BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA. Inteligencia Artificial

Tamaño: px
Comenzar la demostración a partir de la página:

Download "BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA. Inteligencia Artificial"

Transcripción

1 BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA ELECTRÓNICA Licenciatura en Ciencias de Electrónica Ingeniería en Mecatrónica Inteligencia Artificial Académico: MC. Luis Eduardo Espinosa Maya Primavera 2012

2 Organización Temática Introducción. Matemáticas de conjuntos difusos. Relaciones difusas y reglas difusas. Sistemas difusos: Unidades de Procesamiento. Sistemas difusos: E/S. Diseño de Sistemas Difusos. Aplicaciones de Control difuso I. Aplicaciones de Control difuso II. Desarrollo de Aplicaciones. Introducción a las redes neuronales.

3 Producto cartesiano Producto Cartesiano Sea V y W dos conjuntos clásicos en dentro de un universo U. El producto cartesiano entre V y W, denotado VxW, es el conjunto clásico de todos los pares ordenados (v,w). VxW = {(v,w) v V, w W }

4 Producto Cartesiano Notemos que si el numero de elementos de V y W son diferentes. V x W W x V En general si tenemos n-conjuntos V n el producto cartesiano se define como V 1 x x V n = {(v 1,v 2,..,v n ) v 1 V 1,, v n V n }

5 Relación Clásica Una relación entre n-conjuntos clásicos es un subconjunto de producto cartesiano de los mismos conjuntos. La relación entre los conjunto se denota por una Q Q(V 1,,V n ) V 1 x x V n Se puede aplicar uniones e intersecciones a una relación?

6 Sean V y W Ejemplos V = {1,2,3} y W = {2,3,4} V x W = {(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,2),(3,3),(3,4)} Q se define como todas las combinaciones tal que el primer elemento es mayor o igual al segundo. Q(V,W) = {(2,2),(3,2),(3,3)}

7 Ejemplo La relación anterior también se puede representar mediante una Matriz de Relación Q V W El elemento de la matriz representa la pertenencia.

8 PREGUNTAS?

9 Sean V y W Actividad V = {1,2,3} y W = {1,2,3,4} Q se define como todas las combinaciones tal que el segundo elemento es el cuadrado del primero. Q(V,W) =

10 Sean V y W Actividad V = {1,2,3} y W = {a,e,i,o,u} Q se define como todas las combinaciones tal que el segundo elemento esta incluido en la palabra que denota al primero. Q(V,W) =

11 Relación Difusa Retomando la anterior matriz de relación, el siguiente ejemplo de que tan lejos esta una Cd de otra. Que tan lejos D Boston A HK SF HK 1 0 Tokyo

12 Ejemplo Imagen de un mapa para comprensión del ejemplo. Imágenes:

13 Relación Difusa Del ejemplo anterior se ve que fácilmente podemos ampliar el concepto de relación clásica a una relación difusa.

14 Relación Difusa La relación difusa es un conjunto difuso definido dentro del espacio construido por el producto cartesiano de los mismos conjuntos. Q en V 1 x x V n Q={((v 1,,v n ), µ Q (v 1,,v n )) (v 1,,v n ) V 1 x x V n }

15 Ejemplo Sean x R, y R, definimos las relaciones difusa AE = x es aproximadamente igual a y µ AE (x,y) = e -(x-y)2 MG = x es mas grande que y µ MG (x,y) = 1 / (1+e -(x-y) ) La relación se define en la pertenencia.

16 Ejemplo Gráfica de AE

17 PREGUNTAS? Imagen:

18 Actividad Tratemos definir una matriz de relación para el ejemplo de Aproximadamente Igual. AE X Y 1 3 5

19 Actividad Tratemos definir una matriz de relación para el ejemplo de y mas grande que x. MG X Y 1 3 5

20 Operaciones entre Relaciones Siendo que el resultado de una relación difusa es un conjunto difuso, se pueden aplicar operaciones normales de conjuntos. Se requiere: Ambas relaciones a operar partan sobre los mismos conjuntos. Una relación esta definida dentro del espacio creado por el producto cartesiano de los conjuntos.

21 Ejemplo Sean las relaciones AE y MG. µ AE (x,y) = e -(x-y)2 µ MG (x,y) = 1 / (1+e -(x-y) ) Su producto algebraico es t ap (AE,MG) = e -(x-y)2 / (1+e -(x-y) )

22 PREGUNTAS?

23 Actividad Obtener la unión (max) de las siguiente matriz. AE MG 1 X 2 3 Y AE X Y MG X Y

24 Operaciones entre Relaciones Algunas de las operaciones que podemos realizar entre relaciones difusas: Norma C Norma S Norma T Proyección Extensión Cilíndrica Composición

25 Proyección Sea Q una relación difusa Q definida en V 1 x x V n Sea {i 1,,i k } una sub-secuencia de {1,2,,n} Sea {j 1,,j n-k } una sub-secuencia de {1,2,,n} que es complemento de la secuencia i. La proyección de Q en V i 1 x x V ik es una relación difusa Q P en V i 1 x x V ik definida por: µ Q P (v i1,,v ik ) = max v j1 Vj1,, v jn-k Vjn-k µ Q (v 1,,v n )

26 Ejemplo Retomando el ejemplo de las distancias Que tan lejos A Boston HK SF D HK 1 0 Tokyo QD = {(SF,0.9),(HK,1),(Tokyo,0.95)} QA = {(Boston,1),(HK,0.9)}

27 Ejemplo Retomando el ejemplo de Aproximadamente igual AE X Y Proyección total = 1

28 PREGUNTAS? Imagen:

29 Actividad Realizar las proyecciones sobre X e Y del ejemplo de Mas grande. MG X Y Q X = {(1, ),(2, ),(3, )} Q Y = {(1, ),(3, ),(5, )}

30 Extensión Cilíndrica Sea Q P una relación difusa Definida en V i1 x x V ik Sea {i 1,,i k } una sub-secuencia de {1,2,,n} La Extensión Cilíndrica de Q P en V 1 x x V n es una relación difusa Q PE en V 1 x x V n definida: µ Q PE (v 1,,v n ) = µ Q P (v i1,,v ik )

31 Ejemplo Retomando el ejemplo de las distancias, sus proyecciones Q D = {(SF,0.9),(HK,1),(Tokyo,0.95)} Q A = {(Boston,1),(HK,0.9)} La extensión cilíndrica de cada una es Q DE = {(SF,Boston,0.9), (SF,HK,0.9 (HK,Boston,1), (HK,HK,1) (Tokyo,Boston,0.95), (Tokyo,HK,0.95)}

32 Ejemplo Q A = {(Boston,1),(HK,0.9)} Continuación Q AE = {(SF,Boston,1), (HK,Boston,1), (Tokyo,Boston,1), (SF,HK,0.9), (HK,HK,0.9), (Tokyo,HK,0.9)}

33 PREGUNTAS?

34 Actividad Realizar las extensiones cilíndricas de las proyecciones hechas en la actividad anterior. Q XE = Q YE =

35 Composición Una composición clásica Sean Q1(V,W) y Q2(W,L), dos relaciones que comparten el conjunto W. La composición de Q1 y Q2 se escribe Q1 o Q2, se define en relación a V x L, talque (x,z) Q1 o Q2, si y solo si, existe al menos un y W, de tal forma (x,y) Q1 y (y,z) Q2.

36 Composición Si empleamos la representación de los conjuntos con pertenencia, tenemos el siguiente Lema: Q1 o Q2 es una composición de Q1(V,W) y Q2(W,L), si y solo si, µ Q1oQ2 (x,z) = max y W t[µ Q1 (x,y),µ Q2 (y,z)] Donde t indica cualquier norma-t.

37 Composición Difusa Retomando el Lema anterior una composición difusa se define como: Sea A un conjunto difuso en V y Q una relación difusa definida en V x W. Entonces la composición difusa de A en R resulta en un conjunto difuso B definido en W, tal que: B = A o R = proj(t[ce(a),r] en W Donde proj denota proyección y ce extensión cilíndrica.

38 Composición Difusa La composición tiene dos formas comunes de desarrollarse: Composición max-min µ B (y) = max x min(µ A (x),µ R (x,y)) µ Q1oQ2 (x,z) = max y W min(µ Q1 (x,y),µ Q2 (y,z)) Composición max-producto µ B (y) = max x (µ A (x) * µ R (x,y)) µ Q1oQ2 (x,z) = max y W (µ Q1 (x,y) * µ Q2 (y,z))

39 Ejemplo Retomando el ejemplo de las distancias Que tan lejos A Boston HK SF D HK 1 0 Tokyo DA= {(SF, Boston, 0.3), (SF, HK, 0.9), (HK, Boston, 1), (HK, HK,0) (Tokyo, Boston, 0.95), (Tokyo, HK, 0.1)}

40 Ejemplo Supongamos una nueva relación de distancias Que tan cerca W NYC Beijing Boston A HK AW={(Boston, NYC, 0.95), (Boston, Beijing, 0.1) (HK, NYC, 0.1), (HK, Beijing, 0.9)}

41 Ejemplo Definiendo la composición max-min de DA y AW Primer termino µ DAoAW (SF,NYC) = max[ min(µ DA (SF,Boston), µ AW (Boston,NYC)),min(µ DA (SF,HK), µ AW (HK,NYC)) ] µ DAoAW (SF,NYC) = max(min(0.3,0.95),min(0.9,0.1)) µ DAoAW (SF,NYC) = max(0.3,0.1) = 0.3

42 Ejemplo Continuando la composición max-min de DA y AW Segundo termino µ DAoAW (SF,Beijing) = max[ min(µ DA (SF,Boston), µ AW (Boston,Beijing)),min(µ DA (SF,HK), µ AW (HK,Beijing)) ] µ DAoAW (SF,Beijing) =max(min(0.3,0.1),min(0.9,0.9)) µ DAoAW (SF,Beijing) = max(0.1,0.9) = 0.9

43 Actividad Continuar determinando los términos µ DAoAW (HK,NYC) = max[ min(µ DA (HK,Boston), µ AW (Boston,NYC)),min(µ DA (HK,HK), µ AW (HK,NYC))] µ DAoAW (HK,Beijing) = max[ min(µ DA (HK,Boston), µ AW (Boston,Beijing)),min(µ DA (HK,HK), µ AW (HK,Beijing))]

44 Actividad Continuar determinando los términos µ DAoAW (Tokyo,NYC) = max[min(µ DA (Tokyo,Boston), µ AW (Boston,NYC)),min(µ DA (Tokyo,HK), µ AW (HK,NYC))] µ DAoAW (Tokyo,Beijing) = max[ min(µ DA (Tokyo,Boston),µ AW (Boston,Beijing)), min(µ DA (Tokyo,HK), µ AW (HK,Beijing))]

45 Actividad Al final la composición queda de la siguiente forma: DAoAW={ (SF, NYC, ), (SF, Beijing, ) (HK, NYC, ), (HK, Beijing, ) (Tokyo, NYC, ), (Tokyo, Beijing, )}

46 Forma alterna También es posible realizar la composición max producto, empleando el algoritmo de multiplicación de matrices, cambiando la suma por la operación max. Además, si deseamos realizar max-min, se cambia la operación de multiplicación por min.

47 Ejemplo Consideremos el ejemplo anterior Que tan lejos D A Boston HK SF HK 1 0 Tokyo Que tan cerca A NYC W Beijing Boston HK µ DAoAW (SF,NYC) = max(0.3*0.95,0.9*0.1) µ DAoAW (SF,NYC) = max(0.285,0.09) = 0.285

48 Ejemplo Continuando SF HK NYC Max(0.3*0.95,0.9*0.1) Max(1*0.95,0*0.1) 0.95 Tokyo Max(0.95*0.95,0.1*0.1) Beijing Max(0.3*0.1,0.9*0.9) 0.81 Max(1*0.1,0*0.9) 0.1 Max(0.95*0.1,0.1*0.9) 0.095

49 Actividad Repetir el ejemplo con la composición max-prod SF NYC Beijing HK Tokyo

50 PREGUNTAS? Imagen:

51 Actividad Desarrollar los problemas en NING sobre relaciones, extensiones cilíndricas y composiciones difusa. Tiempo:

52 Principio de Extensión Principio que nos permite combinar conjuntos clásicos y difusos mediante operaciones. Sea f:u V un función que va de un conjunto clásico U a uno difuso V. A pertenece a U y B a V, tenemos B=f(A) µ B (y) = µ A [f -1 (y)], y V

53 Principio de Extensión Si f no es punto a punto se resuelve: µ B (y) = max x f -1(y) µ A (x), y V

54 FIN 1ra Parte Continuamos con Reglas Difusas Variables Lingüísticas. Reglas SI ENTONCES difusas.

55 Referencias An Introduction to FUZZY CONTROL D Driankov. A Course in Fuzzy system and control Li-Xin Wang.

56

21.1.2. TEOREMA DE DETERMINACIÓN DE APLICACIONES LINEALES

21.1.2. TEOREMA DE DETERMINACIÓN DE APLICACIONES LINEALES Aplicaciones lineales. Matriz de una aplicación lineal 2 2. APLICACIONES LINEALES. MATRIZ DE UNA APLICACIÓN LINEAL El efecto que produce el cambio de coordenadas sobre una imagen situada en el plano sugiere

Más detalles

Relaciones binarias. ( a, b) = ( c, d) si y solamente si a = c y b = d

Relaciones binarias. ( a, b) = ( c, d) si y solamente si a = c y b = d Relaciones binarias En esta sección estudiaremos formalmente las parejas de objetos que comparten algunas características o propiedades en común. La estructura matemática para agrupar estas parejas en

Más detalles

CONJUNTOS Y RELACIONES BINARIAS

CONJUNTOS Y RELACIONES BINARIAS UNIVERSIDAD CATÓLICA ANDRÉS BELLO FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA INFORMÁTICA CÁTEDRA DE LÓGICA COMPUTACIONAL CONJUNTOS Y RELACIONES BINARIAS INTRODUCCIÓN Intuitivamente, un conjunto es una

Más detalles

Ejemplos: Sean los conjuntos: A = { aves} B = { peces } C = { anfibios }

Ejemplos: Sean los conjuntos: A = { aves} B = { peces } C = { anfibios } La Teoría de Conjuntos es una teoría matemática, que estudia básicamente a un cierto tipo de objetos llamados conjuntos y algunas veces, a otros objetos denominados no conjuntos, así como a los problemas

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Tema 3 Aplicaciones Lineales 3.1 Introducción Se presentan en este tema las aplicaciones entre espacios vectoriales, particularmente las aplicaciones lineales, que de una manera informal pueden definirse

Más detalles

Modelos y Bases de Datos

Modelos y Bases de Datos Modelos y Bases de Datos MODELOS Y BASES DE DATOS 1 Sesión No. 10 Nombre: Álgebra Relacional Contextualización En qué consiste el álgebra relacional? Se ha planteado hasta el momento cada uno de los procesos

Más detalles

Anexo 1: Demostraciones

Anexo 1: Demostraciones 75 Matemáticas I : Álgebra Lineal Anexo 1: Demostraciones Espacios vectoriales Demostración de: Propiedades 89 de la página 41 Propiedades 89- Algunas propiedades que se deducen de las anteriores son:

Más detalles

1 v 1 v 2. = u 1v 1 + u 2 v 2 +... u n v n. v n. y v = u u = u 2 1 + u2 2 + + u2 n.

1 v 1 v 2. = u 1v 1 + u 2 v 2 +... u n v n. v n. y v = u u = u 2 1 + u2 2 + + u2 n. Ortogonalidad Producto interior Longitud y ortogonalidad Definición Sean u y v vectores de R n Se define el producto escalar o producto interior) de u y v como u v = u T v = u, u,, u n ) Ejemplo Calcular

Más detalles

Prof. Claudio del Pino O.

Prof. Claudio del Pino O. Índice 1. Derivadas parciales 2 1.1. Definición de derivadas parciales..... 2 1.2. Actividades iniciales............ 3 1.3. Costo marginal............... 5 1.3.1. Una actividad........... 6 1.4. Productos

Más detalles

3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función

3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función TEMA 3 FUNCIONES 3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función Una función es una relación establecida entre dos variables que asocia a cada valor de la primera variable

Más detalles

ESTRUCTURAS ALGEBRAICAS. Parte 1

ESTRUCTURAS ALGEBRAICAS. Parte 1 ESTRUCTURAS ALGEBRAICAS Parte 1 ESTRUCTURAS ALGEBRAICAS Una estructura algebraica es una n-tupla (a 1,a 2,...,a n ), donde a 1 es un conjunto dado no vacío, y {a 2,...,a n } un conjunto de operaciones

Más detalles

Clase 15 Espacios vectoriales Álgebra Lineal

Clase 15 Espacios vectoriales Álgebra Lineal Espacios vectoriales Clase 5 Espacios vectoriales Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia En esta sección estudiaremos uno de los conceptos

Más detalles

Aplicaciones abiertas y cerradas

Aplicaciones abiertas y cerradas 44 3. POSICIÓN DE UN PUNTO CON RESPECTO A UN CONJUNTO Tema 7. Aplicaciones abiertas y cerradas Hasta ahora nos hemos centrado en propiedades de puntos con respecto a conjuntos, y las únicas propiedades

Más detalles

Espacios vectoriales y Aplicaciones lineales

Espacios vectoriales y Aplicaciones lineales Espacios vectoriales y Aplicaciones lineales Espacios vectoriales. Subespacios vectoriales Espacios vectoriales Definición Sea V un conjunto dotado de una operación interna + que llamaremos suma, y sea

Más detalles

Práctica de Aplicaciones Lineales

Práctica de Aplicaciones Lineales practica5.nb 1 Práctica de Aplicaciones Lineales Aplicaciones lineales y matrices Las matrices también desempeñan un papel muy destacado en el estudio de las aplicaciones lineales entre espacios vectoriales

Más detalles

Objetivos: Al inalizar la unidad, el alumno:

Objetivos: Al inalizar la unidad, el alumno: Unidad 7 transformaciones lineales Objetivos: Al inalizar la unidad, el alumno: Comprenderá los conceptos de dominio e imagen de una transformación. Distinguirá cuándo una transformación es lineal. Encontrará

Más detalles

4 Aplicaciones Lineales

4 Aplicaciones Lineales Prof Susana López 41 4 Aplicaciones Lineales 41 Definición de aplicación lineal Definición 23 Sean V y W dos espacios vectoriales; una aplicación lineal f de V a W es una aplicación f : V W tal que: 1

Más detalles

Espacios vectoriales y aplicaciones lineales.

Espacios vectoriales y aplicaciones lineales. Práctica 2 Espacios vectoriales y aplicaciones lineales. Contenido: Localizar bases de espacios vectoriales. Suma directa. Bases y dimensiones. Cambio de base. Aplicaciones lineales. Matriz asociada en

Más detalles

1. ESPACIOS VECTORIALES

1. ESPACIOS VECTORIALES 1 1. ESPACIOS VECTORIALES 1.1. ESPACIOS VECTORIALES. SUBESPACIOS VECTORIALES Denición 1. (Espacio vectorial) Decimos que un conjunto no vacío V es un espacio vectorial sobre un cuerpo K, o K-espacio vectorial,

Más detalles

y λu = Idea. Podemos sumar vectores y multiplicar por un escalar. El resultado vuelve a ser un vector Definición de espacio vectorial.

y λu = Idea. Podemos sumar vectores y multiplicar por un escalar. El resultado vuelve a ser un vector Definición de espacio vectorial. Espacios vectoriales Espacios y subespacios R n es el conjunto de todos los vectores columna con n componentes. Además R n es un espacio vectorial. Ejemplo Dados dos vectores de R por ejemplo u = 5 v =

Más detalles

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices Estructura del tema. Conceptos básicos y ejemplos Operaciones básicas con matrices Método de Gauss Rango de una matriz Concepto de matriz regular y propiedades Determinante asociado a una

Más detalles

Tutorial: Utilización del Mapa de normales, para modificar iluminación virtual.

Tutorial: Utilización del Mapa de normales, para modificar iluminación virtual. El propósito de este tutorial es el enseñar como utilizar en PhotoShop (PS), el mapa de normales que se obtiene de la mayoría de los motores de renderizado. Para con ello lograr, entre otras muchas aplicaciones,

Más detalles

FUNCIONES EN R. Agosto 2007

FUNCIONES EN R. Agosto 2007 FUNCIONES EN R Alexis Vera Pérez Instituto de Estadística & Sistemas Computarizados de Información Universidad de Puerto Rico, Recinto de Río Piedras Agosto 2007 1 Definición y notación Definición 1 Una

Más detalles

Tema 3. Espacios vectoriales

Tema 3. Espacios vectoriales Tema 3. Espacios vectoriales Estructura del tema. Definición y propiedades. Ejemplos. Dependencia e independencia lineal. Conceptos de base y dimensión. Coordenadas Subespacios vectoriales. 0.1. Definición

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES )

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS SOLUCIONES HOJA 5: Optimización 5-1. Hallar los puntos críticos de las siguiente funciones y clasificarlos: a fx, y = x y + xy.

Más detalles

Teorema de estructura de los módulos finitamente generados sobre un D.I.P.. Aplicaciones

Teorema de estructura de los módulos finitamente generados sobre un D.I.P.. Aplicaciones Tema 13.- Teorema de estructura de los módulos finitamente generados sobre un D.I.P.. Aplicaciones 13.1 Teorema de estructura de los módulos finitamente generados sobre un D.I.P. En lo que sigue A denotará

Más detalles

personal.us.es/elisacamol Elisa Cañete Molero Curso 2011/12

personal.us.es/elisacamol Elisa Cañete Molero Curso 2011/12 Teoría de conjuntos. Teoría de Conjuntos. personal.us.es/elisacamol Curso 2011/12 Teoría de Conjuntos. Teoría de conjuntos. Noción intuitiva de conjunto. Propiedades. Un conjunto es la reunión en un todo

Más detalles

Operaciones Booleanas y Compuertas Básicas

Operaciones Booleanas y Compuertas Básicas Álgebra de Boole El álgebra booleana es la teoría matemática que se aplica en la lógica combinatoria. Las variables booleanas son símbolos utilizados para representar magnitudes lógicas y pueden tener

Más detalles

3. OPERACIONES CON FUNCIONES.

3. OPERACIONES CON FUNCIONES. 3. OPERACIONES CON FUNCIONES. Las operaciones de suma, resta, multiplicación y división entre funciones son posibles y semejantes a las correspondientes efectuadas con los números. En esta sección definiremos

Más detalles

1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS

1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS 1 1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS 1.1. ESPACIOS VECTORIALES 1. Analizar cuáles de los siguientes subconjuntos de R 3 son subespacios vectoriales. a) A = {(2x, x, 7x)/x R} El conjunto A es una

Más detalles

Problemas de Álgebra Lineal Espacios Vectoriales

Problemas de Álgebra Lineal Espacios Vectoriales Problemas de Álgebra Lineal Espacios Vectoriales 1. Estudia cuáles de los siguientes subconjuntos son subespacios de R n para el n que corresponda: i) S 1 = {(x, y, z, t) R 4 x + y + z + t = b} siendo

Más detalles

Construcción de bases en el núcleo e imagen de una transformación lineal

Construcción de bases en el núcleo e imagen de una transformación lineal Construcción de bases en el núcleo e imagen de una transformación lineal Objetivos. Estudiar el algoritmo para construir una base del núcleo y una base de la imagen de una transformación lineal. Requisitos.

Más detalles

Definición 1 Un carrier para un juego v es una coalición T tal que para cualquier S, v(s) = v(s T ).

Definición 1 Un carrier para un juego v es una coalición T tal que para cualquier S, v(s) = v(s T ). 1 Valor de Shapley Definición 1 Un carrier para un juego v es una coalición T tal que para cualquier S, v(s) = v(s T ). Ejemplo 1 Sea v un juego de 3 jugadores, v({1, 2, 3}) = v({1, 2}) = 1, y v(s) = para

Más detalles

Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3: Aplicaciones Tema 3.7 Polinomio interpolador

Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3: Aplicaciones Tema 3.7 Polinomio interpolador Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3: Aplicaciones Tema 3.7 Polinomio interpolador Francisco Palacios Escuela Politécnica Superior de Ingeniería Manresa Universidad Politécnica

Más detalles

MATEMÁTICA 6º AÑO NÚMEROS COMPLEJOS

MATEMÁTICA 6º AÑO NÚMEROS COMPLEJOS MATEMÁTICA 6º AÑO PROFESORA: RUHL, CLAUDIA CURSOS: 6º1º--6º6º Actividad Nº1: Resuelve las siguientes operaciones NÚMEROS COMPLEJOS a) 4 = b) 36 = c) 4 16= d) 3 27 = e) 3-125= f) 3-8= g) -1 = h) -4= i)

Más detalles

Espacios vectoriales y aplicaciones lineales

Espacios vectoriales y aplicaciones lineales Capítulo 3 Espacios vectoriales y aplicaciones lineales 3.1 Espacios vectoriales. Aplicaciones lineales Definición 3.1 Sea V un conjunto dotado de una operación interna + que llamaremos suma, y sea K un

Más detalles

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases. BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades

Más detalles

Subespacios vectoriales en R n

Subespacios vectoriales en R n Subespacios vectoriales en R n Víctor Domínguez Octubre 2011 1. Introducción Con estas notas resumimos los conceptos fundamentales del tema 3 que, en pocas palabras, se puede resumir en técnicas de manejo

Más detalles

Aplicaciones lineales

Aplicaciones lineales aplicaciones_lineales.nb Aplicaciones lineales Práctica de Álgebra Lineal, E.U.A.T, Grupos ºA y ºB, 005 Aplicaciones lineales y matrices Hay una relación muy estrecha entre aplicaciones lineales y matrices:

Más detalles

3.- DETERMINANTES. a 11 a 22 a 12 a 21

3.- DETERMINANTES. a 11 a 22 a 12 a 21 3.- DETERMINANTES. 3.1. -DEFINICIÓN Dada una matriz cuadrada de orden n, se llama determinante de esta matriz (y se representa por A o deta al polinomio cuyos términos son todos los productos posibles

Más detalles

Matemáticas Discretas

Matemáticas Discretas Matemáticas Discretas Conjuntos (11) Curso Propedéutico 2009 Maestría en Ciencias Computacionales, INAOE Conjuntos (2) Dr Luis Enrique Sucar Succar esucar@inaoep.mx Dra Angélica Muñoz Meléndez munoz@inaoep.mx

Más detalles

ESTRUCTURAS ALGEBRAICAS

ESTRUCTURAS ALGEBRAICAS ESTRUCTURAS ALGEBRAICAS Se ha trabajado con números complejos, polinomio y matrices y hemos efectuado con ellos ciertas operaciones: sin embargo no todas las operaciones se comportan de la misma manera,

Más detalles

Relaciones entre conjuntos

Relaciones entre conjuntos Relaciones entre conjuntos Parejas ordenadas El orden de los elementos en un conjunto de dos elementos no interesa, por ejemplo: {3, 5} = {5, 3} Por otra parte, una pareja ordenada consiste en dos elementos,

Más detalles

Matrices: Conceptos y Operaciones Básicas

Matrices: Conceptos y Operaciones Básicas Matrices: Conceptos y Operaciones Básicas Departamento de Matemáticas, CCIR/ITESM 8 de septiembre de 010 Índice 111 Introducción 1 11 Matriz 1 113 Igualdad entre matrices 11 Matrices especiales 3 115 Suma

Más detalles

Tema 3: Aplicaciones de la diagonalización

Tema 3: Aplicaciones de la diagonalización TEORÍA DE ÁLGEBRA II: Tema 3. DIPLOMATURA DE ESTADÍSTICA 1 Tema 3: Aplicaciones de la diagonalización 1 Ecuaciones en diferencias Estudiando la cría de conejos, Fibonacci llegó a las siguientes conclusiones:

Más detalles

http://www.virtual.unal.edu.co/cursos/ciencias/2001008/lecciones/cap02/02_02_01.tex

http://www.virtual.unal.edu.co/cursos/ciencias/2001008/lecciones/cap02/02_02_01.tex http://www.virtual.unal.edu.co/cursos/ciencias/2001008/lecciones/cap02/02_02_01.tex Lección 1 - Problemas Problemas CAPÍTULO 2 FUNCIONES VECTORIALES Lección 2.2. Curvas enr n Una aplicación F : I R n,

Más detalles

Geometría Tridimensional

Geometría Tridimensional Capítulo 4 Geometría Tridimensional En dos dimensiones trabajamos en el plano mientras que en tres dimensiones trabajaremos en el espacio, también provisto de un sistema de coordenadas. En el espacio,

Más detalles

Inteligencia Artificial y sus Aplicaciones en la Gestión Sostenible de Recursos Naturales. Sistemas borrosos y algoritmos genéticos.

Inteligencia Artificial y sus Aplicaciones en la Gestión Sostenible de Recursos Naturales. Sistemas borrosos y algoritmos genéticos. Inteligencia Artificial y sus Aplicaciones en la Gestión Sostenible de Recursos Naturales Sistemas borrosos y algoritmos genéticos Curso 2007/2008 Desarrollo histórico Década de los 80. Avance de los modelos

Más detalles

Conjuntos, Relaciones y Grupos. Problemas de examen.

Conjuntos, Relaciones y Grupos. Problemas de examen. Conjuntos, Relaciones y Grupos. Problemas de examen. Mayo 2006 1. La función f es definida por (a) Halle el recorrido exacto, A, de f. f : R R donde f(x) = e senx 1. (b) (i) Explique por qué f no es inyectiva.

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Concepto de aplicación lineal T : V W Definición: Si V y W son espacios vectoriales con los mismos escalares (por ejemplo, ambos espacios vectoriales reales o ambos espacios vectoriales

Más detalles

Tema 7: Valores y vectores propios

Tema 7: Valores y vectores propios Tema 7: es y clausura s Espacios y Permutaciones es y clausura Una permutación p = {p 1, p 2,..., p n } de los números {1, 2,..., n} es una nueva ordenación de los elementos {1, 2,..., n}, es decir, un

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOGSE Septiembre 2008

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOGSE Septiembre 2008 UNIVERSIDAD DE MURCIA REGIÓN DE MURCIA CONSEJERÍA DE EDUCACIÓN, CIENCIA E INVESTIGACIÓN UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOGSE Septiembre

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Ejercicio Dada la matriz A = 0 2 0 a) Escribir explícitamente la aplicación lineal f : 2 cuya matriz asociada con respecto a las bases canónicas es A. En primer lugar definimos las

Más detalles

1. Breve resumen de optimización sin restricciones en varias variables.

1. Breve resumen de optimización sin restricciones en varias variables. MATEMÁTICAS EMPRESARIALES G.A.D.E. CURSO 202/203 Práctica 2: Aplicaciones a la Optimización. En esta práctica se introducen las herramientas que nos ofrece el programa Mathematica para optimizar funciones

Más detalles

Estructuras algebraicas

Estructuras algebraicas Tema 1 Estructuras algebraicas 1.1 Álgebras binarias Sea A un conjunto no vacío, una operación binaria (u operación interna) en A es una aplicación *: A A A (x, y) x * y es decir, una regla que a cada

Más detalles

Algebra Relacional Jos e Ram on Param a Gab ıa

Algebra Relacional Jos e Ram on Param a Gab ıa Álgebra Relacional Ramón Paramá Gabía Capítulo 4 Algebra relacional Ya hemos visto la estructura y las restricciones del modelo relacional, ahora pasamos a abordar la parte del modelo relacional que nos

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Sistemas de Ecuaciones Lineales y Matrices Oscar G Ibarra-Manzano, DSc Departamento de Area Básica - Tronco Común DES de Ingenierías Facultad de Ingeniería, Mecánica, Eléctrica y Electrónica Trimestre

Más detalles

Tema 7: ESPACIOS VECTORIALES AFINES

Tema 7: ESPACIOS VECTORIALES AFINES Tema 7: ESPACIOS VECTORIALES AFINES Prof. Rafael López Camino Departamento de Geometría y Topología Universidad de Granada Material docente para el alumno Asignatura: Geometría I. Curso 2003/04 Licenciatura:

Más detalles

Límite y continuidad de funciones de varias variables

Límite y continuidad de funciones de varias variables Límite y continuidad de funciones de varias variables 20 de marzo de 2009 1 Subconjuntos de R n y sus propiedades De nición 1. Dado x 2 R n y r > 0; la bola de centro x y radio r es B(x; r) = fy 2 R n

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Índice general 1. Sistemas de ecuaciones lineales 2 2. Método de sustitución 5 3. Método de igualación 9 4. Método de eliminación 13 5. Conclusión 16 1 Sistemas de ecuaciones

Más detalles

BASES DE DATOS. TEMA 6. El Álgebra Relacional

BASES DE DATOS. TEMA 6. El Álgebra Relacional BASES DE DATOS. TEMA 6. El Álgebra Relacional 6.1. Introducción. El proceso de consulta una base de datos relacional: Toda consulta a una Base de datos relacional genera como resultado una relación. Existen

Más detalles

Tema 3 : Algebra de Boole

Tema 3 : Algebra de Boole Tema 3 : Algebra de Boole Objetivo: Introducción al Algebra de Boole 1 INTRODUCCIÓN George Boole creó el álgebra que lleva su nombre en el primer cuarto del siglo XIX. Pretendía explicar las leyes fundamentales

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 4 La recta en el plano Elaborado por la Profesora Doctora María Teresa

Más detalles

Tablas. Estas serán las tablas que usaremos en la mayoría de ejemplos. Empleado

Tablas. Estas serán las tablas que usaremos en la mayoría de ejemplos. Empleado Álgebra Relacional Un álgebra es un sistema matemático constituido por Operandos: objetos (valores o variables) desde los cuales nuevos objetos pueden ser construidos. Operadores: símbolos que denotan

Más detalles

Variedades Diferenciables. Extremos Condicionados

Variedades Diferenciables. Extremos Condicionados Capítulo 16 Variedades Diferenciables. Extremos Condicionados Vamos a completar lo visto en los capítulos anteriores sobre el teorema de las Funciones Implícitas y Funciones Inversas con un tema de iniciación

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

Tema 8: Análisis Discriminante. Clasificación. Aurea Grané Departamento de Estadística Universidad Carlos III de Madrid. Análisis discriminante

Tema 8: Análisis Discriminante. Clasificación. Aurea Grané Departamento de Estadística Universidad Carlos III de Madrid. Análisis discriminante Aurea Grané. Máster en Estadística. Universidade Pedagógica. 1 Aurea Grané. Máster en Estadística. Universidade Pedagógica. 2 Análisis discriminante Tema 8: Análisis Discriminante y Clasificación Aurea

Más detalles

Matrices equivalentes. El método de Gauss

Matrices equivalentes. El método de Gauss Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar

Más detalles

FORMA CANONICA DE JORDAN Y ECUACIONES DIFERENCIALES LINEALES A COEFICIENTES CONSTANTES

FORMA CANONICA DE JORDAN Y ECUACIONES DIFERENCIALES LINEALES A COEFICIENTES CONSTANTES FORMA CANONICA DE JORDAN Y ECUACIONES DIFERENCIALES LINEALES A COEFICIENTES CONSTANTES Eleonora Catsigeras 6 de mayo de 997 Notas para el curso de Análisis Matemático II Resumen Se enuncia sin demostración

Más detalles

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado

Más detalles

Tema III. Capítulo 2. Sistemas generadores. Sistemas libres. Bases.

Tema III. Capítulo 2. Sistemas generadores. Sistemas libres. Bases. Tema III Capítulo 2 Sistemas generadores Sistemas libres Bases Álgebra Lineal I Departamento de Métodos Matemáticos y de Representación UDC 2 Sistemas generadores Sistemas libres Bases 1 Combinación lineal

Más detalles

Apuntes de Matemática Discreta 7. Relaciones de Orden

Apuntes de Matemática Discreta 7. Relaciones de Orden Apuntes de Matemática Discreta 7. Relaciones de Orden Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 7 Relaciones de Orden Contenido

Más detalles

Espacios vectoriales. Bases. Coordenadas

Espacios vectoriales. Bases. Coordenadas Capítulo 5 Espacios vectoriales. Bases. Coordenadas OPERACIONES ENR n Recordemos que el producto cartesiano de dos conjuntos A y B consiste en los pares ordenados (a,b) tales que a A y b B. Cuando consideramos

Más detalles

Apuntes de Matemática Discreta 6. Relaciones

Apuntes de Matemática Discreta 6. Relaciones Apuntes de Matemática Discreta 6. Relaciones Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 6 Relaciones Contenido 6.1 Generalidades.....................................

Más detalles

Clasificación de métricas.

Clasificación de métricas. Clasificación de métricas. 1. El problema de clasificación. Como bien sabemos, el par formado por una métrica T 2 (esto es, un tensor 2-covariante simétrico) sobre un espacio vectorial E, (E, T 2 ), constituye

Más detalles

APLICACIONES DE LA MATEMATICA INTRODUCCION AL CALCULO AXIOMATICA DE LOS NUMEROS REALES

APLICACIONES DE LA MATEMATICA INTRODUCCION AL CALCULO AXIOMATICA DE LOS NUMEROS REALES APLICACIONES DE LA MATEMATICA INTRODUCCION AL CALCULO AXIOMATICA DE LOS NUMEROS REALES PROFESOR: CHRISTIAN CORTES D. I) LOS NUMEROS REALES. Designaremos por R, al conjunto de los números reales. En R existen

Más detalles

Tratamiento borroso del intangible en la valoración de empresas de Internet

Tratamiento borroso del intangible en la valoración de empresas de Internet Tratamiento borroso del intangible en la valoración de empresas de Internet Mª Carmen Lozano Gutiérrez Federico Fuentes Martín Esta página está alojada por el Grupo EUMED.NET de la Universidad de Málaga

Más detalles

Concepto de función. El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D.

Concepto de función. El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D. Concepto de función Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B en la cual todos los elementos de A tienen a lo sumo una imagen en B, es decir una imagen o ninguna. Función

Más detalles

1. El teorema de la función implícita para dos y tres variables.

1. El teorema de la función implícita para dos y tres variables. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lección. Aplicaciones de la derivación parcial.. El teorema de la función implícita para dos tres variables. Una ecuación con dos incógnitas. Sea f :( x, ) U f(

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 013 Capítulo 13 Año 01 13.1. Modelo 01 - Opción A Problema 13.1.1 (3 puntos) Dados los puntos A(1,

Más detalles

3 Espacios Vectoriales

3 Espacios Vectoriales Prof. Susana López 31 3 Espacios Vectoriales 3.1 Introducción Un ector fijo en el plano no es más que un segmento orientado en el que hay que distinguir tres características: -dirección: la de la recta

Más detalles

SITEMA BINARIO, OCTAL Y HEXADECIMAL: OPERACIONES

SITEMA BINARIO, OCTAL Y HEXADECIMAL: OPERACIONES Unidad Aritmética Lógica La Unidad Aritmético Lógica, en la CPU del procesador, es capaz de realizar operaciones aritméticas, con datos numéricos expresados en el sistema binario. Naturalmente, esas operaciones

Más detalles

Operaciones Morfológicas en Imágenes Binarias

Operaciones Morfológicas en Imágenes Binarias Operaciones Morfológicas en Imágenes Binarias Introducción La morfología matemática es una herramienta muy utilizada en el procesamiento de i- mágenes. Las operaciones morfológicas pueden simplificar los

Más detalles

Formas bilineales y cuadráticas.

Formas bilineales y cuadráticas. Tema 4 Formas bilineales y cuadráticas. 4.1. Introducción. Conocidas las nociones de espacio vectorial, aplicación lineal, matriz de una aplicación lineal y diagonalización, estudiaremos en este tema dos

Más detalles

Juegos Cooperativos. Core

Juegos Cooperativos. Core Curso : Juegos Cooperativos Core J. Oviedo Universidad Nacional de San Luis 1. Juegos Cooperativos En estos juegos se permite la comunicación entre los jugadores, también pueden firmar contratos de cooperación.

Más detalles

4 APLICACIONES LINEALES. DIAGONALIZACIÓN

4 APLICACIONES LINEALES. DIAGONALIZACIÓN 4 APLICACIONES LINEALES DIAGONALIZACIÓN DE MATRICES En ocasiones, y con objeto de simplificar ciertos cálculos, es conveniente poder transformar una matriz en otra matriz lo más sencilla posible Esto nos

Más detalles

Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1

Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1 . ESPACIOS VECTORIALES Consideremos el siguiente subconjunto de R 4 : S = {(x, x 2, x 3, x 4 )/x x 4 = 0 x 2 x 4 = x 3 a. Comprobar que S es subespacio vectorial de R 4. Para demostrar que S es un subespacio

Más detalles

2. Aritmética modular Ejercicios resueltos

2. Aritmética modular Ejercicios resueltos 2. Aritmética modular Ejercicios resueltos Ejercicio 2.1 Probar, mediante congruencias, que 3 2n+5 + 2 4n+1 es divisible por 7 cualquiera que sea el entero n 1. Trabajando módulo 7 se tiene que 3 2n+5

Más detalles

Cálculo Simbólico también es posible con GeoGebra

Cálculo Simbólico también es posible con GeoGebra www.fisem.org/web/union ISSN: 1815-0640 Número 34. Junio de 2013 páginas 151-167 Coordinado por Agustín Carrillo de Albornoz Cálculo Simbólico también es posible con GeoGebra Antes de exponer las posibilidades

Más detalles

Álgebra Relacional. Unidad 5

Álgebra Relacional. Unidad 5 Álgebra Relacional Unidad 5 Definición Álgebra es un sistema matemático que está formado por: Operandos. Valores o variables con los cuáles se pueden construir nuevos valores o variables Operadores. Símbolos

Más detalles

Tutorial MT-b15. Matemática 2006. Tutorial Nivel Básico. Relaciones y Funciones

Tutorial MT-b15. Matemática 2006. Tutorial Nivel Básico. Relaciones y Funciones 134567890134567890 M ate m ática Tutorial MT-b15 Matemática 006 Tutorial Nivel Básico Relaciones y Funciones Matemática 006 Tutorial Relaciones y Funciones Marco teórico: 1. Producto cartesiano: El producto

Más detalles

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD CULHUACÁN INTEGRANTES

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD CULHUACÁN INTEGRANTES INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD CULHUACÁN INTEGRANTES CÁRDENAS ESPINOSA CÉSAR OCTAVIO racsec_05@hotmail.com Boleta: 2009350122 CASTILLO GUTIÉRREZ

Más detalles

Examen de Estadística Ingeniería de Telecomunicación

Examen de Estadística Ingeniería de Telecomunicación Examen de Estadística Ingeniería de Telecomunicación 8 de Mayo de 3 Cuestiones solucion h C. (.5p) El equipo directivo de cierta empresa del sector de hostelería está constituido por 5 personas de las

Más detalles

GUÍA DE EJERCICIOS UNIDAD II

GUÍA DE EJERCICIOS UNIDAD II UNIDAD II: INTEGRAL DEFINIDA UNIVERSIDAD DE CARABOBO FACULTAD DE INGENIERÍA ESTUDIOS BÁSICOS DEPARTAMENTO DE MATEMÁTICA ANÁLISIS MATEMÁTICO II Corregido por: Prof. AOUAD Jamil Prof. LAURENTÍN María Prof.

Más detalles

8. ESPACIOS VECTORIALES Y APLICACIONES LINEALES.

8. ESPACIOS VECTORIALES Y APLICACIONES LINEALES. Prácticas de Matemáticas I y Matemáticas II con DERIVE 8. ESPACIOS VECTORIALES Y APLICACIONES LINEALES. 8.. DEPENDENCIA E INDEPENDENCIA LINEAL DE VECTORES. COMBINACIÓN LINEAL. EJEMPLO 8.. Estudiar si el

Más detalles

LA MULTIPLICACIÓN Y SUS PROPIEDADES

LA MULTIPLICACIÓN Y SUS PROPIEDADES LA MULTIPLICACIÓN Y SUS PROPIEDADES Observa la siguiente multiplicación: 7 x 4 = 28 7: es el sumando que se repite y recibe el nombre de multiplicando. 4: es el número de veces que se repite el sumando

Más detalles

Aplicaciones Lineales y Multilineales Continuas

Aplicaciones Lineales y Multilineales Continuas Capítulo 4 Aplicaciones Lineales y Multilineales Continuas La conexión entre las estructuras vectorial y topológica de los espacios normados, se pone claramente de manifiesto en el estudio de las aplicaciones

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Primeras definiciones Una aplicación lineal de un K-ev de salida E a un K-ev de llegada F es una aplicación f : E F tal que f(u + v) = f(u) + f(v) para todos u v E f(λ u) = λ f(u)

Más detalles

ESTRUCTURAS ALGEBRAICAS 1

ESTRUCTURAS ALGEBRAICAS 1 ESTRUCTURAS ALGEBRAICAS Se da la relación entre dos conjuntos mediante el siguiente diagrama: (, ) (2, 3) (, 4) (, 2) (7, 8) (, ) (3, 3) (5, ) (6, ) (, 6)........ 5 6......... 2 5 i) Observa la correspondencia

Más detalles