Tema 4.5: Desigualdades de Cauchy. Teorema de Liouville. Teorema Fundamental del Álgebra

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 4.5: Desigualdades de Cauchy. Teorema de Liouville. Teorema Fundamental del Álgebra"

Transcripción

1 Tema 4.5: Desigualdades de Cauchy. Teorema de Liouville. Teorema Fundamental del Álgebra Facultad de Ciencias Experimentales, Curso E. de Amo Para una función f holomorfa en un entorno de un punto a, su serie de Taylor P f n) (a) (z a) n converge en D(a; r), para cierto r > 0. Y, tal y como n0 ya se puso de mani esto, la sucesión de coe cientes no puede ser cualquiera. Concretamente, podemos hacer los siguientes cálculos: f H () ; a ; D(a; r) ; > 0 : D(a; r) D(a; ) 8 q >< > r ) lim sup n jf n) (a)j < =r ) >: lim sup n r j f n) (a)j ) 9m N : f n) (a) < =r n ; 8n m: Observamos que estas desigualdades se veri can a partir de un natural m en adelante. Este inconveniente se supera con las desigualdades de Cauchy: Teorema (Desigualdades de Cauchy). Sean = C, f H (), a y D(a; r). Entonces: f n) (a) M (f; a; r) r n ; donde M (f; a; r) := max fjf(z)j : z C(a; r)g : 8n N [ f0g; Demostración. La fórmula de Cauchy para las derivadas nos da f n) (a) = Z f(z) i n+ dz; 8n N [ f0g: (z a) C(a;r) Luego, Q.E.D. f n) (a) M (f; a; r) r n+ r = M (f; a; r) r n ; 8n N [ f0g:

2 Teorema (de Liouville). Toda función entera y acotada es constante. (Es decir, no hay más funciones holomorfas y acotadas en todo C que las constantes. Demostración. Sea M > 0 una cota superior para f. Para a C y r > 0 arbitrarios, por las desigualdades de Cauchy tenemos que jf 0 (a)j!m(f; a; r) r M r : Haciendo r! +; tendremos f 0 (a) = 0, siendo arbitrario el tal a en C. Consecuentemente, f tiene derivada nula en todo el plano C, lo que, al ser un conexo, obliga a que f sea constante. Q.E.D. Algunas consecuencias del teorema de Liouville son aplicables más allá del Análisis (complejo o real): Corolario (Teorema Fundamental del Álgebra). Sea p un polinomio con coe cientes complejos tal que no se anula. Entonces p es constante. Demostración. Por no tener p ceros, podemos considerar la función f : C! C dada por f(z) := ; 8z C: p(z) Ocurre que es entera y con límite (cero) en ; por tanto, acotada. Por Liouville, f es constante; y, por tanto, p será constante. Q.E.D. Corolario (del Teorema de Liouville). Si f H (C) y es no constante, entonces f(c) es denso en C. Demostración. Supongamos que Cnf(C) 6=?, y sea w uno de sus elementos. Existirá r > 0 tal que D(w; r) Cnf(C) ( por qué?), y consideremos la función g(z) := ; 8z C: f(z) w Tal g es entera y está acotada (por =r); luego, por Liouville, g (y así f) será constante, en contradicción con la hipótesis. Así, f(c) = C: Q.E.D. Nota: Este resultado se mejorará notablemente más adelante (teorema de Picard): Cnf(C) es, de hecho, vacío o se reduce a un único punto. A continuación vemos cómo cierta generalización del teorema de Liouville es posible: Proposición. Sea f una función entera veri cando jf(z)j M jzj ; 8z CnD(0; R) para convenientes M; R > 0 y 0. Entonces, f es un polinomio (de grado, a lo sumo, E ()).

3 Demostración. Razonando por argumentos de analiticidad para f, tendremos f n) (0) f(z) = z n ; 8z C: Para r > R, aplicamos las desigualdades de Cauchy para las derivadas: f n) (0) M (f; a; r) r n Mr r n = Mr n 8n N [ f0g ; 8r > R Pero, en este caso, si < n, la arbitrariedad de r en ]R; +[ conlleva que sea f n) (0) = 0 para todo natural n >. Luego f es el polinomio f(z) = E() X f n) (0) z n ; 8z C; cuyo grado no excede a la parte entera E() de : Q.E.D. Observemos que [0; [ nos da el teorema de Liouville. Curiosamente, los resultados relativos a las desigualdades de Cauchy para las derivadas, se pueden obtener sin introducir técnicas de holomorfía; es decir, se pueden deducir desde el Análisis Real. Lo vemos a continuación. Teorema (Identidad de Parceval). Sea P n0a n (z a) n una serie de potencias con radio de convergencia R > 0. Sea f la función analítica en D(a; R) de nida por dicha serie de potencias. Entonces: Z + i d = Demostración. Para cada r ]0; R[ ; las igualdades i = a n r n e in y f (a + re i ) = ja n j r n ; 8r ]0; R[ : a n r n e in se darán uniformemente en [ ; +]. El producto de ambas será, igualmente, uniforme y lo podemos expresar así: 0 i = lim nx a k a j r k+j e i(k j) A : + k=0 j=0 Como la convergencia es uniforme, podemos integrar y conmutar series e integración, de modo que 0 Z + i nx nx d = a k a j r k+j Z + e i(k j) da = + = lim + j=0 k=0 j=0 nx a j a j r j = ja n j r n ; 3

4 donde se ha hecho uso de que Q.E.D. Z + e im d = ; :::: m = 0 0; ::::: m 6= 0 Corolario Sea P n0a n (z a) n una serie de potencias con radio de convergencia R > 0 y sea f la función analítica en D(a; R) de nida por dicha serie de potencias. Entonces: ja n j r n [M (f; a; r)] ; 8r ]0; R[ : Demostración. Evidente sin más que mayorar en la integral de la fórmula de la identidad de Parceval. Q.E.D. Corolario Sea f una función analítica en un abierto. Sean a C y R > 0 tales que D(0; R). Entones, si 0 < r < R: f n) (a)! r n [M (f; a; r)] : Demostración. Se le aplicará el corolario anterior al hecho de que las funciones analíticas sean representables en series de Taylor. Q.E.D. Este resultado permite obtener una mejora considerable en las desigualdades de Cauchy para las derivadas; en efecto: si jamos m N [ f0g, tendremos f m) (a)! r m f n) (a)! r n [M (f; a; r)] ; luego f m) (a) r m M (f; a; r) ; 8m N [ f0g; 8r ]0; R[ : Y terminamos comprobando que la foma polinómica de f puede ser muy concreta bajo severas restricciones: Corolario. Sea un dominio del plano complejo y sea f una función holomorfa en él. Supongamos que existen a, r > 0 y m N [ f0g, tales que D(a; r) y f m) M (f; a; r) (a) = r m : Entonces f(z) = f m) (a) (z a) m ; 8z : 4

5 Demostración. La serie de potencias de f centrada en a es váida en un disco de radio R > r, con D(0; R). Combinando las hipótesis de ahora con el corolaro anterior: f [M (f; a; r)] m) (a)! f = r m n) (a)! r n [M (f; a; r)] ; y, por tanto, f n) (a) = 0; para todo n (N [ f0g) nfmg. Q.E.D. EJERCICIOS PROPUESTOS.. Sea una f función holomorfa en el disco unidad D veri cando veri cando que jf (z)j ; 8z D: jzj Prueba que f n) (0) e (n + )!; 8n N [ f0g :. Sea P n0a n z n una serie de potencias con radio de convergencia R > 0. a n Prueba que la serie P z n converge en todo el plano C. Sea n0 f(z) := a n zn ; 8z C: Prueba que para cada r ]0; R[, puede encontrarse M > 0 tal que f n) (z) M r exp jzj n r ; 8z C; 8n N [ f0g : 3. Sea f una función entera veri cando que Prueba que f es constante. f(z) lim = 0: z! z 4. Sea f una función entera veri cando que Prueba que f es constante. f(z) = f(z + ) = f(z + i); 8z C: 5

Tema 4.3: Desarrollo de Taylor. Equivalencia entre analiticidad y holomorfía. Fórmula de Cauchy para las derivadas

Tema 4.3: Desarrollo de Taylor. Equivalencia entre analiticidad y holomorfía. Fórmula de Cauchy para las derivadas Tema 4.3 Desarrollo de Taylor. Euivalencia entre analiticidad y holomorfía. Fórmula de Cauchy para las derivadas Facultad de Ciencias Experimentales, Curso 008-09 E. de Amo Tal y como ya anunciábamos en

Más detalles

CÁLCULO II. Grado M+I. Sucesiones y series de funciones. Sucesiones y series de funciones 1 / 27. Grado M+I () CÁLCULO II

CÁLCULO II. Grado M+I. Sucesiones y series de funciones. Sucesiones y series de funciones 1 / 27. Grado M+I () CÁLCULO II CÁLCULO II Grado M+I Sucesiones y series de funciones Sucesiones y series de funciones 1 / Sucesiones funciones. Convergencia puntual Sucesión de funciones Definición Una sucesión de funciones será cualquier

Más detalles

Tema 5.2: Comportamiento local de una función holomorfa. Teoremas de la aplicación abierta y de la función inversa

Tema 5.2: Comportamiento local de una función holomorfa. Teoremas de la aplicación abierta y de la función inversa Tema 5.: Comportamiento local de una función holomorfa. Teoremas de la aplicación abierta y de la función inversa Facultad de Ciencias Experimentales, Curso 8-9 Enrique de Amo, Universidad de Almería En

Más detalles

Tema 2.1: Función exponencial. Funciones trigonométricas

Tema 2.1: Función exponencial. Funciones trigonométricas Tema.1: Función exponencial. Funciones trigonométricas Facultad de Ciencias Experimentales, Curso 008-09 E. de Amo Comenzaremos tratando de de nir la función exponencial sobre todo el plano C de modo que

Más detalles

Tema 8.3: Teorema de Riemann (fundamental) de la Representación Conforme. Clasi cación de los abiertos simplemente conexos del plano

Tema 8.3: Teorema de Riemann (fundamental) de la Representación Conforme. Clasi cación de los abiertos simplemente conexos del plano Tema 8.3: Teorema de Riemann (fundamental) de la Representación Conforme. Clasi cación de los abiertos simplemente conexos del plano Facultad de Ciencias Experimentales, Curso 2008-09 Enrique de Amo, Universidad

Más detalles

Ejemplos y problemas resueltos de análisis complejo (2014-15)

Ejemplos y problemas resueltos de análisis complejo (2014-15) Variable Compleja I (3 o de Matemáticas y 4 o de Doble Titulación) Ejemplos y problemas resueltos de análisis complejo (04-5) Teoremas de Cauchy En estos apuntes, la palabra dominio significa, como es

Más detalles

Funciones analíticas CAPÍTULO 2 2.1 INTRODUCCIÓN

Funciones analíticas CAPÍTULO 2 2.1 INTRODUCCIÓN CAPÍTULO 2 Funciones analíticas 2.1 INTRODUCCIÓN Para definir las series de potencias y la noción de analiticidad a que conducen, sólo se necesitan las operaciones de suma y multiplicación y el concepto

Más detalles

Fórmula de Cauchy Fórmula de Cauchy

Fórmula de Cauchy Fórmula de Cauchy Lección 8 Fórmula de Cauchy Llegamos al que se puede considerar como punto culminante de la teoría local de Cauchy, probando el resultado que se conoce como fórmula de Cauchy. Nos da una representación

Más detalles

Tema 3.1: Interpretación geométrica de la derivada. Aplicaciones conformes

Tema 3.1: Interpretación geométrica de la derivada. Aplicaciones conformes Tema 3.1: Interpretación geométrica de la derivada. Aplicaciones conformes Facultad de Ciencias Experimentales, Curso 2008-09 E. de Amo En esta lección pretendemos conectar la derivabilidad de las funciones

Más detalles

Tema 7.2: Teorema de los residuos. Aplicaciones del cálculo con residuos

Tema 7.2: Teorema de los residuos. Aplicaciones del cálculo con residuos Tema 7.: Teorema de los residuos. Aplicaciones del cálculo con residuos Facultad de Ciencias Experimentales, Curso 8-9 Enrique de Amo, Universidad de Almería La teoría de residuos proporciona una técnica

Más detalles

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 3: Solución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

Espacios completos. 8.1 Sucesiones de Cauchy

Espacios completos. 8.1 Sucesiones de Cauchy Capítulo 8 Espacios completos 8.1 Sucesiones de Cauchy Definición 8.1.1 (Sucesión de Cauchy). Diremos que una sucesión (x n ) n=1 en un espacio métrico (X, d) es de Cauchy si para todo ε > 0 existe un

Más detalles

Tema 3.2: Transformaciones de Möbius

Tema 3.2: Transformaciones de Möbius Tema 3.2: Transformaciones de Möbius Facultad de Ciencias Experimentales, Curso 2008-09 E. de Amo Hay, al menos, tres razones importantes (en las que no entraremos en detalles más que los necesarios para

Más detalles

Teorema del Valor Medio

Teorema del Valor Medio Tema 6 Teorema del Valor Medio Abordamos en este tema el estudio del resultado más importante del cálculo diferencial en una variable, el Teorema del Valor Medio, debido al matemático italo-francés Joseph

Más detalles

Teoremas de Convergencia

Teoremas de Convergencia Capítulo 24 Teoremas de Convergencia El teorema de la convergencia monótona (Lema 21.3) establece ciertas condiciones sobre una sucesión de funciones medibles para que se puedan permutar los símbolos y

Más detalles

Subconjuntos notables de un Espacio Topológico

Subconjuntos notables de un Espacio Topológico 34 Capítulo 4 Subconjuntos notables de un Espacio Topológico 4.1 Adherencia Definición 4.1.1 (Punto adherente). Sea (X, τ) un espacio topológico, y sea S un subconjunto de X. Diremos que x X es un punto

Más detalles

Continuidad. 5.1 Continuidad en un punto

Continuidad. 5.1 Continuidad en un punto Capítulo 5 Continuidad 5.1 Continuidad en un punto Definición 5.1.1 (Aplicación continua en un punto). Sean (X, τ) e (Y, τ ) dos espacios topológicos, y sea f : X Y una aplicación entre ellos. Diremos

Más detalles

1. Convergencia en medida

1. Convergencia en medida FACULTAD CS. FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE MA3801 Teoría de la Medida. Semestre 2009-02 Profesor: Jaime San Martín Auxiliares: Andrés Fielbaum y Cristóbal Guzmán Clase auxiliar 7 21 de Septiembre

Más detalles

Series Sucesiones y series en C

Series Sucesiones y series en C Series En este capítulo vamos a estudiar desarrollos en serie de funciones holomorfas, para lo cual vamos en primer lugar a revisar resultados de la teoría de series, adaptándolos a series de términos

Más detalles

Sucesiones Introducción

Sucesiones Introducción Temas Límites de sucesiones. convergentes. Sucesiones divergentes. Sucesiones Capacidades Conocer y manejar conceptos de sucesiones convergentes y divergentes. Conocer las principales propiedades de las

Más detalles

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones Semana 09 [1/28] 29 de abril de 2007 Semana 09 [2/28] Definición Sucesión Una sucesión real es una función: f : N R n f (n) Observaciones Para distinguir a una sucesión de las demás funciones, se ocupará

Más detalles

Por ser f continua y R compacto, existen x 0, y 0 en R tales que f(x 0 ) = sup{f(t) : t R} y f(y 0 ) = inf{f(t) : t R}

Por ser f continua y R compacto, existen x 0, y 0 en R tales que f(x 0 ) = sup{f(t) : t R} y f(y 0 ) = inf{f(t) : t R} Proposición. Sea un rectángulo en R n, y sea f : R una función continua. Entonces f es integrable en. Conjuntos de Demostración: Como f es continua en, y es compacto, f es acotada en, y uniformemente continua.

Más detalles

Resumen de Análisis Matemático IV

Resumen de Análisis Matemático IV Resumen de Análisis Matemático IV 1. Funciones inversas e implícitas y extremos condicionados 1.1. Teorema de la función inversa Teorema de la función inversa: Sea A abierto de R n, f : A R n tal que f

Más detalles

Introducción al Análisis Complejo

Introducción al Análisis Complejo Introducción al Análisis Complejo Aplicado al cálculo de integrales impropias Complementos de Análisis, I.P.A Prof.: Federico De Olivera Leandro Villar 13 de diciembre de 2010 Introducción Este trabajo

Más detalles

Espacios Topológicos 1. Punto de Acumulación. Al conjunto de puntos de acumulación de A se le denomina el conjunto derivado de A (A a Notación).

Espacios Topológicos 1. Punto de Acumulación. Al conjunto de puntos de acumulación de A se le denomina el conjunto derivado de A (A a Notación). Espacios Topológicos 1 Punto de Acumulación Definición: Sea A un subconjunto arbitrario de R n, se dice que x R n es un punto de acumulación de A si toda bola abierta con centro x contiene un punto A distinto

Más detalles

Anexo C. Introducción a las series de potencias. Series de potencias

Anexo C. Introducción a las series de potencias. Series de potencias Anexo C Introducción a las series de potencias Este apéndice tiene como objetivo repasar los conceptos relativos a las series de potencias y al desarrollo de una función ne serie de potencias en torno

Más detalles

MMAF: Espacios normados y espacios de Banach

MMAF: Espacios normados y espacios de Banach MMAF: Espacios normados y espacios de Banach Licenciatura en Estadística R. Álvarez-Nodarse Universidad de Sevilla Curso 2011/2012 Espacios vectoriales Definición Sea V un conjunto de elementos sobre el

Más detalles

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. Regla de la cadena Derivada de la función compuesta. Regla de la cadena Cuando en las matemáticas de bachillerato se introduce el concepto de derivada, su significado y su interpretación geométrica, se pasa al cálculo de

Más detalles

Teorema del valor medio

Teorema del valor medio Práctica 6 - Parte 1 Teorema del valor medio El teorema del valor medio para derivadas (o teorema de Lagrange) es un resultado central en la teoría de funciones reales. Este teorema relaciona valores de

Más detalles

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL (Curso 00-00) HOJA Ejercicio. Determina en qué recintos es holomorfa la siguiente función: f(x + iy) x + ay + i(bx + cy) En este caso consideramos: u(x, y) x + ay

Más detalles

Introducción a la Teoría Analítica de Números

Introducción a la Teoría Analítica de Números Introducción a la Teoría Analítica de Números Pablo De Nápoli clase 3. Ejemplos de funciones generatrices El teorema que vimos la clase anterior sobre el producto de series de Dirichlet permite determinar

Más detalles

Kolmogorov y la teoría de la la probabilidad. David Nualart. Academia de Ciencias y Universidad de Barcelona

Kolmogorov y la teoría de la la probabilidad. David Nualart. Academia de Ciencias y Universidad de Barcelona Kolmogorov y la teoría de la la probabilidad David Nualart Academia de Ciencias y Universidad de Barcelona 1 La axiomatización del cálculo de probabilidades A. N. Kolmogorov: Grundbegriffe des Wahrscheinlichkeitsrechnung

Más detalles

En este capítulo se estudian las funciones complejas cerca de aquellos. puntos en los que la función no es holomorfa. Estos puntos se denominan

En este capítulo se estudian las funciones complejas cerca de aquellos. puntos en los que la función no es holomorfa. Estos puntos se denominan 45 Análisis matemático para Ingeniería M MOLERO; A SALVADOR; T MENARGUEZ; L GARMENDIA CAPÍTULO 5 Singularidades y residuos En este capítulo se estudian las funciones complejas cerca de aquellos puntos

Más detalles

FAMILIAS NORMALES VARIABLE COMPLEJA #6

FAMILIAS NORMALES VARIABLE COMPLEJA #6 VARIABLE COMPLEJA #6 FAMILIAS NORMALES Recordemos que F C(D, C) es una familia normal cuando cada sucesión en F tiene una subsucesión que converge en C(D, C). Esto es lo mismo que decir que cerr(f) es

Más detalles

Funciones de Clase C 1

Funciones de Clase C 1 Capítulo 7 Funciones de Clase C 1 Vamos a considerar ahora la extensión a varias variables del concepto de función de clase C 1. Cada vez que establezcamos una propiedad de las funciones diferenciables,

Más detalles

Variable Compleja. José Darío Sánchez Hernández Bogotá -Colombia - abril 2005 danojuanos@hotmail.com danojuanos@tutopia.com

Variable Compleja. José Darío Sánchez Hernández Bogotá -Colombia - abril 2005 danojuanos@hotmail.com danojuanos@tutopia.com Variable Compleja José Darío Sánchez Hernández Bogotá -Colombia - abril 2005 danojuanos@hotmail.com danojuanos@tutopia.com El objeto de estas notas es brindar al lector un modelo de aprendizaje. A continuación

Más detalles

Espacios conexos. Capítulo Conexidad

Espacios conexos. Capítulo Conexidad Capítulo 5 Espacios conexos 1. Conexidad En este capítulo exploraremos el concepto de conexidad en un espacio métrico, y estudiaremos algunas de sus aplicaciones. Definición 5.1. Decimos que el espacio

Más detalles

x si x 2 Q 1 x si x 2 R Q

x si x 2 Q 1 x si x 2 R Q Relacion 4.CONTINUIDAD Y LÍMITE FUNCIONAL 1 Demuestrese i) que si una función tiene límite, éste es único. ii) aplicando la de nición de límite, que a) lim!0 sen 1 =0 b) lim!1 1 = 1 ( 1) 4 iii) que no

Más detalles

MAT2715 VARIABLE COMPLEJA II Ayudantia 5 Rodrigo Vargas. g(z) e u(z) 1. u(z) a log z + b

MAT2715 VARIABLE COMPLEJA II Ayudantia 5 Rodrigo Vargas. g(z) e u(z) 1. u(z) a log z + b PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS MAT2715 VARIABLE COMPLEJA II Ayudantia 5 Rodrigo Vargas 1. Sea u : C R una función armónica positiva. Pruebe que u es constante. Solución:

Más detalles

Problemas resueltos de variable compleja con elementos de teoría. Ignacio Monterde, Vicente Montesinos.

Problemas resueltos de variable compleja con elementos de teoría. Ignacio Monterde, Vicente Montesinos. Problemas resueltos de variable compleja con elementos de teoría Ignacio Monterde, Vicente Montesinos. Índice general Introducción V 1. Teoría elemental 1 1.1. Elementos de teoría........................

Más detalles

+ ax 2 + bx) x. ( 2 sen(x) 0 (a + b sen(x) sen(2x))2 dx sea mínima.

+ ax 2 + bx) x. ( 2 sen(x) 0 (a + b sen(x) sen(2x))2 dx sea mínima. Facultad de Ingeniería - IMERL Cálculo - Curso. Práctico 8. Integrales paramétricas e integrales iteradas dobles y triples. Integrales múltiples. Cambio de variables, áreas, volúmenes, sumas de Riemann

Más detalles

Análisis III. Joaquín M. Ortega Aramburu

Análisis III. Joaquín M. Ortega Aramburu Análisis III Joaquín M. Ortega Aramburu Septiembre de 1999 Actualizado en julio de 2001 2 Índice General 1 Continuidad en el espacio euclídeo 5 1.1 El espacio euclídeo R n...............................

Más detalles

Práctico 9 (resultados) Reportar al foro cualquier error que crea que exista en éstos resultados.

Práctico 9 (resultados) Reportar al foro cualquier error que crea que exista en éstos resultados. Práctico 9 (resultados) Reportar al foro cualquier error que crea que exista en éstos resultados. Ejercicio 1 Ver ejemplo 7.1 del capítulo 7 de las notas del curso (página 158). El resultado final de dicha

Más detalles

Sucesiones en R n. Ejemplos.-Considerando el espacio R 2 sea la sucesión {x k } 1 dada por x k = ( k, 1 k) podemos listar como sigue:

Sucesiones en R n. Ejemplos.-Considerando el espacio R 2 sea la sucesión {x k } 1 dada por x k = ( k, 1 k) podemos listar como sigue: Sucesiones en R n Definición. Una sucesión en R n es cualquier lista infinita de vectores en R n x, x,..., x,... algunos de los cuales o todos ellos pueden coincidir entre si. Dada una sucesión x, x,...,

Más detalles

Cálculo Diferencial en una variable

Cálculo Diferencial en una variable Tema 2 Cálculo Diferencial en una variable 2.1. Derivadas La derivada nos proporciona una manera de calcular la tasa de cambio de una función Calculamos la velocidad media como la razón entre la distancia

Más detalles

1 Números reales. Funciones y continuidad.

1 Números reales. Funciones y continuidad. 1 Números reales. Funciones y continuidad. En este tema nos centraremos en el estudio de la continuidad de funciones reales, es decir, funciones de variable real y valor real. Por ello es esencial en primer

Más detalles

Práctica IV: Métodos de Newton-Raphson y de la secante, para encontrar las raíces de una función.

Práctica IV: Métodos de Newton-Raphson y de la secante, para encontrar las raíces de una función. Práctica IV: Métodos de Newton-Raphson y de la secante, para encontrar las raíces de una función. Se suele llamar método de Newton-Raphson al método de Newton cuando se utiliza para calcular los ceros

Más detalles

Métodos Numéricos: Resumen y ejemplos Tema 5: Resolución aproximada de ecuaciones

Métodos Numéricos: Resumen y ejemplos Tema 5: Resolución aproximada de ecuaciones Métodos Numéricos: Resumen y ejemplos Tema 5: Resolución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Abril 009,

Más detalles

Convergencia de sucesiones

Convergencia de sucesiones TEMA 4. CONVERGENCIA DE SUCESIONES 65 Tema 4. Convergencia de sucesiones Definición 5.4.1. Sea X un conjunto: una sucesión en X es una aplicación s : N X; denotaremos x n := s(n) y por S := {x n } n N

Más detalles

Contenidos. Importancia del tema. Conocimientos previos para este tema?

Contenidos. Importancia del tema. Conocimientos previos para este tema? Transformación conforme Contenidos Unidad I: Funciones de variable compleja. Operaciones. Analiticidad, integrales, singularidades, residuos. Funciones de variable real a valores complejos. Funciones de

Más detalles

TEMA 8.- NORMAS DE MATRICES Y

TEMA 8.- NORMAS DE MATRICES Y Álgebra II: Tema 8. TEMA 8.- NORMAS DE MATRICES Y NúMERO DE CONDICIóN Índice. Introducción 2. Norma vectorial y norma matricial. 2 2.. Norma matricial inducida por normas vectoriales......... 4 2.2. Algunos

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.7: Aproximación de funciones. Desarrollo de Taylor. Aproximación lineal. La aproximación lineal de una función y = f(x) en un punto x = a es la

Más detalles

Semana 2 [1/24] Derivadas. August 16, Derivadas

Semana 2 [1/24] Derivadas. August 16, Derivadas Semana 2 [1/24] August 16, 2007 Máximos y mínimos: la regla de Fermat Semana 2 [2/24] Máximos y mínimos locales Mínimo local x es un mínimo local de la función f si existe ε > 0 tal que f( x) f(x) x (

Más detalles

Aproximación constructiva: aproximantes de Padé y polinomios ortogonales

Aproximación constructiva: aproximantes de Padé y polinomios ortogonales Aproximación constructiva: aproximantes de Padé y polinomios ortogonales B. de la Calle Ysern Dpto. de Matemática Aplicada, E.T.S. Ingenieros Industriales, Universidad Politécnica de Madrid Encuentro Iberoamericano

Más detalles

(3) Regla del cociente: Si g(z 0 ) 0, f/g es derivable en z 0 y. (z 0 ) = f (z 0 )g(z 0 ) f(z 0 )g (z 0 ) . g

(3) Regla del cociente: Si g(z 0 ) 0, f/g es derivable en z 0 y. (z 0 ) = f (z 0 )g(z 0 ) f(z 0 )g (z 0 ) . g Funciones holomorfas 2.1. Funciones variable compleja En este capítulo vamos a tratar con funciones f : Ω C C, donde Ω C es el dominio de definición. La forma habitual de expresar estas funciones es como

Más detalles

Notas de Medida, Integración y Probabilidad

Notas de Medida, Integración y Probabilidad Notas de Medida, Integración y Probabilidad J. Armando Domínguez, UAS, jadguez@uas.uasnet.mx Víctor Pérez-Abreu, CIMAT, pabreu@cimat.mx Agosto 2009 Contenido Introducción 2 1 Clases de conjuntos 3 1.1

Más detalles

Resumen sobre mecánica analítica

Resumen sobre mecánica analítica Resumen sobre mecánica analítica Ecuaciones de Lagrange. Supongamos una partícula, cuyo movimiento se puede describir mediante una sóla coordenada x, de modo que en el instante t la posición de la partícula

Más detalles

1. Sucesiones y redes.

1. Sucesiones y redes. 1. Sucesiones y redes. PRACTICO 7. REDES. Se ha visto que el concepto de sucesión no permite caracterizar algunas nociones topológicas, salvo en espacios métricos. Esto empieza con algunas definiciones

Más detalles

El Teorema de existencia y unicidad de Picard

El Teorema de existencia y unicidad de Picard Tema 2 El Teorema de existencia y unicidad de Picard 1 Formulación integral del Problema de Cauchy El objetivo del presente Tema, y del siguiente, es analizar el Problema de Cauchy para un SDO de primer

Más detalles

1. Construcción de la Integral

1. Construcción de la Integral 1. Construcción de la Integral La integral de Riemann en R n es una generalización de la integral de funciones de una variable. La definición que vamos a dar reproduce el método de Darboux para funciones

Más detalles

9. Aplicaciones al cálculo de integrales impropias.

9. Aplicaciones al cálculo de integrales impropias. Funciones de variable compleja. Eleonora Catsigeras. 8 Mayo 26. 85 9. Aplicaciones al cálculo de integrales impropias. Las aplicaciones de la teoría de Cauchy de funciones analíticas para el cálculo de

Más detalles

Guía 3 Del estudiante Modalidad a distancia. Modulo CÁLCULO UNIVARIADO INGENIERÍA DE SISTEMAS II SEMESTRE

Guía 3 Del estudiante Modalidad a distancia. Modulo CÁLCULO UNIVARIADO INGENIERÍA DE SISTEMAS II SEMESTRE Guía 3 Del estudiante Modalidad a distancia Modulo CÁLCULO UNIVARIADO INGENIERÍA DE SISTEMAS II SEMESTRE DATOS DE IDENTIFICACION TUTOR Luis Enrique Alvarado Vargas Teléfono 435 29 52 CEL. 310 768 90 67

Más detalles

Integrales múltiples

Integrales múltiples ntegrales múltiples Cálculo (2003) El objetivo de este capítulo es definir y aprender a calcular integrales de funciones reales de varias variables, que llamamos integrales múltiples. Las motivación más

Más detalles

Funciones convexas Definición de función convexa. Tema 10

Funciones convexas Definición de función convexa. Tema 10 Tema 10 Funciones convexas Los resultados obtenidos en el desarrollo del cálculo diferencial nos permiten estudiar con facilidad una importante familia de funciones reales de variable real definidas en

Más detalles

Teoremas de convergencia y derivación bajo el signo integral

Teoremas de convergencia y derivación bajo el signo integral Capítulo 8 Teoremas de convergencia y derivación bajo el signo integral En este capítulo estudiaremos sucintamente bajo qué circunstancias puede intercambiarse el orden de la integral con las operaciones

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 2: Lunes 18 Viernes 22 de Marzo. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 2: Lunes 18 Viernes 22 de Marzo. Contenidos Cálculo Coordinación de Matemática I MAT021 1 er Semestre de 2013 Semana 2: Lunes 18 Viernes 22 de Marzo Contenidos Clase 1: La Ecuación Cuadrática. Inecuaciones de grado 2, con y sin valor absoluto. Clase

Más detalles

RESUMEN TEORIA MATEMATICAS 5

RESUMEN TEORIA MATEMATICAS 5 RESUMEN TEORIA MATEMATICAS 5 LIMITES Definición. Sea :, lim,,, Significa que cuando, esta cerca de, entonces, esta cerca de L. De otra forma se dice que, pertenece a una bola centrada en, por otro lado,

Más detalles

Espacios Vectoriales, Valores y Vectores Propios

Espacios Vectoriales, Valores y Vectores Propios , Valores y Vectores Propios José Juan Rincón Pasaye, División de Estudios de Postgrado FIE-UMSNH Curso Propedéutico de Matemáticas para la Maestría en Ciencias opciones: Sistemas de Control y Sistemas

Más detalles

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN May 4, 2012 1. Optimización Sin Restricciones En toda esta sección D denota un subconjunto abierto de R n. 1.1. Condiciones Necesarias de Primer Orden. Proposición 1.1. Sea f : D R diferenciable. Si p

Más detalles

Límite superior y límite inferior de una sucesión

Límite superior y límite inferior de una sucesión Límite superior y límite inferior de una sucesión Objetivos. Definir las nociones de los límites superior e inferior de una sucesión y estudiar sus propiedades básicas. Requisitos. Supremo e ínfimo de

Más detalles

Apéndice sobre ecuaciones diferenciales lineales

Apéndice sobre ecuaciones diferenciales lineales Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.

Más detalles

Más sobre las series geométricas. 1. Derivación de series geométricas elementales

Más sobre las series geométricas. 1. Derivación de series geométricas elementales Semana - Clase 2 4/0/0 Tema : Series Más sobre las series geométricas Las series infinitas se encuentran entre las más poderosas herramientas que se introducen en un curso de cálculo elemental. Son un

Más detalles

Diferenciales de Orden Superior

Diferenciales de Orden Superior Capítulo 10 Diferenciales de Orden Superior En este capítulo extenderemos a las funciones definidas sobre espacios normados el concepto de función r-veces diferenciable y de clase C r y obtendremos las

Más detalles

Teoría geométrica de funciones: el punto de encuentro entre variable compleja y geometría

Teoría geométrica de funciones: el punto de encuentro entre variable compleja y geometría XXIII ESCUELA VENEZOLANA DE MATEMÁTICAS Teoría geométrica de funciones: el punto de encuentro entre variable compleja y geometría José Manuel Rodríguez García José María Sigarreta Almira Eva Tourís Lojo

Más detalles

TEMA2. SUCESIONES DE NÚMEROS REALES Y COMPLEJOS

TEMA2. SUCESIONES DE NÚMEROS REALES Y COMPLEJOS TEMA2. SUCESIONES DE NÚMEROS REALES Y COMPLEJOS 2.1 SUCESIONES DE NUMEROS REALES 2.1.1 Definición de sucesión de números reales Definición: Una sucesión de números reales es una aplicación del conjunto

Más detalles

Problemas Tema 3 Solución a problemas de Derivabilidad - Hoja 11 - Todos resueltos

Problemas Tema 3 Solución a problemas de Derivabilidad - Hoja 11 - Todos resueltos Asignatura: Matemáticas II ºBachillerato página 1/10 Problemas Tema 3 Solución a problemas de Derivabilidad - Hoja 11 - Todos resueltos Hoja 11. Problema 1 1. Se tiene un alambre de 1 m de longitud y se

Más detalles

8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV

8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV 8.4. CRITERIO DE ESTAB.: METODO DE LIAPUNOV 309 8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV Consideremos el sistema autónomo dx = F (x, y) dt (8.32) dt = G(x, y), y supongamos que tiene

Más detalles

Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple

Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple Estos apuntes están redactados por Maria de los Angeles Isidro Pérez y Egor Maximenko.

Más detalles

Ejercicios resueltos. 4 continua en R luego continua en cualquier. , [ 1,1] = 0 que equivale a decir 1,1

Ejercicios resueltos. 4 continua en R luego continua en cualquier. , [ 1,1] = 0 que equivale a decir 1,1 Teoremas de continuidad y derivabilidad Ejercicios resueltos.- Demostrar que la siguiente ecuación tiene una solución en el intervalo, : 4 º. Se considera la función 4 continua en R luego continua en cualquier

Más detalles

AMPLIACIÓN DE MATEMÁTICAS

AMPLIACIÓN DE MATEMÁTICAS AMPLIACIÓN DE MATEMÁTICAS SUCESIONES DE FUNCIONES En primer curso estudiamos el concepto de convergencia de una sucesión de números. Decíamos que dada una sucesión de números reales (x n ) n=1 R, ésta

Más detalles

Capítulo 4: Polinomios

Capítulo 4: Polinomios Capítulo 4: Polinomios Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Diciembre de 2015 Olalla (Universidad de Sevilla) Capítulo 4: Polinomios Diciembre de

Más detalles

Notas de Análisis. Dr. Richard G. Wilson Departamento de Matemáticas, Universidad Autónoma Metropolitana-Iztapalapa comentarios: rgw@xanum.uam.

Notas de Análisis. Dr. Richard G. Wilson Departamento de Matemáticas, Universidad Autónoma Metropolitana-Iztapalapa comentarios: rgw@xanum.uam. Notas de Análisis Dr. Richard G. Wilson Departamento de Matemáticas, Universidad Autónoma Metropolitana-Iztapalapa comentarios: rgw@xanum.uam.mx Marzo del 2005 2 Contenido 1 Topología de espacios métricos

Más detalles

FICHAS DE PRÁCTICAS 1ºBACHILLERATO MATEMÁTICAS

FICHAS DE PRÁCTICAS 1ºBACHILLERATO MATEMÁTICAS FICHAS DE PRÁCTICAS 1ºBACHILLERATO MATEMÁTICAS UNIDAD DIDÁCTICA : ÁLGEBRA Y ARITMÉTICA 04.- Inecuaciones Duración Estimada: 1,5 h Capacidad Terminal Comprender plantear y solucionar inecuaciones de primer

Más detalles

PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX

PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX Prof.: MSc. Julio Rito Vargas Avilés Planteamiento del problema: PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX Una compañía de manufactura se dedica a la fabricación de tres productos: A,

Más detalles

sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces,

sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces, Integral indefinida Primitiva e integral indefinida. Cálculo de primitivas: métodos de integración. Integración por cambio de variable e integración por partes. Integración de funciones racionales e irracionales.

Más detalles

Apuntes sobre algunos teoremas fundamentales de análisis complejo, con 20 ejemplos resueltos (2007-08)

Apuntes sobre algunos teoremas fundamentales de análisis complejo, con 20 ejemplos resueltos (2007-08) Variable Compleja I (3 o de Matemáticas) Apuntes sobre algunos teoremas fundamentales de análisis complejo, con ejemplos resueltos (7-8) En estos apuntes, consideraremos las funciones anaĺıticas (holomorfas)

Más detalles

EJERCICIOS ADICIONALES.

EJERCICIOS ADICIONALES. UNIVERSIDAD SIMON BOLIVAR PREPARADURIA DE MATEMATICAS MATEMATICAS 4 (MA-5) Miguel Guzmán (magt_3@hotmail.com) Tema: SUCESIONES EJERCICIOS ADICIONALES..- Considere la sucesión establecida por la relación

Más detalles

1) Considera la función f(x) = x2 + 1 para contestar las siguientes preguntas:

1) Considera la función f(x) = x2 + 1 para contestar las siguientes preguntas: LIMITE DE FUNCIONES Tema: Introducción a límite 1) Considera la función f(x) = x2 + 1 para contestar las siguientes preguntas: a) Cuál es el valor de la función si x = 2? b) Cuál es el valor de la función

Más detalles

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím

Más detalles

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0),

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0), NÚMEROS COMPLEJOS 1. Preliminares Definición. Se llama número complejo a todo par ordenado de números reales. Si z = (a, b) es un número complejo, se dice que a es la parte real de z y b es la parte imaginaria

Más detalles

TEMA 4: Sistemas de ecuaciones lineales II

TEMA 4: Sistemas de ecuaciones lineales II TEM 4: Sistemas de ecuaciones lineales II ) Teorema de Rouché-Frobenius. ) Sistemas de Cramer: regla de Cramer. 3) Sistemas homogeneos. 4) Eliminación de parámetros. 5) Métodos de factorización. 5) Métodos

Más detalles

2. Continuidad y derivabilidad. Aplicaciones

2. Continuidad y derivabilidad. Aplicaciones Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 7 2. Continuidad y derivabilidad. Aplicaciones Límite de una función en un punto Sea una función f(x) definida en el entorno de un punto

Más detalles

Klausur zur Vorlesung Funktionentheorie Sommersemester 2012. Mittwoch, 1.8.2012, 9:00 12:00 Uhr

Klausur zur Vorlesung Funktionentheorie Sommersemester 2012. Mittwoch, 1.8.2012, 9:00 12:00 Uhr UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Klausur zur Vorlesung Funktionentheorie Sommersemester 2012 Mittwoch, 1.8.2012, 9:00 12:00 Uhr Bienvenido

Más detalles

Anillo de polinomios con coeficientes en un cuerpo

Anillo de polinomios con coeficientes en un cuerpo Capítulo 2 Anillo de polinomios con coeficientes en un cuerpo En el conjunto Z se ha visto cómo la relación ser congruente módulo m para un entero m > 1, es compatible con las operaciones suma y producto.

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Sucesiones, Series y Series de Potencias. Departamento de Matemáticas. Convergencia. Resultados.

MA3002. Matemáticas Avanzadas para Ingeniería: Sucesiones, Series y Series de Potencias. Departamento de Matemáticas. Convergencia. Resultados. y y MA3002 y Una sucesión, representada matemáticamente como {z n }, es una función cuyo dominio son los enteros positivos (1, 2, 3, 4,...); en otras palabras, a cada entero n = 1, 2, 3... se le asigna

Más detalles

Números Complejos. Números naturales: útiles para contar cosas N={ 0, 1, 2, } Pero con ellos no podemos resolver la ecuación: X+5=2

Números Complejos. Números naturales: útiles para contar cosas N={ 0, 1, 2, } Pero con ellos no podemos resolver la ecuación: X+5=2 Números Complejos Números naturales: útiles para contar cosas N={ 0, 1, 2, } Pero con ellos no podemos resolver la ecuación: X+5=2 Números Complejos Entonces inventamos los números enteros: Z = { -2, -1,

Más detalles

Sucesiones y Suma Finita

Sucesiones y Suma Finita Sucesiones y Suma Finita Hermes Pantoja Carhuavilca Centro Pre-Universitario CEPRE-UNI Universidad Nacional de Ingeniería Algebra Hermes Pantoja Carhuavilca 1 de 21 CONTENIDO Convergencia de una sucesión

Más detalles

Estructuras Algebraicas

Estructuras Algebraicas Tema 1 Estructuras Algebraicas Definición 1 Sea A un conjunto no vacío Una operación binaria (u operación interna) en A es una aplicación : A A A Es decir, tenemos una regla que a cada par de elementos

Más detalles

Definición. 1. Se define la función logaritmo (neperiano ) por. ln x =

Definición. 1. Se define la función logaritmo (neperiano ) por. ln x = ANÁLISIS MATEMÁTICO BÁSICO. LAS FUNCIONES LOGARITMO Y EXPONENCIAL. A partir de la integral y el Teorema Fundamental del Cálculo podemos definir y demostrar las propiedades de las funciones logaritmo y

Más detalles

Unidad 2: Ecuaciones, inecuaciones y sistemas.

Unidad 2: Ecuaciones, inecuaciones y sistemas. Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.

Más detalles