

4 18. Encuentre las coordenadas de todos los puntos de la superficie dada por la ecuación z = 4 4 y y 2 2 en los que la superficie tiene un plano tangente horizontal. 19. Use las aproimaciones lineales adecuadas para aproimar los valores de las siguientes funciones en los puntos dados: (a) f(, y) = 2 y 3 en (3.1, 0.9) (b) f(, y) = sin(π y + ln y) en (0.01, 1.05) (c) f(, y, z) = + 2 y + 3 z en (1.9, 1.8, 1.1) 20. Las aristas de una caja rectangular son medidas con una precisión del 1% de su valor. Cuál es, aproimadamente, el máimo error porcentual en: (a) el volumen de la caja? (b) una de las caras de la caja? 1.5 Ejercicios de deber 1. Calcule los siguientes límites. 2 2 y lim (,y) (1,2) 4 2 y 2 2 y 2 lim (,y) (0,0) 2 + y 4 2. Defina la función f(, y) = 3 y 3 ( y) a lo largo de la recta = y de manera que la y función resultante sea continua en todo punto. 3. (f) w = ln(1 + e yz ), (2, 0, 1) (g) f(, y) = sin( y), (π/3, 4) (h) w = e y ln z ), (e, 2, e) 4. Calcule la derivada parcial en (0,0) usando la definición: 9. (d) f(, y) = y en (1, 1) + y (e) f(, y) = e y en (2, 0) f(, y) = { 2 2 y 2 y y 0 = y 10. Encuentre todos los planos horizontales que son tangentes a la superficie dada por z = y e 2 +y 2 2. En qué puntos son estos planos tangentes a la superficie?. ( y 11. (d) f(, y) = arctan en (3.01, 2.99) ) (e) f(, y) = y + y 2 en (2.1, 1.8) 4

5 2 Funciones de varias variables: Regla de la cadena 2.1 Ejercicios para hacer en clase 1. Calcule las derivadas parciales segundas de: (a) z = 2 (1 + y 2 ) (b) f(, y) = 2 + y 2 (c) w = 3 y 3 z 3 2. Una función f(, y) es armónica si satisface la ecuación f + f yy = 0. Muestre que las siguientes funciones son armónicas: (a) f(, y) = 3 2 y y 3 en el plano. Hay otro polinomio de grado 3 en e y que también sea armónico? (b) f(, y) = ln( 2 + y 2 ) en R 2 {(0, 0)} 3. Suponga que u(, y) y v(, y) tienen derivadas parciales segundas continuas y satisfacen las ecuaciones de Cauchy-Riemann: Pruebe que u(, y) y v(, y) son armónicas. u = v y v = u y 4. Derive usando la regla de la cadena: ( ) w (a), si w = f(, y, z) e y = g(, z). z (b) w, si w = f(, y), = g(r, s), y = h(r, t), r = k(s, t) y s = n(t) t 5. Calcule u t si u = 2 + y 2, = e s t, y = 1 + s 2 cos t usando la regla de la cadena. Compare con el resultado que obtiene al reemplazar e y y luego derivar. 6. Sea z = f(, y), = 2s + 3t, y = 3s 2t. Calcule: (a) 2 z s 2 (b) 2 z s t (c) 2 z t 2 7. Sea u = u(, t). Haciendo el cambio de variables ξ = + t c, η = pruebe que la ecuación u t = c u u puede escribirse como η = Transforme las siguientes epresiones: (a) 1 f 1 f y y haciendo u = ln(2 + y 2 ), v = ln( 2 y 2 ). (b) z + yz y haciendo = r cos v, y = r sin v 5

6 2.2 Ejercicios de deber 2. (c) f(, y) = 2 + y 2 en R2 {(0, 0)} 3. Muestre que la función u(, t) = t 1/2 e 2 /4t satisface la ecuación del calor unidimensional, es decir: 4. dw dz, ( ) w, z u t = 2 u 2 ( ) w, si w = f(, y, z), = g(y, z), y = h(z) z,y 5. Derive (suponiendo que las derivadas parciales primeras son continuas): (a) f(y2, 2 ) (b) f(s t2, s 2 + t) 6. Sea = t sin s, y = t cos s. Calcule: 2 f(, y) s t 7. (c) z 2 z y + 2 z yy haciendo = u, y = v u2 2 2 z (d) haciendo 2 = v + ln u; 2y = v + ln u y 6

7 3 Funciones de varias variables: derivada direccional, gradiente 3.1 Ejercicios para hacer en clase 1. Para las siguientes funciones encuentre: (i) El gradiente en el punto indicado. (ii) Una ecuación del plano tangente al gráfico en el punto dado. (iii) Una ecuación de la recta tangente a la curva de nivel que pasa por el punto dado. (a) f(, y) = 2 y 2 (b) f(, y) = y + y (c) f(, y) = cos y en (2, 1). en (1,1). en (π, 4). 2. Encuentre la ecuación del plano tangente a la superficie de nivel de la función que pasa por el punto dado. (a) f(, y, z) = 2 y + y 2 z + z 2 en (1, 1, 1). (b) f(, y, z) = cos( + 2y + 3z) en (π/2, π, π). 3. Encuentre la tasa de cambio de cada función en el punto dado y en la dirección indicada: (a) f(, y) = 3 4y en (0, 2) (b) f(, y) = 2 y en ( 1, 1) (c) f(, y) = 2 + y 2 respecto al eje., en la dirección del vector 2î, en la dirección de î + 2ĵ en (1, 2), en la dirección que determina un ángulo de 60 con 4. Muestre que, en términos de las coordenadas polares (r, θ), el gradiente de una función f(r, θ) está dado por f = f r ˆr + 1 f r θ ˆθ. 5. La temperatura T (, y) en los puntos del plano (, y) está dada por T (, y) = 2 2y 2. (a) Dibuje algunas isotermas. (b) En qué dirección debería moverse una hormiga situada en el punto (2, 1) si desea refrescarse tan rápido como sea posible? (c) Si la hormiga se mueve en la dirección anterior con velocidad v, a qué tasa eperimentará el descenso de temperatura? (d) A qué tasa eperimentaría la hormiga el descenso de temperatura si se moviera a partir del punto (2, 1) con velocidad v en la dirección del vector î 2ĵ? 6. La temperatura en el espacio 3D está dada por T (, y, z) = 2 y 2 + z 2 + z 2. En el tiempo t = 0 una mosca pasa por el punto (1,1,2), volando a lo largo de la curva de intersección de las superficies z = 3 2 y 2 y y 2 z 2 = 0. Si la velocidad de la mosca es 7 cm/s, qué tasa de cambio de temperatura eperimenta en t = 0? 7. Calcule la derivada indicada a partir de la/s ecuación/es dada/s. Qué condiciones sobre las variables garantizarán la eistencia de una solución que tenga la derivada calculada? Suponga la eistencia y continuidad de las primeras derivadas parciales necesarias. 7

8 (a) d dy (b) dz dy (c) w (d) ( t y si y y = 2 si z 2 + y 3 = z y si H(u 2 w, v 2 t, w t) = 0 ) si 2 + y 2 + z 2 + w 2 = 1 y + 2y + 3z + 4w = 2. z 3.2 Ejercicios de deber 1. (d) f(, y) = 2 + y 2 en (1, 2). (e) f(, y) = 2 y 2 + y 2 en (0, 2). 3. (d) f(, y, z) = (y 2 + sin z) e en (0, 2, π), en la dirección hacia el punto (1,1,0). 4. Sea f(, y, z) = r n, donde r = î + yĵ + zˆk. Muestre que f = n r r n (e) d dy (f) dy dz (g) dy d si y 3 = y z si e y z 2 z ln y = π si F (, y, 2 y 2 ) = 0 4 Etremos locales y absolutos de funciones de varias variables. Multiplicadores de Lagrange 4.1 Ejercicios para hacer en clase 1. Encuentre y clasifique los puntos críticos de las siguientes funciones: (a) f(, y) = 2 + 2y y (b) f(, y) = y + y (c) f(, y) = 4 + y 4 4y (d) f(, y) = y + 8 y 2. Encuentre los valores máimos y mínimos de f(, y) = y e 2 y 4 3. Encuentre los valores máimos y mínimos de las funciones dadas en los dominios indicados: (a) f(, y) = 2 + y 2 en el rectńgulo 0 2, 0 y 1 (b) f(, y) = y 3 y 2 en el cuadrado 0 1, 0 y 1 (c) f(, y) = sin cos y en el triángulo cerrado cuyos lados son el eje, el eje y y la recta + y = 2π 4. Use multiplicadores de Lagrange para maimizar la función f(, y) = 3 y 5, sujeta a la restricción + y = 8. 8

9 5. Encuentre la menor distancia del punto (3,0) a la parábola y = 2 de dos maneras: (a) transformando el problema en otro que dependa de una sola variable (b) usando multiplicadores de Lagrange 6. Encuentre la distancia del origen al plano + 2y + 2z = 3 de tres maneras: (a) usando argumentos geométricos (b) reduciendo el problema a uno de dos variables sin restricciones (c) usando multiplicadores de Lagrange 7. Use el método de los multiplicadores de Lagrange para resolver los siguientes problemas: (a) Encontrar el mínimo y el máimo de f(, y, z) = + y z en la esfera 2 + y 2 + z 2 = 1 (b) Encontrar la distancia más corta del origen a la superficie y z 2 = 2 (c) Encontrar el valor máimo y el valor mínimo de la función f(, y, z) = + 2y 3z sobre el elipsoide 2 + 4y 2 + 9z Ejercicios de deber 1. (e) f(, y) = 3 + y 3 3y y (f) f(, y) = y 2 2. Encuentre los valores máimos y mínimos de f(, y) = y 2 3. (d) f(, y) = y 2 en el rectńgulo 1 1, 0 y 1 (e) f(, y) = + 2y sobre el círculo 2 + y 2 1. Ayuda: parametrice el círculo 2 + y 2 = 1 con (, y) = (cos t, sin t), π t π; llame g(t) a la función que resulta al hacer el cambio en f; use Maple para resolver g (t) = (d) Encontrar la mínima y la máima distancia del punto (2, 1, 2) a la esfera 2 +y 2 +z 2 = 1 (e) Encontrar a, b y c tales que el volumen del elipsoide 2 a 2 + y2 b 2 + z2 = 1 que pasa por el c2 punto (1,2,1) sea lo menor posible. El volumen mencionado es V (a, b, c) = 4 3 π a b c. 9

1.- FUNCIONES REALES DE DOS Y TRES VARIABLES REALES. Funciones reales de dos variables reales independientes

1.- FUNCIONES REALES DE DOS Y TRES VARIABLES REALES. Funciones reales de dos variables reales independientes 1.- FUNCIONES REALES DE DOS Y TRES VARIABLES REALES Funciones reales de dos variables reales independientes A) DOMINIO E IMAGEN TRABAJO PRÁCTICO Nº 1A.M. II - 014 1. Determine el conjunto de puntos donde

Más detalles

9. Diferenciación de funciones reales de varias variables reales Diferenciación DERIVADAS PARCIALES

9. Diferenciación de funciones reales de varias variables reales Diferenciación DERIVADAS PARCIALES 9.1. Diferenciación 9.1.1. DERIVADAS PARCIALES Derivadas parciales de una función de dos variables Se llaman primeras derivadas parciales de una función f(x, y) respecto de x e y a las funciones: f x (x,

Más detalles

Ejercicios propuestos Cálculo 20. Sem-A10

Ejercicios propuestos Cálculo 20. Sem-A10 Ejercicios propuestos Cálculo 0. Sem-A10 Prof. José Luis Herrera 1. Dibuje la gráfica de la función f para la cual f(0) = 0, f (0) = 3, f (1) = 0 y f () = 1.. Dibuje la gráfica de la función g para la

Más detalles

de C sobre el plano xy tiene ecuación

de C sobre el plano xy tiene ecuación Análisis Matemático II (95-0703) Finales tomados durante el Ciclo lectivo 017 Son 10 (die fechas de final, desde el 4/05/17 al 7/0/18 inclusive Análisis Matemático II (95-0703) Final del 4/05/17 Condición

Más detalles

GUÍA DE CÁLCULO VECTORIAL Academia de Matemáticas y Física I.C.

GUÍA DE CÁLCULO VECTORIAL Academia de Matemáticas y Física I.C. 1. Considere los siguientes vectores a = (2,3,1), b = (4, 1,3). Calcule: a) a + b b) 2a + 3b c) 3a b d) a + b e) 3a 2b f) 2 a + b 2. Halle las longitudes de los lados del triángulo ABC y determine si son

Más detalles

Universidad Politécnica de Cartagena Departamento de Matemática Aplicada y Estadística. Cálculo diferencial de una variable

Universidad Politécnica de Cartagena Departamento de Matemática Aplicada y Estadística. Cálculo diferencial de una variable Universidad Politécnica de Cartagena Departamento de Matemática Aplicada y Estadística Cálculo diferencial de una variable. Calcula el dominio máimo de las siguientes funciones. Determina en cada caso

Más detalles

Tema 3: Diferenciabilidad de funciones de varias variables

Tema 3: Diferenciabilidad de funciones de varias variables Departamento de Matemáticas. Universidad de Jaén. Análisis Matemático II. Curso 2009-2010. Tema 3: Diferenciabilidad de funciones de varias variables 1. Calcular las dos derivadas parciales de primer orden:

Más detalles

a) Analice la continuidad en (1,0). E1) Dada F : IR 2 π g : D IR 2 I R 2 2 2

a) Analice la continuidad en (1,0). E1) Dada F : IR 2 π g : D IR 2 I R 2 2 2 Ejemplos de parcial de Análisis Matemático II Los ítems E1, E, E3 E4 corresponden a la parte práctica Los ítems T1 T son teóricos (sólo para promoción) T1) Sea F : IR IR diferenciable tal que F(,) 00 =

Más detalles

Diferenciación SEGUNDA PARTE

Diferenciación SEGUNDA PARTE ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 4 - Primer Cuatrimestre 009 Diferenciación SEGUNDA PARTE Regla de la Cadena 1 Sean f(u, v, w) = u + v 3 + wu y g(x, y) = x sen(y) Además, tenemos

Más detalles

FUNCIONES DE. 1.- Determinar y representar gráficamente el dominio de las siguientes funciones: a) f (x) = x 2 16 b) f (x) = x 2 1.

FUNCIONES DE. 1.- Determinar y representar gráficamente el dominio de las siguientes funciones: a) f (x) = x 2 16 b) f (x) = x 2 1. FUNCIONES DE n EN m Nota: se entenderá log log0 = y ln = log e - Determinar y representar gráficamente el dominio de las siguientes funciones: a) f () = 6 b) f () = c) f () = d) f () = e) f () = + + +

Más detalles

No. Nombre C.I. Firma. 1. Teoremas sobre funciones derivables. f (2) = c 1 ; f 0 (2) = c 2 ; f 00 (2) = 2c 3

No. Nombre C.I. Firma. 1. Teoremas sobre funciones derivables. f (2) = c 1 ; f 0 (2) = c 2 ; f 00 (2) = 2c 3 Fecha07//05 TRABAJO PR ACTICO SECCI ON 80 COORDINADOR PROF. RICHARD ROSALES R. No. Nombre C.I. Firma. Teoremas sobre funciones derivables. Sea f () una funcion al menos tres veces diferenciable en un entorno

Más detalles

OCW-Universidad de Málaga, (2014). Bajo licencia. Creative Commons Attribution- NonComercial-ShareAlike 3.

OCW-Universidad de Málaga,  (2014). Bajo licencia. Creative Commons Attribution- NonComercial-ShareAlike 3. OCW-Universidad de Málaga, http://ocw.uma.es (014). Bajo licencia Creative Commons Attribution- NonComercial-ShareAlike 3.0 Spain Matemáticas III Relación de ejercicios Tema 1 Ejercicios Ej. 1 Encuentra

Más detalles

Funciones Reales de Varias Variables

Funciones Reales de Varias Variables Funciones Reales de Varias Variables Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica II Hermes Pantoja Carhuavilca 1 de 162 CONTENIDO Funciones

Más detalles

Tema 1: Cálculo diferencial en varias variables ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO

Tema 1: Cálculo diferencial en varias variables ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO Tema : Cálculo diferencial en varias variables FECHA: 3/3/ TIEMPO RECOMENDADO: / Hora Puntuación/TOTAL:,5/ Sea la función f(,) definida de la siguiente forma en todo (,) de IR : Y RESPUESTA AL EJERCICIO:

Más detalles

Cálculo Diferencial en IR n : Ejercicios.

Cálculo Diferencial en IR n : Ejercicios. Tema 8 Cálculo Diferencial en IR n : Ejercicios. La teoría para este tema puede encontrarse en el libro Cálculo diferencial en IR n ([1] de la bibliografía), capítulos 1, 2, 3, 4, 6 7. 8.1 Funciones, límites

Más detalles

Pruebas. x = x. 7(2x + 1) x 2 + x 6. x 2

Pruebas. x = x. 7(2x + 1) x 2 + x 6. x 2 CAPÍTULO 10 Pruebas Prueba N o 1 - Tema: Capitulo 1 y 2 1. 1 punto. Se espera que del total de alumnos inscritos en la asignatura, el 20 % obtendrá una nota no menor a 6,0; el 65 % obtendrá una nota no

Más detalles

DERIVADAS DE FUNCIONES DE UNA VARIABLE

DERIVADAS DE FUNCIONES DE UNA VARIABLE DERIVADAS DE FUNCIONES DE UNA VARIABLE DERIVADAS DE FUNCIONES DE UNA VARIABLE [4.] Estudiar la derivabilidad de la función los puntos en los que esté definida. 3 f( ) y obtener f ( ) en En primer lugar

Más detalles

= en los puntos (0;1) y (1;0,5) Determine la razón de cambio promedio de la función en cada intervalo: x

= en los puntos (0;1) y (1;0,5) Determine la razón de cambio promedio de la función en cada intervalo: x Trabajo Práctico N : DERIVADA Y DIFERENCIAL Ejercicio : Halle la pendiente de la gráfica de la función en los puntos dados aplicando la definición de derivada de una función en un punto. Después halle

Más detalles

Funciones de varias variables: continuidad derivadas parciales y optimización

Funciones de varias variables: continuidad derivadas parciales y optimización Titulación: Ingeniero en Telecomunicación. Asignatura: Cálculo. Relación de problemas número 4. Funciones de varias variables: continuidad derivadas parciales y optimización Problema 1. Determinar el dominio

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

Tema 11 Ejercicios resueltos

Tema 11 Ejercicios resueltos Tema 11 Ejercicios resueltos 11.1. Se considera la función f : definida por 3 f (, ) sin( ),cos( ) e. Razonar que la función es localmente invertible en un entorno del punto (0,0) calcular Jf 1 (0,0).

Más detalles

ANÁLISIS II Computación. Práctica 4. x 3. x 2 + y 2 si (x, y) (0, 0)

ANÁLISIS II Computación. Práctica 4. x 3. x 2 + y 2 si (x, y) (0, 0) facultad de ciencias exactas y naturales uba primer cuatrimestre 2007 ANÁLISIS II Computación Práctica 4 Derivadas parciales 1. Calcular a) f y (2, 1) para f(x, y) = xy + x y b) f z (1, 1, 1) para f(x,

Más detalles

3. Funciones de varias variables

3. Funciones de varias variables Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 17 3. Funciones de varias variables Función real de varias variables reales Sea f una función cuyo dominio es un subconjunto D de R n

Más detalles

Práctica 3: Diferenciación

Práctica 3: Diferenciación Análisis I Matemática I Análisis II (C) Análisis Matemático I (Q) 1er. Cuatrimestre 2017 Práctica 3: Diferenciación Aplicación de algunos resultados de diferenciación en una variable 1. Vericar que se

Más detalles

Práctica 3: Diferenciación

Práctica 3: Diferenciación Análisis I Matemática I Análisis II (C) Análisis Matemático I (Q) Primer Cuatrimestre - 03 Práctica 3: Diferenciación Aplicación de algunos resultados de diferenciación en una variable. Vericar que se

Más detalles

con tiene recta tangente de ecuación y 4 x 2. Análisis Matemático II ( ) Final del 14/07/ dz planteada en coordenadas cilíndricas,

con tiene recta tangente de ecuación y 4 x 2. Análisis Matemático II ( ) Final del 14/07/ dz planteada en coordenadas cilíndricas, Análisis Matemático II (95-0703) Finales tomados durante el Ciclo lectivo 05 Son 0 (die fechas de final, desde el 6/05/5 al 9/0/6 inclusive Análisis Matemático II (95-0703) Final del 6/05/05 Condición

Más detalles

Solución del Examen Final de Cálculo 1 (2010-2) 1. Dada la función (4 Ptos.) f(x) = 3x 2 e x. 3x 2. f(x) = 3x 2 e x f (x) = 3e x x(2 x),

Solución del Examen Final de Cálculo 1 (2010-2) 1. Dada la función (4 Ptos.) f(x) = 3x 2 e x. 3x 2. f(x) = 3x 2 e x f (x) = 3e x x(2 x), Parte Obligatoria del Eamen Final de Cálculo (00-). Dada la función (4 Ptos.) f() = 3 e esboce la gráfica de f, señalando, si fuera el caso, sus asíntotas, los intervalos de monotonía y los etremos relativos,

Más detalles

ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA Ingeniería Técnica Industrial, Especialidad de Electricidad

ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA Ingeniería Técnica Industrial, Especialidad de Electricidad ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA Ingeniería Técnica Industrial, Especialidad de Electricidad Fundamentos Matemáticos de la Ingeniería Diciembre de 5. Primera parte Tiempo: horas. Se recuerda

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

Práctica 3: Diferenciación

Práctica 3: Diferenciación Análisis I Matemática I Análisis II (C) Primer Cuatrimestre - 010 Práctica 3: Diferenciación Derivadas parciales y direccionales 1. Sea f una función continua en x = a. Probar que f es derivable en x =

Más detalles

Cálculo I (Grados TICS UAH) Cálculo diferencial Curso 2018/19

Cálculo I (Grados TICS UAH) Cálculo diferencial Curso 2018/19 Cálculo I (Grados TICS UAH Cálculo diferencial Curso 08/9. Calcular, utilizando la definición rigurosa de derivada, las derivadas de las siguientes funciones: (a f( = 3 (b f( = 3 + 3 (c f( = + (d f( =

Más detalles

Ayudantía Regla de la Cadena. Pontificia Universidad Católica de Chile Facultad de Matemáticas Departamento de Matemática

Ayudantía Regla de la Cadena. Pontificia Universidad Católica de Chile Facultad de Matemáticas Departamento de Matemática / 010 Ayudantía 4 1. Regla de la Cadena Proposición 1 Regla de la Cadena - 1. Sea f : U R n R diferenciable y γ : I R R n una curva diferenciable contenida en U. Entonces, la función gt = f γt es derivable

Más detalles

f, y el Funciones de varias variables Función de dos variables Definición. Es una función f que asigna a cada pareja ordenada ( xy, ) de D un

f, y el Funciones de varias variables Función de dos variables Definición. Es una función f que asigna a cada pareja ordenada ( xy, ) de D un Funciones de varias variables Función de dos variables Definición. Es una función f que asigna a cada pareja ordenada (, ) de D un único número real f (, ). El conjunto D es el dominio de f, el correspondiente

Más detalles

Guía de Estudio para la Sección de Matemáticas del Examen de Admisión

Guía de Estudio para la Sección de Matemáticas del Examen de Admisión 1 Guía de Estudio para la Sección de Matemáticas del Examen de Admisión 215-1 El material relativo al temario puede ser consultado en la amplia bibliografía que allí se menciona o en alguno de los muchísimos

Más detalles

FUNCIONES DE UNA VARIABLE

FUNCIONES DE UNA VARIABLE FUNCIONES DE UNA VARIABLE 1- Definiciones 2- Algunas funciones reales 3- Ecuaciones de curvas planas en coordenadas cartesianas 4- Coordenadas polares 5- Coordenadas paramétricas 6- Funciones hiperbólicas

Más detalles

ANALISIS II Computación. Práctica 4. x 3. x 2 + y 2. x 2 + y 2 si (x, y) (0, 0) 0 si (x, y) = (0, 0)

ANALISIS II Computación. Práctica 4. x 3. x 2 + y 2. x 2 + y 2 si (x, y) (0, 0) 0 si (x, y) = (0, 0) facultad de ciencias exactas y naturales uba curso de verano 2006 ANALISIS II Computación Práctica 4 Derivadas parciales 1. Calcular (a) f xy y (2, 1) para f(x, y) = + x y (b) f z (1, 1, 1) para f(x, y,

Más detalles

Tarea 1 - Vectorial

Tarea 1 - Vectorial Tarea - Vectorial 2050. Part :. - 3.2.. Un cerro se queda en las montañas en la altura de 6 mil metros. El cerro tiene la forma del gráfico de la función z = f(x, y) = x 2 y 2. Observamos que plaquitas

Más detalles

Escuela Politécnica Superior de Málaga. CÁLCULO

Escuela Politécnica Superior de Málaga. CÁLCULO Escuela Politécnica Superior de Málaga. CÁLCULO 4. Funciones de varias variables. 1. Describe y dibuja en el plano el dominio de las siguientes funciones en el espacio: f(x, y) = f(x, y) = 36 4x 2 9y 2

Más detalles

Boletín II. Cálculo diferencial de funciones de una variable

Boletín II. Cálculo diferencial de funciones de una variable CÁLCULO Boletín II. Cálculo diferencial de funciones de una variable Ejercicios básicos 1. (NUEVO) Utiliza la definición de derivada para demostrar que f () = 10 para 5 2. ( ) sin() 2. Sea arctan. Calcula

Más detalles

Valores máximos y mínimos para funciones de dos o más variables.

Valores máximos y mínimos para funciones de dos o más variables. Pro. Enrique Mateus Nieves Valores máimos mínimos para unciones de dos o más variables. Una unción de dos variables tiene en a,b : Si, a,b cuando, está cerca de a,b. (esto quiere decir que, a,b pata todos

Más detalles

ACTIVIDADES GA ACTIVIDAD

ACTIVIDADES GA ACTIVIDAD ACTIVIDADES GA ACTIVIDAD 1: (Mié-12-Feb-14) a) Conteste Qué es y para qué sirve un Sistema de referencia? b) Conteste Qué es y para qué sirve un Sistema de coordenadas? c) Conteste Es lo mismo 'sistema

Más detalles

GRADO DE INGENIERÍA AEROESPACIAL. CURSO MATEMÁTICAS II. DPTO. DE MATEMÁTICA APLICADA II

GRADO DE INGENIERÍA AEROESPACIAL. CURSO MATEMÁTICAS II. DPTO. DE MATEMÁTICA APLICADA II GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Ejercicios Eámenes Anteriores. Ejercicio. Se dobla en dos una hoja de cartulina de 4 por 36 cm para formar un rectángulo de 4 por 8 cm, como se muestra en la figura

Más detalles

CÁLCULO VECTORIAL SEGUNDO EXAMEN LISTA 1

CÁLCULO VECTORIAL SEGUNDO EXAMEN LISTA 1 CÁLCULO VECTORIAL SEGUNDO EXAMEN LISTA 1 III. FUNCIONES DE VARIAS VARIABLES Sección I. En los ejercicios siguientes, hallar el límite (si existe). Si el límite no existe, explicar por qué. ( ) 4. ( ) 5.

Más detalles

PROBLEMARIO DE CÁLCULO 20. Semestre A Prof. Cosme Duque

PROBLEMARIO DE CÁLCULO 20. Semestre A Prof. Cosme Duque PROBLEMARIO DE CÁLCULO 0 Semestre A-010 Prof. Cosme Duque TEMA 1 DERIVADAS 1. Derivada en un punto. Derivabilidad. Derivadas laterales. (a) Encuentre las pendientes de las recta tangente a la curva y =

Más detalles

Derivadas Parciales (parte 2)

Derivadas Parciales (parte 2) 40 Derivadas Parciales (parte 2) Ejercicio: Si donde y. Determinar Solución: Consideraremos ahora la situación en la que, pero cada una de las variables e es función de dos variables y. En este caso tiene

Más detalles

Funciones reales de varias variables

Funciones reales de varias variables PROBLEMAS DE CÁLCULO II Curso 2-22 2 Funciones reales de varias variables. Dibuja las curvas de niveles,,..., 5 y la representación gráfica de las siguientes funciones a) f(x, y) = 5 x y b) f(x, y) = x

Más detalles

EJERCICIOS SUGERIDOS PARA LA PRACTICA DE ECUACIONES DIFERENCIALES

EJERCICIOS SUGERIDOS PARA LA PRACTICA DE ECUACIONES DIFERENCIALES Universidad Simón Bolívar Departamento de Matemáticas Puras Aplicadas Enero-Abril 4 EJERCICIOS SUGERIDOS PARA LA PRACTICA DE ECUACIONES DIFERENCIALES.- Compruebe que la función indicada sea una solución

Más detalles

Solución: 2 3 6) Calcule el límite. n n n n n. 0,1 en subintervalos mediante la partición P y el conjunto de puntos de partición es:

Solución: 2 3 6) Calcule el límite. n n n n n. 0,1 en subintervalos mediante la partición P y el conjunto de puntos de partición es: SERIE DE ÁLULO INTEGRAL PROFESOR: PEDRO RAMÍREZ MANNY TEMA ) alcule la suma ) Determine n tal que ) Determine n tal que i i ( ) ( ) 0 i= i+ i n i = 9 n=6 i= n i = 78 n=7 i= ) Determine el valor del siguiente

Más detalles

ACTIVIDADES PROPUESTAS

ACTIVIDADES PROPUESTAS ACTIVIDADES PROPUESTAS. Calcula el valor de las epresiones siguientes: a. 0 9 8 9 5 b. c. 5 + 9. Simplifica la epresión +. Halla el valor de las epresiones siguientes: a. 0 b. 8 67966 c. 9 6. Halla: a.

Más detalles

1. Hallar la ecuación paramétrica y las ecuaciones simétricas de la recta en los siguientes casos:

1. Hallar la ecuación paramétrica y las ecuaciones simétricas de la recta en los siguientes casos: A. Vectores ANALISIS MATEMATICO II Grupo Ciencias 05 Práctica : Geometría Analítica: Vectores, Rectas y Planos, Superficies en el espacio Para terminar el 3 de septiembre.. Sean v = (0,, ) y w = (,, 4)

Más detalles

9. Diferenciación de funciones reales de varias variables reales

9. Diferenciación de funciones reales de varias variables reales 9.2. Extremos 9.2.1. POLINOMIOS DE TAYLOR Polinomios de Taylor y de McLaurin Se llama polinomio de Taylor de orden n 1 de la función f(x, y) en (a, b) al polinomio: f(a, b) f(a, b) n (x, y) = f(a, b) +

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Definición valor extremo: Si f(x,y) està definida en una regiòn R y P 0 =(a, es un punto de R, entonces: a) f(a, es un valor máximo local de f si f(a, f(x,y) para todos los

Más detalles

Capítulo VI. Diferenciabilidad de funciones de varias variables

Capítulo VI. Diferenciabilidad de funciones de varias variables Capítulo VI Diferenciabilidad de funciones de varias variables La definición de diferenciabilidad para funciones el cociente no tiene sentido, puesto que no está definido, porque el cociente entre el vector

Más detalles

Cátedra Matemática del PIT. Gradiente y Derivada Direccional

Cátedra Matemática del PIT. Gradiente y Derivada Direccional Cátedra Matemática del PIT Gradiente y Derivada Direccional Propósito de la Unidad Hallar y usar las derivadas direccionales de una función de dos variables. Hallar el gradiente de una función de dos variables.

Más detalles

Análisis Matemático I (Biólogos)

Análisis Matemático I (Biólogos) Análisis Matemático I (Biólogos) Primer Cuatrimestre 2006 Práctica 5: Aplicaciones de la derivación 1. Decida si las siguientes funciones satisfacen las hipótesis del Teorema de Rolle en los intervalos

Más detalles

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático Ejercicios de Fundamentos Matemáticos I Ingeniería de Telecomunicaciones Rafael Payá Albert Departamento de Análisis Matemático Universidad de Granada FUNDAMENTO MATEMÁTICO I Relación de Ejercicios N o

Más detalles

Unidad 5. Funciones de Varias Variables

Unidad 5. Funciones de Varias Variables Preparado por: Gil Sandro Gómez Profesor de la UASD Año: 013 Contenido Introducción... 1. Función de dos variables... 3. Límites continuidad... 4 3. Derivadas parciales... 7 4. Interpretación geométrica

Más detalles

Extremos de funciones de dos variables 1.- Sea z = f(x, y) una función cuyas derivadas parciales son continuas en afirmarse que:

Extremos de funciones de dos variables 1.- Sea z = f(x, y) una función cuyas derivadas parciales son continuas en afirmarse que: Etremos de unciones de dos variables 1.- Sea z = (, ) una unción cuas derivadas parciales son continuas en airmarse que: a) alcanza sus valores máimo mínimo absolutos en R. b) es dierenciable en todo punto

Más detalles

2 t, y t = 2 sin 2t, z t = 3e 3t. ( 2 sin 2t) + z. t = 0. = f u (2, 3)u s (1, 0) + f v (2, 3)v s (1, 0) = ( 1)( 2) + (10)(5) = 52

2 t, y t = 2 sin 2t, z t = 3e 3t. ( 2 sin 2t) + z. t = 0. = f u (2, 3)u s (1, 0) + f v (2, 3)v s (1, 0) = ( 1)( 2) + (10)(5) = 52 TALLER : Regla de la cadena, derivadas direccionales y vector gradiente Cálculo en varias variables Universidad Nacional de Colombia - Sede Medellín Escuela de matemáticas 1. Use la regla de la cadena

Más detalles

R. Puede. a) f alcanza sus valores máximo y mínimo absolutos en R. X b) f es diferenciable en todo punto de R. ' ' , para algún punto

R. Puede. a) f alcanza sus valores máximo y mínimo absolutos en R. X b) f es diferenciable en todo punto de R. ' ' , para algún punto Etremos de unciones de dos variables Etremos de unciones de dos variables 1.- Sea z = (, ) una unción cuas derivadas parciales son continuas en airmarse que: a) alcanza sus valores máimo mínimo absolutos

Más detalles

Nombre/Código: Septiembre Parcial II

Nombre/Código: Septiembre Parcial II 1 Cálculo II Sección 1 Guillermo Mantilla Nombre/Código: Septiembre 11 1 Parcial II Instrucciones: Duración 7mins. Durante el examen no son permitidos libros, notas, calculadoras, celulares o en general

Más detalles

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación Conocimientos previos Para poder seguir adecuadamente este tema, se requiere que el alumno repase ponga al día sus conocimientos en los siguientes contenidos: Cálculo de derivadas Propiedades de las funciones

Más detalles

PROBLEMAS DEL BLOQUE DE MATEMÁTICAS A = z 13. x 1 + 4x 2 2x 3 = 4 2x 1 + 7x 2 x 3 = 2 2x 1 + 9x 2 7x 3 = 1

PROBLEMAS DEL BLOQUE DE MATEMÁTICAS A = z 13. x 1 + 4x 2 2x 3 = 4 2x 1 + 7x 2 x 3 = 2 2x 1 + 9x 2 7x 3 = 1 CURSO ADAPTACIÓN CIENTÍFICA Primero de Licenciatura e Ingeniería Química FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha PROBLEMAS DEL BLOQUE DE MATEMÁTICAS

Más detalles

Diferenciabilidad de funciones de varias variables

Diferenciabilidad de funciones de varias variables 6 si 6 f si a) Eisten las derivadas parciales de f en (, ). b) f no es continua en (,). 1.- Sea la función,.- Sea la función,,,,,. Probar que: 1 sen si f. si a) Probar que f es continua en (,). b) Es f

Más detalles

Cálculo Infinitesimal: grupo piloto

Cálculo Infinitesimal: grupo piloto Tema : La derivada. Cálculo Infinitesimal: grupo piloto Curso 6/7 A. Objetivos. Al finalizar el tema, los estudiantes deberán ser capaces de: Calcular la derivada de una función utilizando la definición

Más detalles

derivable en x = 0. b) Para los valores encontrados, calcula la ecuación de la recta tangente a la gráfica de f(x) en el punto de abscisa x = 0.

derivable en x = 0. b) Para los valores encontrados, calcula la ecuación de la recta tangente a la gráfica de f(x) en el punto de abscisa x = 0. . [04] [EXT-A] a) Calcula los intervalos de concavidad y conveidad de la función f() = - +. Estudia si tiene puntos de infleión. b) En qué puntos de la gráfica de f() la recta tengente es paralela a la

Más detalles

Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1. Ejercicios

Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1. Ejercicios Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM Ejercicios Tema 9: Ecuaciones diferenciales ordinarias. Ecuaciones diferenciales de primer orden en forma normal. Comprobar que todas las funciones de

Más detalles

03 Ejercicios de Selectividad Continuidad y derivabilidad de funciones. Ejercicios propuestos en 2009

03 Ejercicios de Selectividad Continuidad y derivabilidad de funciones. Ejercicios propuestos en 2009 0 Ejercicios de Selectividad Continuidad y derivabilidad de unciones Ejercicios propuestos en 009 1- [009-1-A-] a) [1 5] Halle las unciones derivadas de las unciones deinidas por las siguientes ln epresiones:

Más detalles

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio.

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio. Pág. NOTA: En todos los ejercicios se deberá justificar la respuesta eplicando el procedimiento seguido en la resolución del ejercicio. CURSO 0- FUNCIONES DE UNA VARIABLE CONTROL A continuación se presentan

Más detalles

MATE1207 Preparación Examen Final MATE MATE1207 Cálculo Vectorial

MATE1207 Preparación Examen Final MATE MATE1207 Cálculo Vectorial MATE07 Preparación Eamen Final MATE-07 Universidad de los Andes Departamento de Matemáticas MATE07 álculo Vectorial Eamen Final: Martes de Mao 0 7:00 9:00 a.m. Sección Profesor Salón 0 José Ricardo Arteaga

Más detalles

Razonar si son ciertas o falsas las siguientes igualdades: Asociar cada función con su gráfica. (19) Si x 2 > 0, entonces x > 0.

Razonar si son ciertas o falsas las siguientes igualdades: Asociar cada función con su gráfica. (19) Si x 2 > 0, entonces x > 0. Razonar si son ciertas o falsas las siguientes igualdades: ) a + b) = a + b ) ) a + b = a + b e = e 4) a + ab b + a = a 5) 8 + = 6) a ) = a 5 7) 8) a = a 4 = 4 9) 9 = 0) ) e ) = e + = ) e ln = ) ln 0 =

Más detalles

FUNCIONES DE DOS VARIABLES

FUNCIONES DE DOS VARIABLES FUNCIONES DE DOS VARIABLES - Funciones de dos variables reales - Límites 3- Continuidad de funciones de dos variables 4- Derivabilidad de funciones de dos variables 5- Diferenciabilidad de funciones de

Más detalles

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES 1.- En cada uno de los siguientes casos calcular la integral de línea dada a) + +, donde C es el segmento de recta que une el punto O(0,0)

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN 1.- Derivada de una función en un punto. El estudio de la derivada de una función en un punto surge con el problema geométrico

Más detalles

Derivación de Funciones

Derivación de Funciones CAPÍTULO 7 Derivación de Funciones Sea f una función definida al menos en un intervalo abierto que incluya al número. Si f( + h) f() lím h 0 h eiste (finito), se llama la derivada de f en, y se denota

Más detalles

CÁLCULO II Grados en Ingeniería

CÁLCULO II Grados en Ingeniería CÁLCULO II Grados en Ingeniería Domingo Pestana Galván José Manuel Rodríguez García Figuras realizadas con Arturo de Pablo Martínez Capítulo 1. Cálculo diferencial 1.1 Funciones. Límites y continuidad

Más detalles

GUIA DE EJERCICIOS PARA MATEMATICAS 5

GUIA DE EJERCICIOS PARA MATEMATICAS 5 GUIA DE EJERCICIOS PARA MATEMATICAS 5 La presente guía representa una herramienta para el estudiante para que practique los temas dictados en matemáticas 5. Al final están las soluciones a los ejercicios

Más detalles

DEPARTAMENTO DE ECONOMÍA APLICADA I UNIVERSIDAD DE SEVILLA BOLETINES DE PROBLEMAS DE MATEMÁTICAS I. (b) f(x) = x2 1 x 2 + 3x + 2 (e) f(x) =

DEPARTAMENTO DE ECONOMÍA APLICADA I UNIVERSIDAD DE SEVILLA BOLETINES DE PROBLEMAS DE MATEMÁTICAS I. (b) f(x) = x2 1 x 2 + 3x + 2 (e) f(x) = BLOQUE I: CÁLCULO IFERENCIAL. Tema 1: Funciones de una variable EPARTAMENTO E ECONOMÍA APLICAA I UNIVERSIA E SEVILLA BOLETINES E PROBLEMAS E MATEMÁTICAS I 1. Estudiar la continuidad de las siguientes funciones:

Más detalles

Selectividad hasta el año incluido = 0. Página 1 de 13 ANÁLISIS

Selectividad hasta el año incluido = 0. Página 1 de 13 ANÁLISIS ANÁLISIS Selectividad hasta el año 9- incluido Ejercicio. Calificación máima: puntos. (Junio 99 A) Hallar la longitud de los lados del triángulo isósceles de área máima cuyo perímetro sea 6 m. Ejercicio.

Más detalles

Cálculo Diferencial Agosto 2018

Cálculo Diferencial Agosto 2018 Laboratorio # 1 Desigualdades I.- Encontrar valores de que satisfacen simultáneamente las dos condiciones. 1) [2 3] 9 1 y 2 + 8 + 6 + 3 < 10 2) 3 6 > 1 2 y 2 1 6 3) 1 1 3 y + 1 > 1 4 4) 3 < < 9 y + 5 10

Más detalles

2.- Realiza la operación siguiente y expresa el resultado de la forma más sencilla posible:

2.- Realiza la operación siguiente y expresa el resultado de la forma más sencilla posible: .- Eectúa y simpliica :.- Realiza la operación siguiente y epresa el resultado de la orma más sencilla posible: 7 7.- Calcula el valor de c, para el cual se veriica: n n lim n n cn e... n.- Halla el límite

Más detalles

x 1. [ANDA] [SEP-B] Considera la función f:[0,4] definida por: f(x) =

x 1. [ANDA] [SEP-B] Considera la función f:[0,4] definida por: f(x) = Selectividad CCNN 00. [ANDA] [SEP-B] Considera la función f:[0,] definida por: f() = +a+b si 0 c si

Más detalles

ETSI de Topografía, Geodesia y Cartografía

ETSI de Topografía, Geodesia y Cartografía ETSI de Topografía, Geodesia Cartografía LÍMITES, CONTINUIDAD Y DIFERENCIABILIDAD DE FUNCIONES DE VARIAS VARIABLES REALES Prueba de Evaluación Continua Grupo ºA 3-Octubre-04.- Sea la función 5 si (,) 4

Más detalles

x 2 y si x 3y 2 si x = 3y Describir el conjunto de los puntos de discontinuidad de f en coordenadas polares.

x 2 y si x 3y 2 si x = 3y Describir el conjunto de los puntos de discontinuidad de f en coordenadas polares. FIUBA 07-05-11 Análisis Matemático II Parcial - Tema 1 1. Sea f(x, y) = { x y si x 3y si x = 3y Describir el conjunto de los puntos de discontinuidad de f en coordenadas polares.. Sea G(x, y) = (u(x, y),

Más detalles

ETSI de Topografía, Geodesia y Cartografía

ETSI de Topografía, Geodesia y Cartografía Prueba de evaluación continua Métodos Matemáticos -XII-0. Usando el método de los trapecios para n = 0, hallar: a) Un valor aproimado del área encerrada por la función f() = e y el eje de abscisas en el

Más detalles

sea a lo largo de la curva solución de la ecuación diferencial xy, = 5x

sea a lo largo de la curva solución de la ecuación diferencial xy, = 5x 1. Hallar κ de manera que el flujo saliente del campo f ( x, = (x + y + z, 6y a través de la frontera del cuerpo x + y + z 16 x + y κ, 0 < k < 4 f : R R un campo vectorial definido por:. Sea γ ( t ) =

Más detalles

INTEGRALES DEFINIDAS. CÁLCULO DE ÁREAS

INTEGRALES DEFINIDAS. CÁLCULO DE ÁREAS INTEGRALES DEFINIDAS. CÁLCULO DE ÁREAS. Dada la función f() = -. Calcular f () d. a) Representar y = ( ) 3. b b) Calcular la integral indefinida ( 3 ) d a c) Justificar el resultado de b en función de

Más detalles

Derivadas Parciales. Aplicaciones.

Derivadas Parciales. Aplicaciones. RELACIÓN DE PROBLEMAS FUNDAMENTOS MATEMÁTICOS DE LA INGENIERÍA Curso 2004/2005 Escuela Universitaria de Ingeniería Técnica Agrícola Departamento de Matemática Aplicada I Tema 3. Derivadas Parciales. Aplicaciones.

Más detalles

Práctica 5 Máximos y Mínimos. Multiplicadores de Lagrange. Escuela de Matemática Instituto Tecnológico de Costa Rica

Práctica 5 Máximos y Mínimos. Multiplicadores de Lagrange. Escuela de Matemática Instituto Tecnológico de Costa Rica Práctica 5 Máximos y Mínimos. Multiplicadores de Lagrange. Escuela de Matemática Instituto Tecnológico de Costa Rica http://www.cidse.itcr.ac.cr 7 de junio de 008 . Para cada una de las funciones que se

Más detalles

x = 1 Asíntota vertical

x = 1 Asíntota vertical EJERCICIO Sea la función f ( ). a) Indique el dominio de definición de f, sus puntos de corte con los ejes, sus máimos mínimos, eisten, sus intervalos de crecimiento decrecimiento. b) Obtenga las ecuaciones

Más detalles

Práctica 3: Diferenciación I

Práctica 3: Diferenciación I Análisis I Matemática I Análisis II (C) Cuat II - 009 Práctica 3: Diferenciación I Derivadas parciales y direccionales. Sea f una función continua en x = a. Probar que f es derivable en x = a si y solo

Más detalles

Listado 1 Cálculo III (2025) PLEV Hallar adherencia, interior, conjunto de puntos de acumulación y frontera para:

Listado 1 Cálculo III (2025) PLEV Hallar adherencia, interior, conjunto de puntos de acumulación y frontera para: Universidad de Concepción Facultad de Ciencias Físicas y Matemáticas Departamento de Matemática Listado 1 Cálculo III (2025) PLEV 2018 1. Hallar adherencia, interior, conjunto de puntos de acumulación

Más detalles

TEMA 3: CÁLCULO DE FUNCIONES DE VARIAS VARIABLES

TEMA 3: CÁLCULO DE FUNCIONES DE VARIAS VARIABLES TEMA : CÁLCULO DE FUNCIONES DE AIAS AIABLES. Hallar f,. f, f,. 4 4. Hallar el valor de la función f, en los puntos de la circunferencia.. Calcular los guientes límites: cos lim,, sen lim,, c, lim con,

Más detalles

TEORIA MATEMATICAS 5 PRIMER PARCIAL

TEORIA MATEMATICAS 5 PRIMER PARCIAL Def: Grafica de una función TEORIA MATEMATICAS 5 PRIMER PARCIAL Sea:. Definimos la grafica de f como el subconjunto de formado por los puntos, de en los que es un punto de U. Simbólicamente grafica es:

Más detalles

ECUACIONES DIFERENCIALES TEORÍAS Y APLICACIONES

ECUACIONES DIFERENCIALES TEORÍAS Y APLICACIONES 2010 ECUACIONES DIFERENCIALES TEORÍAS Y APLICACIONES El siguiente documento desarrolla el contenido programático de Ecuaciones Diferenciales del programa de Ingeniería Industrial de la Universidad de La

Más detalles

Ejercicio 1 Relacione convenientemente cada una de las siguientes expresiones: (considere x > 0 ) P Q a b. ax + bxh + h. x bxh

Ejercicio 1 Relacione convenientemente cada una de las siguientes expresiones: (considere x > 0 ) P Q a b. ax + bxh + h. x bxh Módulo 1 DERIVADAS 1.1 Reglas de diferenciación Reconocimiento de saberes Ejercicio 1 Relacione convenientemente cada una de las siguientes epresiones: (considere > 0 ) ln ( e ) ln ln ( e ) ln e ln + ln

Más detalles