Un individuo vive a lo largo de dos periodos, t=0,1. En t=0 su ingreso es cierto, m 0 ; en t=1 es incierto (por

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Un individuo vive a lo largo de dos periodos, t=0,1. En t=0 su ingreso es cierto, m 0 ; en t=1 es incierto (por"

Transcripción

1 Consmo ahorro e inertidmbre Un individo vive a lo largo de dos periodos t=. En t= s ingreso es ierto m ; en t= es inierto por ej. si mantiene el trabajo s ingreso es qe si va al paro. Lo qe pede haer el individo es estimar en t= la prob de qedarse en el paro en t= s renta ftra está definida por na ley de probabilidad lotería. El tipo de interés es onoido y onstante r >. El ingreso ftro pede ser m + ε on prob ½ y m ε on prob ½ on lo al ~ ε es na v.a. de media nla E [ ~ ε ] = lotería netra o atarialmente jsta y ~ ] Var [ ε = σ.

2 Si omparamos este aso de inertidmbre on el aso en el qe el individo reibe m on erteza en t= reslta + ε m b + ε m ĉ Certidmbre ε m ε m a

3 En ertidmbre la reta prespestaria inter-temporal ab está generada por el fljo de rentas iertas m m el al se pede transformar en n vetor de onsmo sobre diha reta graias a la existenia de mdo de apitales. En inertidmbre el individo desonoe s reta de balane. Será na otra en fnión del estado de la natraleza qe se materialie y los posibles valores de asoiados a ada valor de dependen de la resolión de la inertidmbre Cál es el valor ierto de prob ½ y + ε on prob ½? ĉ qe da al onsmidor la misma tilidad qe la lotería ε on 3

4 4 Antes de nada sabemos qe: ε > ˆ y ˆ < si el individo es averso al riesgo ĉ es tal qe satisfae ε + ε + = ˆ Si aproximamos por Taylor esta expresión reslta + = + ˆ ˆ E E ε ε E E ε ε Derivamos on respeto a la renta del periodo porqe es donde existe inertidmbre la del periodo es na renta ierta.

5 y simplifiando ˆ σ Dado qe ĉ es el eq. ierto de la lotería ε on prob ½ y + ε on prob ½ el LHS es el pv de diha lotería y dado qe E ~ ε = entones pv < para n onsmidor averso al riesgo. Mientras qe iniialmente disponía de y de na lotería para desprenderse de ésta el individo aeptaría ĉ menor qe Como la prima de riesgo asoiada a na lotería es s esperanza matemátia menos pv reslta σ = ˆ = 5

6 resltado my pareido al obtenido en seiones anteriores. Si repliamos este argmento para alqier otro valor de a lo largo de la reta de balane en ertidmbre generamos na reta de balane eqivalente RBE a partir de la al el individo está indiferente entre: Una sitaión aleatoria araterizada por dos retas eqi-probables y Las ombinaiones de la RBE reta de olor azl 6

7 7

8 + ε m b + ε d m ĉ Certidmbre ε m ε m a 8

9 La RBE d estará siempre por enima de la reta del estado malo y para n individo averso estará siempre por debajo de la reta de balane bajo ertidmbre. La posiión exata de la RBE depende de la asoiada a la lotería ε ~. Hipótesis posibles:. Para todo en la reta de balane ab la AAR es onstante. En este aso la orrespondiente prima de riesgo también es onstante on lo al la RBE está siempre por debajo y es paralela a la reta de balane en ertidmbre ab. La aversión al riesgo provoa n efeto empobreimiento 9

10 . La AAR es reiente al desplazarnos desde b haia a + ε m + ε m ε b d ĉ Certidmbre m ε m a

11 En este aso la también es reiente al movernos desde b haia a on lo al la RBE se aleja de la reta de balane en ertidmbre Esta hp de na AAR reiente es plasible por dos razones: i Al el individo no se atreverá a segir on na lotería aditiva sobre dada efeto empobreimiento asado por la aversión al riesgo igal qe en. ii Cando el individo se habitúa a n elevado está menos dispesto a aeptar loterías en ya qe implian el riesgo de n menor nivel de onsmo ftro. Este efeto es la divergenia entre el tipo de interés psiológio qe el individo peribe y la tasa de interés de merado pendiente de d mayor qe pendiente de ab al en nidad el individo ĉ en +r + n splemento provoado por el

12 3. AAR dereiente al desplazarnos desde b haia a Completar RESUMEN Este argmento dadas las preferenias del individo permite transformar na sitaión de inertidmbre en otra eqivalente on ertidmbre. Así dos individos on las mismas oportnidades m m r idéntios tendrán ante na misma lotería RBE distintas si ss fniones de tilidad son distintas.

Tema 2: Elección bajo incertidumbre

Tema 2: Elección bajo incertidumbre Tema : Eleión bajo inertidumbre Ref: Capítulo Varian Autor: Joel Sandonís Versión:..0 Javier López Departamento de Fundamentos del Análisis Eonómio Universidad de Aliante Miroeonomía Intermedia Introduión

Más detalles

CRECIMIENTO ECONÓMICO. NOTAS DE CLASE: El modelo de Ramsey, Cass- Koopmans

CRECIMIENTO ECONÓMICO. NOTAS DE CLASE: El modelo de Ramsey, Cass- Koopmans Universidad de Buenos Aires - Faultad de Cienias Eonómias CRECIMIENTO ECONÓMICO NOTAS DE CLASE: El modelo de Ramsey, Cass- Koopmans Por: los integrantes del urso 1 Año 2012 1 Las presentes notas de lase

Más detalles

CAPÍTULO V: CLASIFICACIÓN DE SECCIONES 5.1. INTRODUCCIÓN

CAPÍTULO V: CLASIFICACIÓN DE SECCIONES 5.1. INTRODUCCIÓN CAPÍTULO V: 5.. INTRODUCCIÓN Las seiones estruturales, sean laminadas o armadas, se pueden onsiderar omo un onjunto de hapas, algunas son internas (p.e. las almas de las vigas aiertas o las alas de las

Más detalles

Matemática Aplicada a la Economía. Toma de decisiones en la elección de los riesgos

Matemática Aplicada a la Economía. Toma de decisiones en la elección de los riesgos Matemática Aplicada a la Economía. Toma de decisiones en la elección de los riesgos Este artíclo se basa en el capítlo III ( Elección en condiciones de incertidmbre ) de la obra Microeconomía, del profesor

Más detalles

Facultad de Ciencias Exactas Y Naturales FRECUENCIAS DE VIBRACIÓN DE UNA BARRA CON ÁREA SECCIONAL COSENO

Facultad de Ciencias Exactas Y Naturales FRECUENCIAS DE VIBRACIÓN DE UNA BARRA CON ÁREA SECCIONAL COSENO Revista NOOS Volumen (3) Pág 4 8 Derehos Reservados Faultad de Cienias Exatas Y Naturales FRECUENCIAS DE VIBRACIÓN DE UNA BARRA CON ÁREA SECCIONAL COSENO Carlos Daniel Aosta Medina Ingrid Milena Cholo

Más detalles

9.0 10.5 11.0 9.7 8.7 11.6 10.3 10.1 8.0 8.5 9.8

9.0 10.5 11.0 9.7 8.7 11.6 10.3 10.1 8.0 8.5 9.8 APLICACIONES ESTADÍSTICAS AL MERCADEO PRUEBAS DE HIPÓTESIS. EJERCICIOS Pruebas t para la meia. Se quiere eiir sobre el siguiente sistema e hipótesis: Ho: µ = 00, Ha: µ 00 muestra aleatoria e seis elementos

Más detalles

El market marker establece un precio p, al cual ocurren las transacciones. Este precio no es conocido por los traders.

El market marker establece un precio p, al cual ocurren las transacciones. Este precio no es conocido por los traders. Tarea 5: Modelo de Kle Pregnta 1 (Traders de liqidez o noise traders parcialmente informados) Los traders qe bscan liqidez en el modelo original no toman en centa el alor del actio: es independiente de.

Más detalles

1.2 TÉCNICAS DE LA DERIVACIÓN.

1.2 TÉCNICAS DE LA DERIVACIÓN. . TÉCNICAS DE LA DERIVACIÓN... DERIVACIÓN DE FUNCIONES ALGEBRAICAS Generalmente la derivación se lleva acabo aplicando fórmlas obtenidas mediante la regla general de la derivación y qe calclaremos a continación,

Más detalles

Jorge Pontt O. Adolfo Paredes P.

Jorge Pontt O. Adolfo Paredes P. Capítlo 2: EL TRANSFORMADOR niversidad Técnica Federico Santa María ELO 281 Sistemas Electromecánicos Jorge Pontt O. Adolfo Paredes P. 1 2.4 Transformadores Trifásicoss 2.4.1 Principio de fncionamiento.

Más detalles

Estrategias De Ventas

Estrategias De Ventas Territorios de Venta Donde están los lientes? Merado - Meta Estrategias De Ventas Ing. Heriberto Aja Leyva Objetivo Estableer los objetivos de ventas y prourar una obertura efiaz en el Territorio de ventas

Más detalles

Diseño o de Entradas. Autor: Dr. Juan Carlos Gómez ISIS 2

Diseño o de Entradas. Autor: Dr. Juan Carlos Gómez ISIS 2 Identificación n de SIStemas Diseño o de Entradas Ator: Dr. Jan Carlos Gómez Un reqisito fndamental de las entradas para n experimento de identificación es el de persistencia de excitación de las mismas.

Más detalles

Procesos legales. 1. Introducción. 2. Marco legal

Procesos legales. 1. Introducción. 2. Marco legal Procesos legales 1. Introdcción A partir de la expedición del decreto distrital 812 de 1996, por medio del cal se reestrctró la Secretaría Distrital de Sald de Bogotá, D. C., la dirección de sald pública

Más detalles

DETERMINACION DEL VALOR DE LA CUOTA Y EL CRONOGRAMA DE PAGOS DE CREDITOS HIPOTECARIOS. 1 2 3 n-1

DETERMINACION DEL VALOR DE LA CUOTA Y EL CRONOGRAMA DE PAGOS DE CREDITOS HIPOTECARIOS. 1 2 3 n-1 DETERMINAION DEL VALOR DE LA UOTA Y EL RONOGRAMA DE PAGOS DE REDITOS HIPOTEARIOS Edpyme Raíz utiliza, para el álulo de su ronograma de pagos, el método de la uota fija. Esto signifia que ada pago periódio

Más detalles

DOCUMENTO DE TRABAJO. www.economia.puc.cl

DOCUMENTO DE TRABAJO. www.economia.puc.cl nstituto N S T de T Eonomía U T O D E E C O N O M Í A T E S S d e M A Í S T E R DOCUMENTO DE TRAAJO ¾¼¼ ÒØÖ ËØÓ ÇÔØ ÓÒ ÐÓ ÙØ ÚÓ Ô Ö ÓÑÔ Ò Ö Ù ÖÞÓ Ò ÙÒ Å ÖÓ Ñ ØÖ ÁÒ ÓÖÑ Ò Ð Ö Ó Ï Ò Ù Ë Ô Ð Öº www.eonomia.pu.l

Más detalles

Núcleo e Imagen de una Transformación Lineal

Núcleo e Imagen de una Transformación Lineal Núleo e Imagen de una Transformaión Lineal Departamento de Matemátias CCIR/ITESM 8 de junio de Índie 7.. Núleo de una transformaión lineal................................. 7.. El núleo de una matri la

Más detalles

Norberto A. Lemozy. Fig. 1. Transformador monofásico acorazado.

Norberto A. Lemozy. Fig. 1. Transformador monofásico acorazado. AT BT BT AT TRANSFORMADORES TRIFÁSICOS Norberto A Lemozy 1 INTRODCCIÓN La mayoría de los transformadores tilizados en la transmisión y distribción de energía eléctrica son trifásicos, por na cestión de

Más detalles

La Beta Apalancada. Juan Mascareñas Universidad Complutense de Madrid Última versión: diciembre 2002. 1. El coeficiente de volatilidad

La Beta Apalancada. Juan Mascareñas Universidad Complutense de Madrid Última versión: diciembre 2002. 1. El coeficiente de volatilidad a Beta Apalancada Jan Mascareñas Universidad Compltense de Madrid Última versión: diciembre 2002 1. l coeficiente de volatilidad l coeficiente de volatilidad beta- de n activo financiero indica canto varía

Más detalles

MiFID. La armonización de los mercados financieros

MiFID. La armonización de los mercados financieros La armonización de los mercados financieros MiFID o Directiva de Mercados e Instrmentos Financieros, persige como objetivo fndamental la armonización de los mercados financieros, introdciendo n régimen

Más detalles

5. ESTRUCTURA DE LA TIERRA Y ANOMALÍAS DE LA GRAVEDAD.

5. ESTRUCTURA DE LA TIERRA Y ANOMALÍAS DE LA GRAVEDAD. Tema 5. Estrutura de la Tierra y anomalías de la gravedad. 5. ESTRUCTURA DE LA TIERRA Y ANOMALÍAS DE LA GRAVEDAD. 5. Estrutura interna de la Tierra y gravedad asoiada. El avane en el onoimiento interno

Más detalles

Instituto de Física Facultad de Ingeniería Universidad de la República PROBLEMA 1

Instituto de Física Facultad de Ingeniería Universidad de la República PROBLEMA 1 EXEN - Física General 30 de jlio de 004 VERSIÓN Considere: g = 9,8 m/s R = 8,345 J / mol K PROBLE Una mestra de n mol de gas ideal encerrado en na cámara experimenta el ciclo mostrado en la figra, donde

Más detalles

OBJETIVOS: Definir Límites. Realizar demostraciones formales de límites. Describir gráficamente los límites. Calcular límites.

OBJETIVOS: Definir Límites. Realizar demostraciones formales de límites. Describir gráficamente los límites. Calcular límites. Cap. Límites de Fnciones. LÍMITE EN UN PUNTO. LÍMITES LATERALES. TEOREMAS SOBRE LÍMITES.4 CÁLCULO DE LÍMITES.5 LÍMITES AL INFINITO.6 LÍMITES INFINITOS.7 OTROS LÍMITES OBJETIVOS: Definir Límites. Realizar

Más detalles

ÁCIDO BASE QCA 09 ANDALUCÍA

ÁCIDO BASE QCA 09 ANDALUCÍA ÁCIDO BASE QCA 9 ANDALUCÍA.- El ph de L de disoluión auosa de hidróxido de litio es. Calule: a) Los gramos de hidróxido que se han utilizado para prepararla. b) El volumen de agua que hay que añadir a

Más detalles

Problemas de bioestadística. Página 17

Problemas de bioestadística. Página 17 Problemas de bioestadístia Página 7 2.- En la poblaión adulta de Telde (edad Y 30 años) y de auerdo on los riterios de la organizaión mundial de la salud (OMS), el 2.5% de las personas son diabétias, el

Más detalles

TERMINOS DE INTERCAMBIO EXTERNOS Y BALANZA COMERCIAL. ALGUNA EVIDENCIA PARA LA ECONOMÍA ARGENTINA

TERMINOS DE INTERCAMBIO EXTERNOS Y BALANZA COMERCIAL. ALGUNA EVIDENCIA PARA LA ECONOMÍA ARGENTINA TERMINOS DE INTERCAMBIO EXTERNOS Y BALANZA COMERCIAL. ALGUNA EVIDENCIA PARA LA ECONOMÍA ARGENTINA Luis N. Lanteri Se desea agradeer a Glenn Otto los omentarios y sugerenias reibidos. No obstante, el ontenido

Más detalles

Cárceles y salas de retenidos

Cárceles y salas de retenidos Cárceles y salas de retenidos 1. Soporte legal Ley 9ª de 1979, Código sanitario nacional, títlo V, Saneamiento de edificaciones. Ley 65 de 1993, Código penitenciario y carcelario. Establece las exigencias

Más detalles

Fracciones: términos, lectura y escritura

Fracciones: términos, lectura y escritura Fraiones: términos, letura y esritura Feha Reuerda Los términos de una fraión son el numerador y el denominador: El denominador india el número de partes iguales en que se divide la unidad. El numerador

Más detalles

El método binomial de valoración de opciones

El método binomial de valoración de opciones El método binomial de valoraión de opiones Jan Masareñas Universidad Compltense de Madrid Versión iniial: enero 1994 - Ultima evisión: otbre 00 1. El método binomial para n período 2. El método binomial

Más detalles

Moteles, hoteles y residencias

Moteles, hoteles y residencias Moteles, hoteles y residencias 1. Soporte legal Ley 9ª de 1979, títlo V, saneamiento de edificaciones. Resolción 3994 de 1994, de la Secretaría Distrital de Sald. Obligatoriedad de promoción del so del

Más detalles

Tema 2 La elección en condiciones de incertidumbre

Tema 2 La elección en condiciones de incertidumbre Ejeriios resueltos de Miroeonomía. Equilibrio general y eonomía de la informaión Fernando Perera Tallo Olga María Rodríguez Rodríguez Tema La eleión en ondiiones de inertidumbre http://bit.ly/8l8ddu Ejeriio

Más detalles

BUROCRACIA Y FEDERALISMO FISCAL: UN MARCO TEORICO PARA EL ANALISIS DEL EFECTO FLYPAPER *

BUROCRACIA Y FEDERALISMO FISCAL: UN MARCO TEORICO PARA EL ANALISIS DEL EFECTO FLYPAPER * ROCRACIA Y FEDERAISMO FISCA: N MARCO TEORICO PARA E ANAISIS DE EFECTO FYPAPER * Pablo ACOSTA 1 y Andrés OZA niversidad Naional de a Plata, Argentina Jnio de 001 Resmen Este trabajo intenta darle n maro

Más detalles

Hoja de Ruta para la Diversidad Lingüística en Europa. Un nuevo enfoque sobre las lenguas para la Estrategia Europa 2020

Hoja de Ruta para la Diversidad Lingüística en Europa. Un nuevo enfoque sobre las lenguas para la Estrategia Europa 2020 Hoja de Rta para la Diversidad Lingüística en Eropa Un nevo enfoqe sobre las lengas para la Estrategia Eropa 2020 Para más información, visite: www.npld.e Propesta de la Red Eropea para la Diversidad Lingüística

Más detalles

DETERMINACION DEL VALOR DE LA CUOTA Y EL CRONOGRAMA DE PAGOS DE CREDITOS DE CONSUMO. 1 2 3 n-1

DETERMINACION DEL VALOR DE LA CUOTA Y EL CRONOGRAMA DE PAGOS DE CREDITOS DE CONSUMO. 1 2 3 n-1 DETERMINACION DEL VALOR DE LA CUOTA Y EL CRONOGRAMA DE PAGOS DE CREDITOS DE CONSUMO Edpyme Raíz utiliza, para el álulo de su ronograma de pagos, el método de la uota fija. Esto signifia que ada pago periódio

Más detalles

TEMA: TEOREMA DE PITÁGORAS

TEMA: TEOREMA DE PITÁGORAS TEMA: TEOREMA DE PITÁGORAS Atividades iniio: Ejeriios de alentamiento Traajo en grupo Entregar opia del ejeriio de exploraión a ada estudiante Disutir ejeriio de exploraión Llegar a una onjetura Calentamiento

Más detalles

Aplicación de la Ordenanza Solar Térmica: un balance positivo

Aplicación de la Ordenanza Solar Térmica: un balance positivo CUADERNO CENTRAL 37 Apliaión de la Ordenanza Solar Térmia: un balane positivo Ana Portnoy TEXTO Carlos Amieiro Diretor de Serviios Ténios Agenia de Energía de Barelona GRÁFICOS La Cuina Gràfia El agotamiento

Más detalles

C11 SIMULACIÓN DE UN MOTOR COHETE DE COMBUSTIBLE LÍQUIDO

C11 SIMULACIÓN DE UN MOTOR COHETE DE COMBUSTIBLE LÍQUIDO C11 SIMULACIÓN DE UN MOTOR COHETE DE COMBUSTIBLE LÍQUIDO Núria Margarit i Bel Massahusetts Institute o Tehnology Cambridge, Massahusetts, USA marga@mit.edu Pro. Manuel Martínez Sánhez Massahusetts Institute

Más detalles

6. Acción de masas y dependencia del potencial químico con la concentración

6. Acción de masas y dependencia del potencial químico con la concentración 6 Aión de masas y dependenia del potenial químio on la onentraión Tema: Dependenia del potenial químio on la onentraión y apliaiones más importantes 61 El onepto de aión de masas Desde hae muho tiempo

Más detalles

Soluciones Problemas Capítulo 1: Relatividad I

Soluciones Problemas Capítulo 1: Relatividad I Soluiones Problemas Capítulo 1: Relatividad I 1) (a) La distania, d, a la que se enuentra el ohete de la Tierra viene dada por t 1 = 2s = 2d d = t 1 2 = 3 11 m = 3 1 7 km. (b) El tiempo que tarda la primera

Más detalles

TEMA 10: EQUILIBRIO QUÍMICO

TEMA 10: EQUILIBRIO QUÍMICO TEMA : EQUILIBRIO QUÍMICO. Conepto de equilibrio químio: reaiones reversibles. Existen reaiones, denominadas irreversibles, que se araterizan por transurrir disminuyendo progresivamente la antidad de sustanias

Más detalles

Diseño y cálculo de uniones con tornillos pretensados

Diseño y cálculo de uniones con tornillos pretensados Diseño y cálclo de niones con tornillos pretensados Apellidos nombre Arianna Gardiola Víllora (agardio@mes.pv.es) Departamento Centro Mecánica del Medio Contino y Teoría de Estrctras Escela Técnica Sperior

Más detalles

SOLO PARA INFORMACION

SOLO PARA INFORMACION Universidad Naional del Callao Esuela Profesional de Ingeniería Elétria Faultad de Ingeniería Elétria y Eletrónia Cilo 2008-B ÍNDICE GENERAL INTRODUCION... 2 1. OBJETIVOS...3 2. EXPERIMENTO...3 2.1 MODELO

Más detalles

Capítulo 6 Acciones de control

Capítulo 6 Acciones de control Capítulo 6 Aiones de ontrol 6.1 Desripión de un bule de ontrol Un bule de ontrol por retroalimentaión se ompone de un proeso, el sistema de mediión de la variable ontrolada, el sistema de ontrol y el elemento

Más detalles

independiente de la cantidad de masa y es propio de cada sustancia c =.

independiente de la cantidad de masa y es propio de cada sustancia c =. Tema 7 Termodinámia 7.. Calorimetría y ambios de fase. 7... Capaidad alorífia y alor espeífio. La temperatura de un uerpo aumenta uando se añade alor o disminuye uando el uerpo desprende alor. (Por el

Más detalles

Ángulo de desfase en un circuito RC Fundamento

Ángulo de desfase en un circuito RC Fundamento Ángulo de desfase en un iruito RC Fundaento En un iruito de orriente alterna, están situados en serie una resistenia variable R V y un ondensador. Debido a que las aídas de tensión en ada eleento no están

Más detalles

Sistema de vigilancia epidemiológica alimentaria y nutricional Sisvan

Sistema de vigilancia epidemiológica alimentaria y nutricional Sisvan Sistema de vigilancia epidemiológica alimentaria y ntricional Sisvan 1. Generalidades El estado ntricional es n indicador de calidad de vida de las poblaciones, en canto refleja el desarrollo físico, intelectal

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO PROBLEMAS RESUELOS SELECIVIDAD ANDALUCÍA 001 QUÍMICA EMA 5: EQUILIBRIO QUÍMICO Junio, Ejeriio 4, Opión A Junio, Ejeriio 3, Opión B Junio, Ejeriio 6, Opión B Reserva 1, Ejeriio 3, Opión A Reserva 1, Ejeriio

Más detalles

Cómo controlar su. presión arterial

Cómo controlar su. presión arterial Cómo controlar s presión arterial Tabla de Contenidos Cómo medir s presión arterial...1 Conozca ss números anótelos!...2 Lo qe significan los números...3 La presión arterial y s corazón...4 Es importante

Más detalles

Tema 3. TRABAJO Y ENERGÍA

Tema 3. TRABAJO Y ENERGÍA Tema 3. TRABAJO Y ENERGÍA Físia, J.. Kane, M. M. Sternheim, Reverté, 989 Tema 3 Trabajo y Energía Cap.6 Trabajo, energía y potenia Cap. 6, pp 9-39 TS 6. La arrera Cap. 6, pp 56-57 . INTRODUCCIÓN: TRABAJO

Más detalles

TEMA 4. MODELOS DE PROBABILIDAD DISCRETOS

TEMA 4. MODELOS DE PROBABILIDAD DISCRETOS TEMA 4. MODELOS DE PROBABILIDAD DISCRETOS 4.1 Distribución binomial 4.1.1 Definición. Ejemplos 4.1.2 La media y la varianza 4.1.3 Uso de tablas 4.1.4 Aditividad 4.2 Distribución de Poisson 4.2.1 Definición.

Más detalles

Selectividad Septiembre 2009 SEPTIEMBRE 2009. Opción A

Selectividad Septiembre 2009 SEPTIEMBRE 2009. Opción A SEPTIEMBRE 2009 Opción A 1.- Como cada año, el inicio del curso académico, una tienda de material escolar prepara una oferta de 600 cuadernos, 500 carpetas y 400 bolígrafos para los alumnos de un IES,

Más detalles

Tercera Parte: Producto Vectorial y Producto Mixto entre vectores

Tercera Parte: Producto Vectorial y Producto Mixto entre vectores Tercera Parte: Prodcto Vectorial Prodcto Mito entre ectores Introdcción Retomemos el caso los dos pintores: Carlos Jan. Finaliada la tarea de moer el escritorio, el arqitecto qe coordina la obra, indica

Más detalles

TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II 2º Bach. 1

TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II 2º Bach. 1 TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II º Bach. TEMA 5 VECTORES EN EL ESPACIO 5. LOS VECTORES Y SUS OPERACIONES DEINICIÓN Un ector es n segmento orientado. Un ector extremo B. Elementos de n ector:

Más detalles

EL MODELO DE RICARDO

EL MODELO DE RICARDO L MODLO D RIRDO. Supuestos laves:. costos constantes 2. no se toma en cuenta los gustos preferencias de los consumidores. Otros Supuestos. sólo 2 naciones 2 productos 2. libre comercio 3. movilidad perfecta

Más detalles

TEMA 1. INTERCAMBIADORES DE CALOR

TEMA 1. INTERCAMBIADORES DE CALOR Fórulas de Interabiadores TEMA INTERCAMBIAORES E CALOR Resistenia téria de onduión para pared plana: Resistenia téria de onveión: R t onv A Coefiie global de transferenia de alor U: R tot R t ond L ka

Más detalles

XXV OLIMPIADA DE FÍSICA CHINA, 1994

XXV OLIMPIADA DE FÍSICA CHINA, 1994 OMPD NTENCON DE FÍSC Prolemas resueltos y omentados por: José uis Hernández Pérez y gustín ozano Pradillo XX OMPD DE FÍSC CHN, 99.-PTÍCU ETST En la teoría espeial de la relatividad la relaión entre la

Más detalles

Préstamos para la Educación Universitaria. Índice. Una guía de préstamos federales para la educación superior

Préstamos para la Educación Universitaria. Índice. Una guía de préstamos federales para la educación superior Préstamos para la Edcación Universitaria Una gía de préstamos federales para la edcación sperior Índice Características básicas de los préstamos edcativos 2 Solicitd de préstamos edcativos 3 Pago de los

Más detalles

Procedimiento específico: PEE72 PROCEDIMIENTO DE CALIBRACIÓN DE TRANSFORMADORES DE TENSIÓN DE ALTA RELACIÓN DE TRANSFORMACIÓN. Copia No Controlada

Procedimiento específico: PEE72 PROCEDIMIENTO DE CALIBRACIÓN DE TRANSFORMADORES DE TENSIÓN DE ALTA RELACIÓN DE TRANSFORMACIÓN. Copia No Controlada opia No ontrolada Institto Nacional de Tecnología Indstrial entro de Desarrollo e Investigación en ísica y Metrología Procedimiento específico: PEE7 POEDIMIENTO DE ALIBAIÓN DE TANSOMADOES DE TENSIÓN DE

Más detalles

Integración de formas diferenciales

Integración de formas diferenciales Capítulo 9 Integraión de formas difereniales 1. Complejos en R n En este apítulo iniiamos el estudio de la integraión de formas difereniales sobre omplejos en R n. Un omplejo es una ombinaión de ubos en

Más detalles

ACTIVIDADES INICIALES. b) ( 1, 6) d) (0, 3) (0, 1) (0, 2) f) ( 8, 4) (24, 6) (16, 2) h) ( 5, 3) (2, 2) ( 3, 1) EJERCICIOS PROPUESTOS

ACTIVIDADES INICIALES. b) ( 1, 6) d) (0, 3) (0, 1) (0, 2) f) ( 8, 4) (24, 6) (16, 2) h) ( 5, 3) (2, 2) ( 3, 1) EJERCICIOS PROPUESTOS Solcionario 4 Vectores TIVIDDES INIILES 4.I. Efectúa las sigientes operaciones: a) (5, 3) (, 4) c) 5(3, ) (, 4) e) (7, 4) (, ) g) (3, 6) 3 (, ) b) (6, 4) (7, ) d) 3(0, ) (0, 3) f) 4(, ) 6(4, ) h) (5, 3)

Más detalles

11 Efectos de la esbeltez

11 Efectos de la esbeltez 11 Efetos de la esbeltez CONSIDERACIONES GENERALES El diseño de las olumnas onsiste básiamente en seleionar una seión transversal adeuada para la misma, on armadura para soportar las ombinaiones requeridas

Más detalles

El lanzamiento y puesta en órbita del satélite Sputnik I marcó, en. El GPS y la teoría de la relatividad

El lanzamiento y puesta en órbita del satélite Sputnik I marcó, en. El GPS y la teoría de la relatividad T El GPS y la teoría de la atividad Eduardo Huerta(*), arlos Galles(**), Andrés Greo(**) y Aldo Mangiaterra(*) (*) DEPARTAMENTO DE GEOTOPOARTOGRAFÍA (**) DEPARTAMENTO DE FÍSIA FAULTAD DE IENIAS EXATAS,

Más detalles

Apunte Docente. Criterio Incremental. Yolanda Reyes Fernández

Apunte Docente. Criterio Incremental. Yolanda Reyes Fernández Apunte Docente Criterio Incremental Yolanda Reyes Fernández La autora es Máster en Administración y Finanzas, Escuela Superior de Administración y Dirección de Empresas (ESADE), Barcelona, España. Licenciada

Más detalles

DINÁMICA Y CONTROL DE PROCEOS 1 INTRODUCCIÓN. 1.1 Motivación

DINÁMICA Y CONTROL DE PROCEOS 1 INTRODUCCIÓN. 1.1 Motivación 1 INTRODUCCIÓN 1.1 Motivación Sin rofndizar en la mltilicidad de tareas qe ede encarar n Ingeniero de Procesos, odemos señalar algnas áreas esenciales de s camo de acción: En rimer lgar el diseño o adatación

Más detalles

Calor específico Calorimetría

Calor específico Calorimetría Calor espeíio Calorimetría Físia II Lieniatura en Físia 2003 Autores: Andrea Fourty María de los Angeles Bertinetti Adriana Foussats Calor espeíio y alorimetría Cátedra Físia II (Lieniatura en Físia) 1.-

Más detalles

GUÍA N 1 CUARTO AÑO MEDIO

GUÍA N 1 CUARTO AÑO MEDIO Colegio Antil Mawida Departamento de Matemática Profesor: Nathalie Sepúlveda Delgado GUÍA N 1 CUARTO AÑO MEDIO Nombre del alumno/a: Fecha: Unidades de aprendizaje: Objetivo Contenidos: Nivel: Vectores

Más detalles

Lección 3. Cálculo vectorial. 4. Integrales de superficie.

Lección 3. Cálculo vectorial. 4. Integrales de superficie. GRAO E INGENIERÍA AEROEPACIAL CURO 0 MATEMÁTICA II PTO E MATEMÁTICA APLICAA II 4 Integrales de sperficie Nestro último paso en la etensión del concepto de integral es el estdio de las integrales de sperficie,

Más detalles

8.- Considere un duopolio de Bertrand que produce un bien homogéneo. La función de

8.- Considere un duopolio de Bertrand que produce un bien homogéneo. La función de 8.- Consdere un duoolo de Bertrand que rodue un ben hoogéneo. La funón de deanda es x = A b y las eresas tenen el so oste argnal onstante, > 0 no hay ostes fos. Caratere el equlbro de Bertrand-Nash desrba

Más detalles

Ingeniería de Requerimientos. Objetivos. Ingeniería de Requerimientos. Tópicos. Requerimientos Definición/Especificación. Qué es un Requerimiento?

Ingeniería de Requerimientos. Objetivos. Ingeniería de Requerimientos. Tópicos. Requerimientos Definición/Especificación. Qué es un Requerimiento? Ingeniería de Reqerimientos Objetivos Estableciendo lo qe el cliente reqiere de n de Software. Ingeniería de SoftwareDiapositiva 1 Introdcción a la Noción de Ingeniería de Reqerimientos. Explicación de

Más detalles

UN POCO DE HISTORIA Prof. Teuvo Kohonen UN POCO DE HISTORIA

UN POCO DE HISTORIA Prof. Teuvo Kohonen UN POCO DE HISTORIA Self-Organzng Maps 1. Defnón.. Un poo de hstora. CONTENIDO 3. Desrpón del algortmo. L. Pablo Sergo Garía 4. Ejemplos en ejeuón. 5. Problemas 6. Aplaones. DEFINICIÓN El SOM es un algortmo para vsualzar

Más detalles

1 5 1 10 2 15 3 20 4 15 1 3 3 5 4 20 1 6 1 10 1 5 5 6 3 2 3 4 3 7 9 16 3x 3 x = + kg 4x = 3x + 3kg x = 3kg 4 4 3 3 x = x + kg 4 4 9 x = (3x) 4 + kg 16 3 x = 3 (4x) 4 + kg 4 3 3 x = x + kg x 4 4 4 3 x =

Más detalles

INTERCAMBIADORES DE CALOR

INTERCAMBIADORES DE CALOR INERCAMBIADORES DE CALOR 1 EMA 4. INERCAMBIADORES 1. Interambaidores (2h Indie Interambiadores de alor. Utilidad. ipos Estudio térmio de los interambiadores de alor. Coeiiente global de transmision de

Más detalles

5. TRANSPORTE DE FLUIDOS

5. TRANSPORTE DE FLUIDOS 48 5. TRANSPORTE DE FLUIDOS 5.1 Euaión de Bernouilli Un fluido que fluye a través de ualquier tipo de onduto, omo una tuería, ontiene energía que onsiste en los siguientes omponentes: interna, potenial,

Más detalles

Bebida alcohólica. 1. Soporte legal. 2. Definiciones. Bebidas fermentadas. Bebidas destiladas. Licor alterado. Licor adulterado

Bebida alcohólica. 1. Soporte legal. 2. Definiciones. Bebidas fermentadas. Bebidas destiladas. Licor alterado. Licor adulterado Bebidas alcohólicas 1. Soporte legal Ley 9ª de 1979, Código sanitario nacional. Decreto 3192 de 1983, por el cal se dictan las disposiciones sanitarias sobre bebidas alcohólicas. Decreto 365 de 1994, por

Más detalles

LOS PROFETAS DE ISRAEL

LOS PROFETAS DE ISRAEL "ENTRE AMIGOS" Grpo de Cateqesis Centre Jdicial de Prevenció "La Model" TEMA 8 LOS PROFETAS DE ISRAEL LECTURA, COMENTARIO Y PLEGARIA El Evangelio revelado a los sencillos. 25 En aqel tiempo, tomando Jesús

Más detalles

PERNOS ESTRUCTURALES DE ALTA RESISTENCIA PARA PRECARGA EN 14399-1

PERNOS ESTRUCTURALES DE ALTA RESISTENCIA PARA PRECARGA EN 14399-1 PERNOS ESTRUCTURALES DE ALTA RESISTENCIA PARA PRECARGA EN 1399-1 Índie Sistemas de montaje de tornillo/tuera/arandela (Consulte la tabla más abajo) 2 La empresa 3 Tornillos estruturales de alta resistenia

Más detalles

3. Mientras se mueve a lo largo de una curva de indiferencia convexa, cuál de los siguientes factores no varía?

3. Mientras se mueve a lo largo de una curva de indiferencia convexa, cuál de los siguientes factores no varía? TEST MICROECONOMIA: CONSUMO Y PRODUCCIÓN TEMAS 1-4 EQUILIBRIO DEL CONSUMIDOR Y ELASTICIDADES 1. Si partimos de una asignación de bienes que se encuentra sobre Frontera de Posibilidad de Producción, entonces

Más detalles

migración internacional

migración internacional Boletín editado por el Consejo Nacional de Población Año 1, Núm. 4 / noviembre-diciembre, 1997 / ISSN 1405-5589 migración internacional 4 Síntesis del Estdio Binacional México-Estados Unidos sobre Migración

Más detalles

Guía de conexión. Instalación de la impresora de forma local (Windows) Qué es la impresión local?

Guía de conexión. Instalación de la impresora de forma local (Windows) Qué es la impresión local? Página 1 de 7 Guía de onexión Instalaión de la impresora de forma loal (Windows) Nota: Al instalar una impresora onetada loalmente, si el CD Software y doumentaión no admite el sistema operativo, se dee

Más detalles

Para aprender Termodinámica resolviendo problemas

Para aprender Termodinámica resolviendo problemas GASES REAES. Fator de ompresibilidad. El fator de ompresibilidad se define omo ( ) ( ) ( ) z = real = real y es funión de la presión, la temperatura y la naturaleza de ada gas. Euaión de van der Waals.

Más detalles

SUBPROCESO TAQUICARDIAS SUPRAVENTRICULARES

SUBPROCESO TAQUICARDIAS SUPRAVENTRICULARES 8SUBPROCESO TAQUICARDIAS SUPRAVENTRICULARES Definiión global Designaión: Proeso de atenión al paiente que ha presentado uno o más episodios de taquiardia supraventriular (TSV) doumentada eletroardiográfiamente.

Más detalles

x : N Q 1 x(1) = x 1 2 x(2) = x 2 3 x(3) = x 3

x : N Q 1 x(1) = x 1 2 x(2) = x 2 3 x(3) = x 3 3 Sucesiones - Fernando Sánchez - - Cálculo I de números racionales 03 10 2015 Los números reales son aproximaciones que se van haciendo con números racionales. Estas aproximaciones se llaman sucesiones

Más detalles

Análisis de correspondencias

Análisis de correspondencias Análisis de orrespondenias Eliseo Martínez H. 1. Eleiones en París Hemos deidido presentar un legendario ejemplo para expliar el objetivo del Análisis de Correspondenia. Este ejemplo se enuentra en el

Más detalles

EQUILIBRIO QUÍMICO QCA 04 ANDALUCÍA

EQUILIBRIO QUÍMICO QCA 04 ANDALUCÍA 1.- Considérese el siguiente sistema en equilibrio: SO 3 (g) SO (g) + 1/ O (g) H > 0 Justifique la veraidad o falsedad de las siguientes afirmaiones: a) Al aumentar la onentraión de oxígeno, el equilibrio

Más detalles

PREDIMENSIONADO DE VIGAS

PREDIMENSIONADO DE VIGAS PREDIENSIONADO DE VIGAS Introdcción La viga es el elemento estrctral tilizado para cbrir espacios, capaz de soportar el peso colocado de forma perpendiclar al elemento transportarlo lateralmente a lo largo

Más detalles

12.2 Vectores Algunos de los factores que medimos están determinados simplemente por sus magnitudes. Por

12.2 Vectores Algunos de los factores que medimos están determinados simplemente por sus magnitudes. Por . Vectores 665. Vectores Algnos de los factores qe medimos están determinados simplemente por ss magnitdes. Por ejemplo, para registrar la masa, la longitd o el tiempo sólo necesitamos escribir n número

Más detalles

LINEAS DE TRANSMISIÓN: ANÁLISIS CIRCUITAL Y TRANSITORIO

LINEAS DE TRANSMISIÓN: ANÁLISIS CIRCUITAL Y TRANSITORIO 1 Tema 8 íneas de Transmisión: análisis iruital y transitorio Eletromagnetismo TEMA 8: INEAS DE TRANSMISIÓN: ANÁISIS CIRCUITA Y TRANSITORIO Miguel Angel Solano Vérez Eletromagnetismo Tema 8 íneas de transmisión:

Más detalles

... 8.2. Comportamiento de Multiplicadores.

... 8.2. Comportamiento de Multiplicadores. AfUALlZAION DE MATRIES DE INSUMO-RODUTO ON EL METODO RAS plladas a la subrutina RAS onviene haer algunas observaiones.respeto al omportanúento de los multipliadores a través de las iteraiones. En el proeso

Más detalles

"Uso del Logotipo y de la Marca de Acreditación"

Uso del Logotipo y de la Marca de Acreditación OFICINA DE ACREDITACION GUATEMALA, C.A. Procedimiento "" - Elaborado por Aprobado por Fecha de Vigencia No. de Revisión Alexander Pineda, Dberly Barillas, Erik Alvarado Alexander Pineda 2011-08-12 6 Código

Más detalles

5.3 Esfuerzos y deformaciones producidos por flexión. Puente grúa. 5.3.1 Flexión pura

5.3 Esfuerzos y deformaciones producidos por flexión. Puente grúa. 5.3.1 Flexión pura 5.3 Esfuerzos y deformaciones producidos por flexión Puente grúa 5.3.1 Flexión pura Para cierta disposición de cargas, algunos tramos de los elementos que las soportan están sometidos exclusivamente a

Más detalles

Examen Final 28 de Enero de 2009 Permutación 1

Examen Final 28 de Enero de 2009 Permutación 1 Universitat Autònoma de Barcelona Introducció a l Economia, Curs 2008-2009 Codi: 25026 Examen Final 28 de Enero de 2009 Permutación 1 Primera Parte Preguntas de opción múltiple (20 puntos). Marca claramente

Más detalles

INCERTIDUMBRE EN LA CALIBRACIÓN DE CALIBRADORES TIPO VERNIER

INCERTIDUMBRE EN LA CALIBRACIÓN DE CALIBRADORES TIPO VERNIER CENTRO NACIONAL DE METROLOGÍA INCERTIDUMBRE EN LA CALIBRACIÓN DE CALIBRADORES TIPO VERNIER Héctor González Mñoz Nota: El presente ejercicio ha sido desarrollado bajo aspectos didácticos y llea por esto

Más detalles

Soluciones Examen de Estadística Ingeniería Superior de Telecomunicación

Soluciones Examen de Estadística Ingeniería Superior de Telecomunicación Soluciones Examen de Estadística Ingeniería Superior de Telecomunicación de Septiempbre, 00 Cuestiones 1h C1. El tiempo que un ordenador tarda en ejecutar una tarea es una v.a. Y Expλ). Para hacer un estudio

Más detalles

Universidad Carlos III de Madrid Mayo de 2009. Microeconomía. 1 2 3 4 5 Calif.

Universidad Carlos III de Madrid Mayo de 2009. Microeconomía. 1 2 3 4 5 Calif. Universidad Carlos III de Madrid Mayo de 2009 Microeconomía Nombre: Grupo: 1 2 3 5 Calif. Dispone de 2 horas y 5 minutos. La puntuación de cada apartado, sobre un total de 100 puntos, se indica entre paréntesis.

Más detalles

Visibilizando, incidiendo y haciendo corriente de opinión Manual de capacitación sobre comunicación estratégica

Visibilizando, incidiendo y haciendo corriente de opinión Manual de capacitación sobre comunicación estratégica 1 Visibilizando, incidiendo y haciendo corriente de opinión Manal de capacitación sobre comnicación estratégica Elaborado por María de las Nieves Vargas Coloma Comnicadora social Edición: Elsa Chandví

Más detalles

Microeconomía Intermedia

Microeconomía Intermedia Microeconomía Intermedia Colección de preguntas tipo test y ejercicios numéricos, agrupados por temas y resueltos por Eduardo Morera Cid, Economista Colegiado. Tema 03 La elección óptima del consumidor

Más detalles

2. Si se establece un precio mínimo por debajo del equilibrio, entonces:

2. Si se establece un precio mínimo por debajo del equilibrio, entonces: TEST MICROECONOMIA: CONSUMO Y PRODUCCIÓN TEMA I. INTRODUCCION 1. Si partimos de una asignación de bienes que se encuentra sobre Frontera de Posibilidad de Producción, entonces es posible conseguir una

Más detalles

Consume mucha energía?

Consume mucha energía? Nivel: 3.º Medio Sector: Matemática Unidad temática: Álgebra y funciones Consume mucha energía? Cada año las personas utilizan más aparatos que funcionan con electricidad, los cuales dan comodidad, ahorran

Más detalles

MATEMÁTICA CPU Práctica 2. Funciones Funciones lineales y cuadráticas

MATEMÁTICA CPU Práctica 2. Funciones Funciones lineales y cuadráticas ECT UNSAM MATEMÁTICA CPU Práctica Funciones Funciones lineales cuadráticas FUNCIONES Damiana al irse del parque olvidó de subir a su perro Vicente en la parte trasera de su camioneta Los gráficos hacen

Más detalles

LOS SINDICATOS Y LA NEGOCIACIÓN COLECTIVA

LOS SINDICATOS Y LA NEGOCIACIÓN COLECTIVA Objetivos OS SINDICATOS Y A NEGOCIACIÓN COECTIVA 1. Comprender por qué surgen los sindiatos y que papel desempeñan en el merado de trabajo 2. Aprender a identifiar las distintas teorías eonómias que explian

Más detalles