ELEMENTOS DE ECUACIONES DIFERENCIALES FUNCIONES DE VARIABLE COMPLEJA. En primer curso hemos estudiado los cuerpos:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ELEMENTOS DE ECUACIONES DIFERENCIALES FUNCIONES DE VARIABLE COMPLEJA. En primer curso hemos estudiado los cuerpos:"

Transcripción

1 ELEMENTOS DE ECUACIONES DIFERENCIALES FUNCIONES DE VARIABLE COMPLEJA. LOS NÚMEROS COMPLEJOS. En primer curso hemos estudiado los cuerpos: Q R C. Los números reales los construíamos, entre otras razones, para asegurar la existencia de raíces cuadradas de los números positivos. La ecuación x = 0 no tiene solución en el cuerpo de los números reales, ya que para todo x R se tiene que x 2 0. El cuerpo de los números complejos se construye para que la ecuación anterior tenga solución. En general para poder definir la raíz cuadrada de cualquier número. Definición 1. Se llama conjunto de los números complejos C al conjunto dotado de dos operaciones, una C = R 2 = {(a, b) : a, b R }; suma: para todo z 1 = (a, b), z 2 = (c, d) C z 1 + z 2 = (a, b) + (c, d) = (a + c, b + d) C; y un producto: para todo (a, b), (c, d) C (a, b) (c, d) = (ac bd, ad + bc) C. Los números complejos forman un cuerpo. Lo que quiere decir que podemos operar con ellos como lo hacemos con los números racionales o reales. Aunque tienen propiedades adicionales, por ejemplo todo complejo admiten raíces de cualquier orden. Teorema 1. C con su suma y su producto es un cuerpo de modo que N Q R C. También perdemos algo. 1

2 2 C. RUIZ Observación 1. En C no tenemos un orden (total) como en los números reales R. Claro, si lo hubiese, para todo z C, se tendría que z 2 0. Sin embargo tenemos que i 2 = 1 < 0 Definición 2. Dado un número complejo z = a + bi C, se llama parte real de z a Rez = a; se llama parte imaginaria de z a Imz = b; se llama conjugado de z al número complejo z = a bi. De las propiedades de la conjugación tenemos el siguiente resultado. Proposición 1. Sea a n z n +...+a 1 z +a 0 = 0 una ecuación polinómica de grado n, con coeficientes a 0, a 1,..., a n R. Si z C es una solución de la ecuación, entonces su conjugado z también lo es. Demostración: Por ser z una raíz del polinomio, se tiene que 0 = a 0 + a 1 z a n z n Tomando conjugados y aplicando las propiedades de la conjugación, 0 = a 0 + a 1 z a n z n = a 0 + a 1 z a n z n = a 0 + a 1 z a n z n = a 0 + a 1 z a n z n. Lo que prueba que z es una raíz del polinomio Definición 3. Dado z = a + bi C, se llama módulo de z al escalar z = zz = a 2 + b 2. Observación 2. El módulo z de un complejo z es igual al módulo (o norma) de un vector z en R 2 ( z, la distancia de z al origen) y por tanto tiene las mismas propiedades: z 0; si z = 0, entonces z = 0. zw = z w para todo z, w C. z + w z + w para todo z, w C. FUNCIONES DE VARIABLE COMPLEJA. Como con las funciones reales, se pueden definir funciones complejas de variable compleja. Definición 4. Una aplicación f de C en C f : C C z f(z) se le llama función de variable compleja.

3 APUNTES E.D.O. 3 Ejemplo 1. Ejemplos de funciones de variable compleja son funciones polinómicas: f(z) = α n z n + α n 1 z n α 1 z + α 0 donde α 0, α 1,..., α n C ( en particular pueden ser todos o algunos reales). funciones racionales: f(z) = α nz n + α n 1 z n α 1 z + α 0 β m z m β 1 z + β 0 donde α 0, α 1,..., α n, β 0,..., β m C ( en particular pueden ser todos o algunos reales). Otro ejemplo importante de función de variable compleja es la exponencial compleja. Definición 5. Para todo número complejo z C se define la función exponencial compleja por e z z n = n! n=0 Tomando módulos z en la serie y aplicando el criterio del cociente, vemos que la serie que define a la exponencial compleja converge absolutamente para todo z y por tanto es convergente. También se puede ver que la convergencia es uniforme en todo conjunto acotado de C. La convergencia ( o Topología ) en C es la misma que la que tenemos en el plano R 2 y viene dada por el módulo, la herramienta que nos permite medir distancias. El módulo nos permite dar la noción de límite y también de derivada. Definición 6. Dada una función f de variable compleja y un punto z 0 Domf de su dominio, se dice que b es el límite de la función en el punto z 0, (escribimos lím z z0 f(z) = b ) si y solo si para todo ɛ > 0 existe δ > 0 de modo que si 0 < z z 0 < δ, entonces f es derivable f(z) b < ɛ. en el punto z 0 si existe el límite f(z) f(z 0 ) lím ; z z 0 z z 0 si existe este límite lo denotamos por f (z 0 ).

4 4 C. RUIZ Todo lo anterior es análogo a lo visto para funciones reales y se puede probar que las fórmulas de derivación son las mismas. Ejemplos 1. Sean f y g funciones de variable compleja derivables, entonces: (f + g) (z) = f (z) + g (z) (fg) (z) = f (z)g(z) + f(z)g (z) Si P (z) = α n z n + α n 1 z n α 1 z + α 0, entonces P (z) = nα n z n 1 + (n 1)α n 1 z n α 1. Si f(z) = e z, entonces f (z) = e z. Claro, como la serie de potencias, que define e z, converge uniformemente, se puede derivar término a término y lo que queda es la misma serie....etc. Las funciones de variable compleja derivables (también se llaman Holomorfas ) tienen buenas propiedades. Por ejemplo, si una función f es derivable en un disco de centro z 0 C y radio r > 0, entonces D(z 0, r) = { z C : z z 0 < r }, f(z) = f k) (z 0 ) (z z 0 ) k para todo z D(z 0, r). k! Es decir, si f es derivable, se puede probar que f tiene derivadas de todos los ordenes y además que coincide con su serie de Taylor (esto se estudiará en los cursos de Variable Compleja). También se verá que la exponencial compleja tiene las propiedades de la exponencial real: e z+w = e z e w para todo z, w C. Ahora dado z = a + bi C, por al propiedad anterior, se tiene que e z = e a+bi = e a e ib = e a (cos b + i sen b). La última igualdad se debe a la Fórmula de Euler que probamos a continuación. Proposición 2. (Fórmula de Euler ) Si t R entonces e it = cos t + i sen t

5 Demostración: e it (it) n = = n! n=0 ( 1) k t 2k = + i (2k)! APUNTES E.D.O. 5 i 2k t 2k (2k)! + ii 2k t 2k+1 (2k + 1)! ( 1) k t 2k+1 (2k + 1)! = cos t + i sen t donde hemos usado que i 2 = 1 y las expresiones en serie de Taylor de las funciones coseno y seno De aquí, se deduce la siguiente curiosidad ( curiosidad o la perfección del universo?). Observación 3. e iπ + 1 = 0. Departamento de Análisis Matemático y Matemática Aplicada, Facultad de Matemáticas, Universidad Complutense, Madrid, Spain address: Cesar Ruiz@mat.ucm.es

f n (x), donde N N n=1 f n(x), donde x A R,

f n (x), donde N N n=1 f n(x), donde x A R, ANÁLISIS MATEMÁTICO BÁSICO. SERIES DE FUNCIONES Las series de funciones son un caso particular, especialmente importante, de sucesiones de funciones. Ya hemos estudiamos las series de Taylor. Si consideramos

Más detalles

8. Consecuencias de la Teoría de Cauchy.

8. Consecuencias de la Teoría de Cauchy. Funciones de variable compleja. Eleonora Catsigeras. 8 Mayo 2006. 77 8. Consecuencias de la Teoría de Cauchy. 8.1. Principio del módulo máximo. Definición 8.1.1. Sea f una función continua en Ω. Se dice

Más detalles

Definición. 1. Se define la función logaritmo (neperiano ) por. ln x =

Definición. 1. Se define la función logaritmo (neperiano ) por. ln x = ANÁLISIS MATEMÁTICO BÁSICO. LAS FUNCIONES LOGARITMO Y EXPONENCIAL. A partir de la integral y el Teorema Fundamental del Cálculo podemos definir y demostrar las propiedades de las funciones logaritmo y

Más detalles

Función exponencial compleja

Función exponencial compleja Función exponencial compleja Genaro Luna Carreto * Los números reales y los complejos satisfacen los axiomas de campo, pero los segundos, no satisfacen los axiomas de orden. Sin embargo, a raíz de que

Más detalles

Análisis Complejo Primer Cuatrimestre 2009

Análisis Complejo Primer Cuatrimestre 2009 Análisis Complejo Primer Cuatrimestre 009 Práctica 1: Números complejos Números complejos 11 Exprese los siguientes números complejos en la forma a + bi, con a, b R: (a) (i + 1)(i 1)(i + 3), (b) (3 i),

Más detalles

NÚMEROS COMPLEJOS: C

NÚMEROS COMPLEJOS: C NÚMEROS COMPLEJOS: C Alejandro Lugon 21 de mayo de 2010 Resumen Este es un pequeño estudio de los números complejos con el objetivo de poder usar las técnicas de solución de ecuaciones y sistemas diferenciales

Más detalles

Capítulo 4 Desarrollos en Serie de Taylor y de Laurent.

Capítulo 4 Desarrollos en Serie de Taylor y de Laurent. Capítulo 4 Desarrollos en Serie de Taylor y de Laurent. El desarrollo en serie de potencias, que comúnmente se restringe a potencias positivas en el campo real toma forma definitiva en el campo complejo

Más detalles

Si cálculamos el límite de estas pendiente cuando t tiende a t 0 f 2 (t) f 2 (t 0 )

Si cálculamos el límite de estas pendiente cuando t tiende a t 0 f 2 (t) f 2 (t 0 ) ANÁLISIS MATEMÁTICO BÁSICO. TANGENTES A CURVAS PARAMÉTRICAS. La forma más general de representar un curva en el plano no es a través de una gráfica sino de una curva paramétrica (ver Apéndice al tema de

Más detalles

CÁLCULO DE DERIVADAS.

CÁLCULO DE DERIVADAS. ANÁLISIS MATEMÁTICO BÁSICO. La Función Derivada. CÁLCULO DE DERIVADAS. Definición.. Sea una función f : R R derivable. Se llama función derivada a la función f : R R x f (x). Observación.. Domf { x R :

Más detalles

TEMA 4. Series de potencias

TEMA 4. Series de potencias TEMA 4 Series de potencias. Introducción En el tema anterior hemos estudiado la aproximación polinómica local de funciones mediante el polinomio de Taylor correspondiente. En particular, vimos para la

Más detalles

AMPLIACIÓN DE MATEMÁTICAS. a = qm + r

AMPLIACIÓN DE MATEMÁTICAS. a = qm + r AMPLIACIÓN DE MATEMÁTICAS CONGRUENCIAS DE ENTEROS. Dado un número natural m N\{0} sabemos (por el Teorema del Resto) que para cualquier entero a Z existe un único resto r de modo que con a = qm + r r {0,

Más detalles

Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Depto. de Matemática. Análisis Complejo. Práctica N 1.

Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Depto. de Matemática. Análisis Complejo. Práctica N 1. Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Depto de Matemática Análisis Complejo Práctica N Expresar los siguientes números complejos en la forma a + ib, con a, b R: (a) (i

Más detalles

Análisis Complejo Segundo Cuatrimestre 2011

Análisis Complejo Segundo Cuatrimestre 2011 Análisis Complejo Segundo Cuatrimestre 011 Práctica 1: Números complejos Números complejos 11 Expresar los siguientes números en la forma a + bi, con a, b R: (a) (i + 1)(i 1)(i + 3), (b) (3 i), (c) 1 1+3i,

Más detalles

AN ALISIS MATEM ATICO B ASICO. POLINOMIOS DE TAYLOR. DEFINICI ON. Vamos a considerar una funcion polinomica. P (0) = a 0. P 00 (0) = 2a 2.

AN ALISIS MATEM ATICO B ASICO. POLINOMIOS DE TAYLOR. DEFINICI ON. Vamos a considerar una funcion polinomica. P (0) = a 0. P 00 (0) = 2a 2. AN ALISIS MATEM ATICO B ASICO. POLINOMIOS DE TAYLOR. DEFINICI ON. Vamos a considerar una funcion polinomica Observemos que P (x) = a n x n + a n 1x n 1 + + a 1 x + a 0 P (0) = a 0 P 0 (0) = a 1 P 00 (0)

Más detalles

Comenzamos recordando algunos conceptos de la topología de l - R 2. Dado a lc y ɛ > 0 se llama bola abierta de centro a y radio ɛ al conjunto

Comenzamos recordando algunos conceptos de la topología de l - R 2. Dado a lc y ɛ > 0 se llama bola abierta de centro a y radio ɛ al conjunto Capítulo 2 Funciones analíticas. Funciones armónicas. En este capítulo iniciamos el estudio de las funciones de variable compleja. Comenzamos con los conceptos de límite y continuidad en lc, conceptos

Más detalles

Tema 5. Ejemplos. Sucesiones y series. Marisa Serrano, José Ángel Huidobro. Ejemplo 5.1. n(1 + i) n + 1. converge a 1 + i.

Tema 5. Ejemplos. Sucesiones y series. Marisa Serrano, José Ángel Huidobro. Ejemplo 5.1. n(1 + i) n + 1. converge a 1 + i. Índice Tema 5 Marisa Serrano, José Ángel Huidobro Universidad de Oviedo 2 email: mlserrano@uniovi.es email: jahuidobro@uniovi.es Definición 5. Sea {z n }, n N, una sucesión de números complejos. Se dice

Más detalles

El número real y complejo

El número real y complejo El número real y complejo Dpto. Matemática Aplicada Universidad de Málaga Sistema de números reales Números naturales N = {0,1,2,3,...} Números enteros Z = {..., 3, 2, 1,0,1,2,3,...} { } p Números racionales

Más detalles

Variable Compleja I ( ) Ejercicios resueltos. Convergencia de series. Series de potencias

Variable Compleja I ( ) Ejercicios resueltos. Convergencia de series. Series de potencias Variable Compleja I (04-5) Ejercicios resueltos Convergencia de series. Series de potencias Ejercicio Calcule el radio de convergencia de la serie de potencias ( ) n z n3. Solución. Observemos primero

Más detalles

Análisis Complejo - Primer Cuatrimestre de 2018

Análisis Complejo - Primer Cuatrimestre de 2018 Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Depto. de Matemática Análisis Complejo - Primer Cuatrimestre de 018 Práctica N 1: Números Complejos, Esfera de Riemann y Homografías

Más detalles

Series. Diremos que una serie de números complejos

Series. Diremos que una serie de números complejos Series Una sucesión de números complejos a, a 2, a 3,..., a n,... en C converge al número complejo a (a n a) si para cada ɛ > 0, existe un N tal que a n a < ɛ siempre que n N. Diremos que una serie de

Más detalles

Fórmula integral de Cauchy

Fórmula integral de Cauchy Fórmula integral de Cauchy Comentario: de acuerdo con esta fórmula, uno puede conocer el valor de f dentro del entorno, conociendo únicamente los valores que toma f en el contorno C! Fórmula integral de

Más detalles

Se suponen conocidos los siguientes conceptos previos desarrollados en las secciones 1, 2, 3.1 y 3.2:

Se suponen conocidos los siguientes conceptos previos desarrollados en las secciones 1, 2, 3.1 y 3.2: 112 Funciones de variable compleja. Eleonora Catsigeras. 15 Mayo 2006. TERCERA PARTE. SINGULARIDADES Y TEORÍA DE LOS RESIDUOS. Resumen Se estudian las singularidades aisladas: evitables, polos y esenciales

Más detalles

LA FUNCIÓN f VISTA A TRAVÉS DE f Y f.

LA FUNCIÓN f VISTA A TRAVÉS DE f Y f. ANÁLISIS MATEMÁTICO BÁSICO. LA FUNCIÓN f VISTA A TRAVÉS DE f Y f. Dada una función f : R R derivable, podemos considerar su función derivada f : R R. Esta función a su vez puede ser derivable, y tendremos

Más detalles

Matemáticas para estudiantes de Química

Matemáticas para estudiantes de Química Matemáticas para estudiantes de Química PROYECTO EDITORIAL BIBLIOTECA DE QUÍMICAS Director: Carlos Seoane Prado Catedrático de Química Orgánica Universidad Complutense de Madrid Matemáticas para estudiantes

Más detalles

10. Series de potencias

10. Series de potencias FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 7-2 Basado en el apunte del curso Cálculo (2do semestre), de Roberto Cominetti, Martín Matamala y Jorge San

Más detalles

SUBSUCESIONES. Las sucesiones convergentes son acotadas, como hemos visto. El recíproco no es cierto. No toda sucesión acotada es covergente.

SUBSUCESIONES. Las sucesiones convergentes son acotadas, como hemos visto. El recíproco no es cierto. No toda sucesión acotada es covergente. ANÁLISIS MATEMÁTICO BÁSICO. SUBSUCESIONES. Las sucesiones convergentes son acotadas, como hemos visto. El recíproco no es cierto. No toda sucesión acotada es covergente. Ejemplo.. Sea la sucesión (x n

Más detalles

NÚMEROS COMPLEJOS (C) Si calculamos los valores de las potencias de i, encontramos que: con n N + y 0 p < 4

NÚMEROS COMPLEJOS (C) Si calculamos los valores de las potencias de i, encontramos que: con n N + y 0 p < 4 NÚMEROS COMPLEJOS (C) DEFINICIÓN DE LA UNIDAD IMAGINARIA El cuadrado de un número real siempre es no negativo. Por ejemplo, no existe ningún número real x para el cual x 2 = -1. Para remediar esta situación,

Más detalles

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL (Curso 00-00) HOJA Ejercicio. Determina en qué recintos es holomorfa la siguiente función: f(x + iy) x + ay + i(bx + cy) En este caso consideramos: u(x, y) x + ay

Más detalles

Un resumen de la asignatura. Junio, 2015

Un resumen de la asignatura. Junio, 2015 Un resumen de la asignatura Departamento de Matemática Aplicada a las Tecnologías de la Información y las Comunicaciones ETSIT (UPM) Junio, 2015 1 Los Números Reales(R) Los números Irracionales Continuidad

Más detalles

DERIVADAS DE FUNCIONES DE VARIAS VARIABLES. Curvas Paramétricas. Dada una curva paramétrica

DERIVADAS DE FUNCIONES DE VARIAS VARIABLES. Curvas Paramétricas. Dada una curva paramétrica ANÁLISIS MATEMÁTICO BÁSICO DERIVADAS DE FUNCIONES DE VARIAS VARIABLES Curvas Paramétricas Dada una curva paramétrica γ : [a, b] R R n t γ(t) = (f 1 (t), f 2 (t),, f n (t)), donde las funciones f k : [a,

Más detalles

EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos.

EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos. EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos. 1. Introducción Los números complejos o imaginarios nacen de la necesidad de resolver

Más detalles

4.1. Qué es un número complejo. Representación geométrica.

4.1. Qué es un número complejo. Representación geométrica. Tema Números complejos.. Qué es un número complejo. Representación geométrica. Un número complejo z C C es el conjunto de los números complejos es una expresión de la forma z a + b i en la que a, b R a

Más detalles

AMPLIACIÓN DE MATEMÁTICAS

AMPLIACIÓN DE MATEMÁTICAS AMPLIACIÓN DE MATEMÁTICAS CÁLCULO DE LA SERIE DE FOURIER El cálculo matemático de la serie de Fourier así como el estudio teórico de la misma se sustenta en el hecho de que las funciones cos nx sen nx

Más detalles

MATEMÁTICAS ESPECIALES I PRÁCTICA 8 - CLASE 1 Sucesiones y series de funciones. x n, si 0 x 1 1, si x 1. 0, si 0 x < 1

MATEMÁTICAS ESPECIALES I PRÁCTICA 8 - CLASE 1 Sucesiones y series de funciones. x n, si 0 x 1 1, si x 1. 0, si 0 x < 1 PRÁCTICA 8 - CLASE Sucesiones y series de funciones.. Considere la sucesión de funciones reales ϕ n (x) = x n, si 0 x, si x, n. (a) Demostrar que converge puntualmente a ϕ(x) = 0, si 0 x

Más detalles

AMPLIACIÓN DE MATEMÁTICAS

AMPLIACIÓN DE MATEMÁTICAS AMPLIACIÓN DE MATEMÁTICAS DEFINICIÓN DE ANILLOS. En la Introducción a las Estructuras Algebraicas definimos las estructuras de Grupo, Anillo y Cuerpo. Repasemos la definición de Anillo antes de argumentar

Más detalles

Nombre y Apellidos: si x 0 f(x) = e x 1 1 si x = 0

Nombre y Apellidos: si x 0 f(x) = e x 1 1 si x = 0 Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria de Diciembre 2 de Diciembre de 25 Nombre y Apellidos: DNI: (2.5 p.) ) Se considera la función f : R R definida

Más detalles

Números complejos. Números complejos 28/02/2016 CURSO

Números complejos. Números complejos 28/02/2016 CURSO Números complejos CURSO 2015-2016 Números complejos 1) Definición números complejos 2) Representación gráfica de un número complejo ( Afijo, módulo, argumento). Conjugado 3) Operaciones con números complejos.

Más detalles

Análisis Complejo Primer Cuatrimestre 2009

Análisis Complejo Primer Cuatrimestre 2009 Análisis Complejo Primer Cuatrimestre 2009 Práctica 3: Series Series.. Estudie la convergencia de la serie cuyo término general es el siguiente: (a) a n = 2n+ n+ (b) a n = n 2n 2 +3 (c) a n = n+5 (d) a

Más detalles

Análisis Matemático 1 para estudiantes de Ingeniería

Análisis Matemático 1 para estudiantes de Ingeniería Alejandro E. García Venturini - Mónica Scardigli Análisis Matemático 1 para estudiantes de Ingeniería EDICIONES COOPERATIVAS , INDICE 505 NOCIONES PREVIAS... 7 Los conjuntos numéricos... 9 Conjuntos de

Más detalles

1. CONJUNTOS DE NÚMEROS

1. CONJUNTOS DE NÚMEROS Águeda Mata Miguel Rees, Dpto. de Matemática Aplicada, FI-UPM. 1 1.2.1. Definición 1. CONJUNTOS DE NÚMEROS 1.2. NÚMEROS COMPLEJOS Se llama número complejo a cualquier epresión de la forma z = + i donde

Más detalles

AMPLIACIÓN DE MATEMÁTICAS

AMPLIACIÓN DE MATEMÁTICAS AMPLIACIÓN DE MATEMÁTICAS GRUPOS PRODUCTO Y COCIENTE. El producto cartesiano de dos grupos y el conjunto cociente de un grupo respecto de ciertas relaciones, son dos formas de construir nuevos grupos.

Más detalles

Análisis Matemático. Convocatoria de enero Prueba Global. Evaluación Continua

Análisis Matemático. Convocatoria de enero Prueba Global. Evaluación Continua Apellidos y nombre: Análisis Matemático. Convocatoria de enero. 9--26. Prueba Global. Evaluación Continua Instrucciones: No abandonar el examen durante los primeros 3 minutos. Tiempo para esta parte del

Más detalles

17. Síntesis de la tercera parte.

17. Síntesis de la tercera parte. Funciones de variable compleja. Eleonora Catsigeras. 15 Mayo 2006. 185 17. Síntesis de la tercera parte. 17.1. Ceros y singularidades aisladas. Los detalles y demostraciones de esta parte se encuentran

Más detalles

Series de potencias y de Fourier

Series de potencias y de Fourier Capítulo 2. Series de potencias y de Fourier En este capítulo estudiaremos dos casos particulares, pero muy importantes, de series de funciones: las series de potencias y las series de Fourier. Ambas series

Más detalles

Variable Compleja I Tema 5: Funciones elementales

Variable Compleja I Tema 5: Funciones elementales Variable Compleja I Tema 5: Funciones elementales 1 La exponencial 2 Logaritmos El conjunto de los logaritmos El problema del logaritmo holomorfo Ejemplos de logaritmos holomorfos Desarrollos en serie

Más detalles

BORRADOR. Series de potencias y de funciones Sucesiones de funciones

BORRADOR. Series de potencias y de funciones Sucesiones de funciones Capítulo 5 Series de potencias y de funciones 5.1. Sucesiones de funciones En los dos últimos capítulos de la asignatura, deseamos estudiar ciertos tipos de series de funciones, es decir, expresiones sumatorias

Más detalles

Sea A el conjunto de alumnos de una clase.

Sea A el conjunto de alumnos de una clase. ANÁLISIS MATEMÁTICO BÁSICO. FUNCIONES DE VARIABLE REAL. Dados dos conjuntos A y B, podemos emparejar los elementos de A con los del conjunto B. Si lo hacemos de modo que para todo elemento a A le asociamos,

Más detalles

Definición 1. Dado un conjunto C una aplicación definida por : C C C

Definición 1. Dado un conjunto C una aplicación definida por : C C C ESTRUCTURAS ALGEBRAICAS. En matemáticas aparecen distintos conjuntos cuyos elementos podemos operar de alguna manera. Los conjuntos de números usuales: N, Z, Q, y R son unos ejemplos claros. Otros ejemplos

Más detalles

15. Teoría de los residuos.

15. Teoría de los residuos. 162 Funciones de variable compleja. Eleonora Catsigeras. 12 Julio 2006. 15. Teoría de los residuos. 15.1. Residuos. Definición 15.1.1. Residuo de una función en una singularidad aislada. Dada una función

Más detalles

Tema 1. Números reales y funciones reales de variable real. Números complejos. Departamento de Análisis Matemático Universidad de Granada

Tema 1. Números reales y funciones reales de variable real. Números complejos. Departamento de Análisis Matemático Universidad de Granada Tema 1. Números reales y funciones reales de variable real. Números complejos Departamento de Análisis Matemático Universidad de Granada Números reales Números reales Universidad de Granada Septiembre,

Más detalles

NÚMEROS COMPLEJOS 1.1. INTRODUCCIÓN 1.2. OPERACIONES CON COMPLEJOS

NÚMEROS COMPLEJOS 1.1. INTRODUCCIÓN 1.2. OPERACIONES CON COMPLEJOS NÚMEROS COMPLEJOS 1.1. INTRODUCCIÓN La ecuación x + 1 0 no tiene solución en el cuerpo de los números reales R ya que no existe un número real x tal que x 1. Necesitamos un conjunto que contenga a R, que

Más detalles

Tema 4.6: Teorema de Morera. Teorema de Weierstrass. Topología de la convergencia uniforme sobre compactos

Tema 4.6: Teorema de Morera. Teorema de Weierstrass. Topología de la convergencia uniforme sobre compactos Tema 4.6: Teorema de Morera. Teorema de Weierstrass. Topología de la convergencia uniforme sobre compactos E. de Amo July 4, 008 El presente tema estará dedicado al estudio de (la) conveniente convergencia

Más detalles

Primer Parcial MA1002 Cálculo II ExMa

Primer Parcial MA1002 Cálculo II ExMa Primer Parcial MA1002 Cálculo II ExMa Cualquiera de los siguientes objetivos puede ser evaluado en el primer parcial. 1. Demostrar proposiciones que se cumplen para infinidad de números naturales, aplicando

Más detalles

Examen ordinario de Matemáticas E.T.S.I. de Telecomunicación

Examen ordinario de Matemáticas E.T.S.I. de Telecomunicación Examen ordinario de Matemáticas E.T.S.I. de Telecomunicación 27 de Enero de 29 1. Enunciados 1.1. Ejercicio 1 1.1.1. Problema 1. (3 puntos) (1) Calcule C(i,2) (cos z + sin z)/(z 1)n dz, donde C(i, 2) denota

Más detalles

Variable Compleja I ( ) Ejercicios resueltos. Las convergencias puntual y uniforme de sucesiones y series de funciones

Variable Compleja I ( ) Ejercicios resueltos. Las convergencias puntual y uniforme de sucesiones y series de funciones Variable Compleja I (205-6) Ejercicios resueltos Las convergencias puntual y uniforme de sucesiones y series de funciones Recordemos la definición de la convergencia uniforme: f n (z) f (z) en un conjunto

Más detalles

AMPLIACIÓN DE MATEMÁTICAS

AMPLIACIÓN DE MATEMÁTICAS AMPLIACIÓN DE MATEMÁTICAS GRUPOS: DEFINICIÓN Y EJEMPLOS. La Teoría de Grupos tiene muchas aplicaciones desde Cristalografía hasta Criptografía, pasando por la resolución de ecuaciones. Nosotros vamos a

Más detalles

AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS

AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS Potencias de la unidad imaginaria i 0 = 1 i 1 = i i 2 = 1 i 3 = i i 4 = 1 Los valores se repiten de cuatro en cuatro, por eso, para saber cuánto

Más detalles

Variable Compleja I Tema 3: Funciones holomorfas

Variable Compleja I Tema 3: Funciones holomorfas Variable Compleja I Tema 3: Funciones holomorfas 1 Derivada 2 Ecuaciones de C-R 3 Reglas de derivación 4 Funciones holomorfas 5 Primeras propiedades Derivada Definición de derivada /0 A C, f F (A), a A

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA25 Clase 5: Series de potencias. Operaciones con series de potencias. Series de potencias Elaborado por los profesores Edgar Cabello y Marcos González Cuando estudiamos las series geométricas, demostramos

Más detalles

Este conjunto posee elementos que se obtienen a partir de raíces cuadradas con cantidad subradical negativa.

Este conjunto posee elementos que se obtienen a partir de raíces cuadradas con cantidad subradical negativa. DEFINICIÓN:Los Números Imaginarios surgen de la necesidad de resolver ecuaciones cuadráticas sin solución en el campo real. Este conjunto se representa por I Este conjunto posee elementos que se obtienen

Más detalles

Análisis Matemático para Estadística. Hoja 1

Análisis Matemático para Estadística. Hoja 1 Análisis Matemático para Estadística. Hoja Funciones de variable compleja. Teoremas básicos.. Describe el conjunto de puntos del plano complejo que cumplen la ecuación: (a) Im(z + 5i) = ; (b) Re(z + 3

Más detalles

MATEMÁTICAS PARA LA ECONOMÍA II

MATEMÁTICAS PARA LA ECONOMÍA II MATEMÁTICAS PARA LA ECONOMÍA II CÁLCULO EN UNA VARIABLE. Tema 1. - Números Reales. Nociones de topología en R. 1.1 - Números reales racionales e irracionales. El cuerpo de los números reales. 1.2 - Valor

Más detalles

Tema 4.5: Desigualdades de Cauchy. Teorema de Liouville. Teorema Fundamental del Álgebra

Tema 4.5: Desigualdades de Cauchy. Teorema de Liouville. Teorema Fundamental del Álgebra Tema 4.5: Desigualdades de Cauchy. Teorema de Liouville. Teorema Fundamental del Álgebra Facultad de Ciencias Experimentales, Curso 008-09 E. de Amo Para una función f holomorfa en un entorno de un punto

Más detalles

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0),

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0), NÚMEROS COMPLEJOS 1. Preliminares Definición. Se llama número complejo a todo par ordenado de números reales. Si z = (a, b) es un número complejo, se dice que a es la parte real de z y b es la parte imaginaria

Más detalles

AN ALISIS MATEM ATICO B ASICO. LOS CONJUNTOS DE N UMEROS. INTRODUCCI ON. Los conjuntos de numeros que conocemos, hasta ahora, son: N Z Q R C:

AN ALISIS MATEM ATICO B ASICO. LOS CONJUNTOS DE N UMEROS. INTRODUCCI ON. Los conjuntos de numeros que conocemos, hasta ahora, son: N Z Q R C: AN ALISIS MATEM ATICO B ASICO. LOS CONJUNTOS DE N UMEROS. INTRODUCCI ON. Los conjuntos de numeros que conocemos, hasta ahora, son: N Z Q R C: Naturales, Enteros, Racionales, Reales y Complejos respectivamente.

Más detalles

Fórmula de Cauchy Fórmula de Cauchy

Fórmula de Cauchy Fórmula de Cauchy Lección 8 Fórmula de Cauchy Llegamos al que se puede considerar como punto culminante de la teoría local de Cauchy, probando el resultado que se conoce como fórmula de Cauchy. Nos da una representación

Más detalles

FUNCIONES MEROMORFAS. EL TEOREMA DE LOS RESIDUOS Y ALGUNAS DE SUS CONSECUENCIAS

FUNCIONES MEROMORFAS. EL TEOREMA DE LOS RESIDUOS Y ALGUNAS DE SUS CONSECUENCIAS FUNCIONES MEROMORFAS. EL TEOREMA DE LOS RESIDUOS Y ALGUNAS DE SUS CONSECUENCIAS. FUNCIONES MEROMORFAS Definición.. Se dice que una función es meromorfa en un abierto Ω de C si f es holomorfa en Ω excepto

Más detalles

1. Ceros y singularidades de una función

1. Ceros y singularidades de una función TEMA 6 TEORÍA DE RESIDUOS. Ceros y singularidades de una función. Ceros de una función.2 Singularidades de una función.3 Relaciones entre ceros y singularidades.4 Singularidades y el punto del infinito

Más detalles

CÁLCULO II. Grado M+I. Sucesiones y series de funciones. Sucesiones y series de funciones 1 / 27. Grado M+I () CÁLCULO II

CÁLCULO II. Grado M+I. Sucesiones y series de funciones. Sucesiones y series de funciones 1 / 27. Grado M+I () CÁLCULO II CÁLCULO II Grado M+I Sucesiones y series de funciones Sucesiones y series de funciones 1 / Sucesiones funciones. Convergencia puntual Sucesión de funciones Definición Una sucesión de funciones será cualquier

Más detalles

1. Conjuntos de números

1. Conjuntos de números 1.2. Números complejos 1.2.1. FORMA BINÓMICA Números complejos en forma binómica Se llama número complejo a cualquier expresión de la forma z = x + yi donde x e y son números reales cualesquiera e i =

Más detalles

Métodos Matemáticos I ( ) Hoja 1 NúmerosComplejos. 8 (1 i) 5. (3 + 5i) (2 i) (1 + i 3 ) (1 + i) 3

Métodos Matemáticos I ( ) Hoja 1 NúmerosComplejos. 8 (1 i) 5. (3 + 5i) (2 i) (1 + i 3 ) (1 + i) 3 Hoja NúmerosComplejos.- Calcular todos los números z IC tales que: a) z = z 2 b) z = Rez + 2.- Obtener en forma binómica. a) b) c) 8 ( i) 5 (3 + 5i) (2 i) ( + i 3 ) ( + i) 3 3.- Obtener en forma binómica

Más detalles

NÚMEROS COMPLEJOS. Capítulo Operaciones con números complejos

NÚMEROS COMPLEJOS. Capítulo Operaciones con números complejos Capítulo 1 NÚMEROS COMPLEJOS Observe que la ecuación x 2 + 1 0 no tiene solución en los números reales porque tendríamos que encontrar un número cuyo cuadrado fuera 1, es decir x 2 1 o, lo que viene a

Más detalles

Series Sucesiones y series en C

Series Sucesiones y series en C Series En este capítulo vamos a estudiar desarrollos en serie de funciones holomorfas, para lo cual vamos en primer lugar a revisar resultados de la teoría de series, adaptándolos a series de términos

Más detalles

TEMA 7 NÚMEROS COMPLEJOS

TEMA 7 NÚMEROS COMPLEJOS TEMA 7 NÚMEROS COMPLEJOS La unidad imaginaria i. Hay ecuaciones que no se pueden resolver en. Por ejemplo: x + 1 = 0 x = - 1 x = ± -1 En el siglo XVI se inventaron un número para resolver esta i = -1 ecuación.

Más detalles

Análisis Matemático I: Cálculo diferencial

Análisis Matemático I: Cálculo diferencial Contents : Cálculo diferencial Universidad de Murcia Curso 2007-2008 Contents 1 Objetivos Definir, entender y aplicar el concepto de función derivable. Estudiar la relación entre derivabilidad, crecimiento,

Más detalles

Apéndice 2: Series de Fourier.

Apéndice 2: Series de Fourier. Apéndice 2: Series de Fourier. 19 de noviembre de 2014 1. Conjuntos ortonormales y proyecciones. Sea V un espacio vectorial con un producto interno . Sea {e 1,..., e n } un conjunto ortonormal, V

Más detalles

Preliminares. 1. Notación simbólica. Conjuntos. También se da en el curso de Conjuntos y Numeros.

Preliminares. 1. Notación simbólica. Conjuntos. También se da en el curso de Conjuntos y Numeros. CAPíTULO 1 Preliminares 1. Notación simbólica. Conjuntos. También se da en el curso de Conjuntos y Numeros. El método matemático es axiomático y deductivo: a partir de unos principios aceptados inicialmente

Más detalles

Funciones de una variable

Funciones de una variable Funciones de una variable Dpto. Matemática Aplicada Universidad de Málaga Motivación Conceptos matemáticos Funciones Mundo real Continuidad Derivada Integral Definición de función R A: Dominio R B: Imagen

Más detalles

C alculo Noviembre 2010

C alculo Noviembre 2010 Cálculo Noviembre 2010 Series numéricas. Sucesiones Definición Una sucesión es una aplicación a : IN IR. Denotamos simplificadamente a n en vez de a(n). El límite de la sucesión (a n ) es l R si para

Más detalles

(x r, x + r) (a, b). a < x r < y < x + r < b. Ahora nos fijamos en la propiedad anterior y en todos los subconjuntos de R que tienen esa propiedad.

(x r, x + r) (a, b). a < x r < y < x + r < b. Ahora nos fijamos en la propiedad anterior y en todos los subconjuntos de R que tienen esa propiedad. ANÁLISIS MATEMÁTICO BÁSICO. CONJUNTOS ESPECIALES DE LA RECTA REAL. TOPOLOGÍA DE R. Dado un intervalo abierto de la recta real (a, b) y dado x (a, b), es decir a < x < b, podemos encontrar r > 0 de modo

Más detalles

Números complejos (lista de problemas para examen)

Números complejos (lista de problemas para examen) Números complejos (lista de problemas para examen) En esta lista de problemas trabajamos con la construcción de números complejos (como pares ordenados de los reales) y con su representación en la forma

Más detalles

El cuerpo de los números complejos

El cuerpo de los números complejos Capítulo 1 El cuerpo de los números complejos En este primer capítulo se revisan los conceptos elementales relativos a los números complejos. El capítulo comienza con una breve nota histórica y después

Más detalles

Variable Compleja I. Maite Fernández Unzieta Universidad de Guanajuato Enero Junio Eugenio Daniel Flores Alatorre

Variable Compleja I. Maite Fernández Unzieta Universidad de Guanajuato Enero Junio Eugenio Daniel Flores Alatorre Variable Compleja I Maite Fernández Unzieta Universidad de Guanajuato Enero Junio 2012 Eugenio Daniel Flores Alatorre Bibliografía Complex Analysis 3rd ed. Ahlfors Basic Complex Analysis Functions of one

Más detalles

Apellidos y Nombre: Hoja 1

Apellidos y Nombre: Hoja 1 Hoja 1 1 Hallar dos números complejos tales que su suma sea 1+6i y su cociente imaginario puro. Suponer, además que la parte real del que se tome como divisor al calcular el cociente es 1. Hallar los números

Más detalles

ÍNDICE. Capítulo 1 Relaciones y funciones. Capítulo 2 Números reales

ÍNDICE. Capítulo 1 Relaciones y funciones. Capítulo 2 Números reales ÍNDICE Capítulo 1 Relaciones y funciones 1.1 LÓGICA... 7 1.2 CONJUNTOS... 19 1.2.1 Conceptos básicos... 19 1.2.2 Operaciones entre conjuntos... 25 1.3 RELACIONES... 32 1.3.1 Conceptos básicos... 32 1.3.2

Más detalles

Figura 1. Círculo unidad. Definición. 1. Llamamos número π (pi) al valor de la integral

Figura 1. Círculo unidad. Definición. 1. Llamamos número π (pi) al valor de la integral ANÁLISIS MATEMÁTICO BÁSICO. LAS FUNCIONES TRIGONOMÉTRICAS. La función f(x) = 1 x 2 es continua en el intervalo [ 1, 1]. Su gráfica como vimos es la semicircunferencia de radio uno centro el origen de coordenadas.

Más detalles

14. Funciones meromorfas y teoremas de aproximación.

14. Funciones meromorfas y teoremas de aproximación. Funciones de variable compleja. Eleonora Catsigeras. 15 Mayo 2006. 145 14. Funciones meromorfas y teoremas de aproximación. 14.1. Funciones meromorfas. Definición 14.1.1. Funciones meromorfas. Una función

Más detalles

AMPLIACIÓN DE MATEMÁTICAS DIVISIBILIDAD DE POLINOMIOS.

AMPLIACIÓN DE MATEMÁTICAS DIVISIBILIDAD DE POLINOMIOS. AMPLIACIÓN DE MATEMÁTICAS DIVISIBILIDAD DE POLINOMIOS. Ejemplo 1. Dados dos polinomios p, q Z[x] con q mónico se puede dividir p entre q. x 2 + 2x + 1 x + 1 0 x + 1 ; x 2 + 2x + 2 x + 1 1 x + 1 ; 3x2 +

Más detalles

Contenidos. Concepto de aplicación Dominio e Imagen Igualdad Función Compuesta Función Inversa Crecimiento. Decrecimiento Función Acotada

Contenidos. Concepto de aplicación Dominio e Imagen Igualdad Función Compuesta Función Inversa Crecimiento. Decrecimiento Función Acotada Contenidos Concepto de aplicación Dominio e Imagen Igualdad Función Compuesta Función Inversa Crecimiento. Decrecimiento Función Acotada Máximo, mínimo Función par o impar Función periódica Función Potencial

Más detalles

Complejos, C. Reales, R. Fraccionarios

Complejos, C. Reales, R. Fraccionarios NÚMEROS COMPLEJOS Como ya sabemos, conocemos distintos cuerpos numéricos en matemáticas como por ejemplo el cuerpo de los números racionales, irracionales, enteros, negativos,... Sin embargo, para completar

Más detalles

Diagonalización de matrices

Diagonalización de matrices Diagonalización de matrices María Muñoz Guillermo maria.mg@upct.es U.P.C.T. Matemáticas I M. Muñoz (U.P.C.T.) Diagonalización de matrices Matemáticas I 1 / 22 Valores y vectores propios de una matriz Definición

Más detalles

NÚMEROS COMPLEJOS UNIDAD 5. Página 130. El paso de N a Z

NÚMEROS COMPLEJOS UNIDAD 5. Página 130. El paso de N a Z UNIDAD NÚMEROS COMPLEJOS Página 0 El paso de N a Z 0 Imagina que solo se conocieran los números naturales, N. Sin utilizar otro tipo de números, intenta resolver las siguientes ecuaciones: a) x + b) x

Más detalles

TEMA 3: NÚMEROS COMPLEJOS

TEMA 3: NÚMEROS COMPLEJOS APUNTES DE MATEMÁTICAS TEMA 3: NÚMEROS COMPLEJOS 1º BACHILLERATO _ ÍNDICE Tema 3 Introducción... 3 1. Cómo se maneja 1?... 3. Un nuevo campo numérico C... 4 3. CONJUGADO DE UN NÚMERO COMPLEJO.... 5 4.

Más detalles

Tema 7: Funciones de una variable. Límites y continuidad.

Tema 7: Funciones de una variable. Límites y continuidad. Tema 7: Funciones de una variable. Límites y continuidad. José M. Salazar Noviembre de 2016 Tema 7: Funciones de una variable. Límites y continuidad. Lección 8. Funciones de una variable. Límites y continuidad.

Más detalles

Números complejos ( 1)(25) =

Números complejos ( 1)(25) = Números complejos Introducción Podemos pensar en las progresivas ampliaciones de los conjuntos numéricos como el método necesario para resolver ecuaciones algebraicas progresivamente complicadas. Así,

Más detalles

Ceros de las funciones holomorfas

Ceros de las funciones holomorfas Tema 9 Ceros de las funciones holomorfas A partir de ahora vamos a ir obteniendo una serie de aplicaciones importantes de la teoría local desarrollada anteriormente. El desarrollo en serie de Taylor deja

Más detalles

REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL

REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se

Más detalles

Integral de Fourier y espectros continuos

Integral de Fourier y espectros continuos 9 2 2 2 Esta expresión se denomina forma de Angulo fase (o forma armónica) de la serie de Fourier. Integral de Fourier y espectros continuos Las series de Fourier son una herramienta útil para representar

Más detalles

6. Teoría de Cauchy local.

6. Teoría de Cauchy local. Funciones de variable compleja. Eleonora Catsigeras. 24 Abril 2006. 59 6. Teoría de Cauchy local. Dado un abierto Ω C, se denota con R Ω a un rectángulo contenido en Ω. R indica el conjunto de puntos que

Más detalles