Contenido. 1 Definiciones y propiedades. 2. Método de la potencia. 3. Método de la potencia inversa. 4. Método de la potencia inversa desplazada

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Contenido. 1 Definiciones y propiedades. 2. Método de la potencia. 3. Método de la potencia inversa. 4. Método de la potencia inversa desplazada"

Transcripción

1 ETS Minas: Métodos Matemáticos Resumen y ejemplos Tema 5: Valores y vectores propios Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Octubre 8 Versión 5 Contenido Definiciones y propiedades Método de la potencia 3 Método de la potencia inversa 4 Método de la potencia inversa desplazada Definiciones y propiedades Notaciones A matriz cuadrada n n v vector de dimensión n λ escalar Objetivo Buscar escalares λ y vectores no nulos v tales que Av λv ½ λ es valor propio de A En ese caso decimos v es vector propio asociado a λ También decimos que (λ v) es un par valor-vector propio de A Polinomio característico p(λ) det(a λi) Los valores propios de A son las raíces del polinomio característico λ valor propio p(λ)

2 Resumen y ejemplos Tema 5: Valores y vectores propios Cálculo de vectores propios Para cada valor propio λ resolvemos el sistema de ecuaciones lineales (A λi) v que debe ser un sistema compatible indeterminado Espectro radio espectral El espectro de una matriz es el conjunto de sus valores propios lo representamos por σ(a) {λ : λ es valor propio de A} El radio espectral de la matriz es el módulo máximo de sus valores propios lo representamos por ρ(a) max{ λ : λ es valor propio de A} Diagonalización Sea A una matriz n n SiA tiene n valores propios distintos λ λ n y v v n son vectores propios asociados entonces D V AV D es la matriz diagonal λ λ λ n V (v v v n ) tiene en columnas los vectores propios Ejemplo Dada la matriz A calcula (a) Valores propios Radio espectral (b) Vectores propios asociados (d) Diagonaliza la matriz A 3 3

3 Resumen y ejemplos Tema 5: Valores y vectores propios 3 (a) Valores propios Polinomio característico p(λ) A λi 3 λ λ 3 λ p(λ) (3 λ) ( λ) (3 λ) (3 λ) (3 λ)[(3 λ)( λ) ] (3 λ) (λ 5λ +4) {z } factorizamos λ 5λ +4 λ 5 ± 5 6 p(λ) (λ )(3 λ)(λ 4) Valores propios Soluciones de p(λ) ( λ λ 3 λ 3 4 El espectro de A es σ(a) { 3 4} El radio espectral de A es ρ(a) 4 (b) Cálculo de vectores propios Vectores propios asociados a λ Resolvemos Obtenemos ( a + a ) a (A I) v x y z x y x + y z y +z y z x + y z y +z x t y t z t t R ½ y z x + y z

4 Resumen y ejemplos Tema 5: Valores y vectores propios 4 Vectores propios asociados a λ v tv conv Vectores propios asociados a λ 3 ½ x y z y Vectores propios asociados a λ 3 (A 3I) v x y z v tv con v Vectores propios asociados a λ 4 Vectores propios x y x y z y z x t y z t t R (A 4I) v x y z ½ x + y y + z (c) Diagonalización Base de vectores propios ( a 3 a ) ( a ) v t v 3 con v 3 x t y t z t t R B (v v v 3 ) x y x y y z

5 Resumen y ejemplos Tema 5: Valores y vectores propios 5 Matriz de cambio Diagonalización donde V V D V AV /6 /3 /6 / / /3 /3 /3 Verificamos la diagonalización V AV V AV Ejemplo Cálculo de V por Gauss-Jordan Partimos de (V I 3 ) ( a a ) ( a ) (3 a a ) (3 a ) ( 3 a ) ( a ) ( a ) (3 a ) (3 a + a ) (3 a ) 3 3 3

6 Resumen y ejemplos Tema 5: Valores y vectores propios 6 a ( a ) 3 3 a (3 a ) ( a a 3 a ) ( a ) V /6 /3 /6 / / /3 /3 /3 / / /3 /3 /3 /6 /3 /6 / / /3 /3 /3 Método de la potencia Definiciones Valor propio dominante Es el valor propio de mayor módulo Si λ > λ > > λ n entonces λ es el valor propio dominante Vector normalizado Dado un vector v v v v n decimos que v j es una componente dominante si v j kvk Normalizamos un vector dividiéndolo por una componente dominante esto es si v dom es una componente dominante de v entonces el vector ˆv v v dom está normalizado Si un vector ˆv está normalizado se cumple kˆvk además ˆv tiene una componente dominante igual a Ejemplo Dado el vector v 4 determina una componente dominante y calcula un vector normalizado

7 Resumen y ejemplos Tema 5: Valores y vectores propios 7 Componente dominante v dom v 3 4 vemos que Vector normalizado ˆv v dom v v 3 kvk 4 4 /4 / /4 Observamos que la componente dominante el vector normalizado vale Método de la potencia Partimos de una matriz A de dimensión n n con valores propios λ > λ > > λ n y vectores propios asociados v v v n Supongamos que x () es un vector que se puede escribir x () α v + + α n v n con α 6 Método y (j+) Ax (j) c j+ componente dominante de y (j+) x (j+) c j+ y (j+) Normalizado de y (j+) Se cumple: La sucesión de escalares (c j ) tiende al valor propio dominante λ c c c j j λ La sucesión de vectores x (j) tiende a un vector propio normalizado asociado a λ x () x () x (j) j ˆv

8 Resumen y ejemplos Tema 5: Valores y vectores propios 8 Ejemplo Aproxima el valor propio dominante y un vector propio asociado de la matriz 3 A 3 Inicia las iteraciones con x () Fase Fase y () Ax () 3 3 c (componente dominante de y () ) x () y() y () Ax () Fase 3 x () 3 y (3) Ax () 3 3 c 3 / Fase 4 c x (3) y (4) Ax (3)

9 Resumen y ejemplos Tema 5: Valores y vectores propios 9 Fase 5 Fase 6 Fase 7 Fase 8 Fase 9 c x (4) y (4) 9767 c 4 y (5) Ax (4) c x (5) y (5) 994 c 5 y (6) Ax (5) c x (6) y (6) 9985 c 6 y (7) Ax (6) c x (7) y (7) 9996 c 7 y (8) Ax (7) c x (8) y (8) 9999 c 8 y (9) Ax (8)

10 Resumen y ejemplos Tema 5: Valores y vectores propios Fase c x (9) y (9) c 9 y () c 4 x () x (9) Vemos que la sucesión de componentes dominantes c j tiende al valor λ 4 por su parte la sucesión de vectores normalizados x (j) tiende al vector v En el ejemplo hemos visto que A tiene valores los propios λ 4 λ 3 λ 3 y que los vectores propios asociados a λ son de la forma v t tv esto es el método de la potencia ha determinado el valor propio dominante y un vector propio asociado normalizado 3 Método de la potencia inversa Objetivo Calcular el valor propio de módulo mínimo Esdecirsiλ λ λ n son los valores propios de A quecumplen λ > λ > > λ n > queremos calcular λ n Valores propios de la matriz inversa Veamos en primer lugar la relación entre los valores propios de una matriz y su inversa Sean (λ v) par valor-vector propio de A

11 Resumen y ejemplos Tema 5: Valores y vectores propios A invertible Entonces λ v es un par valor-vector propio de A Demostración Sabemos que se cumple Av λv premultiplicamos ambos miembros por la matriz inversa A (Av) A (λv) (A A)v λ(a v) Iv λ A v v λ A v Notemos que los valores propios de una matriz invertible son no nulos por lo tanto A v λ v Método Partimos de una A matriz n n invertible con valores propios λ > λ > > λ n > y vectores propios asociados v v n Sabemos que la matriz A tiene valores propios µ j λ j < < < es decir λ λ λ n µ < µ < < µ n con vectores propios asociados v v n Calculamos A y se cumple Aplicamos el método de la potencia a A y obtenemos el par µmax v ½ µmax valor propio dominante de A v vector propio asociado a µ max Si A admite un valor propio nulo se cumple Av λv ~ para un vector v no nulo Por o tanto el sistema Av ~ es compatible indeterminado es decir det A y A es no invertible

12 Resumen y ejemplos Tema 5: Valores y vectores propios 3 Entonces λ min es el valor propio de módulo mínimo de A µ max v vector propio asociado a λ max Ejemplo 3 Dada la matriz A µ (a) Calcula el valor propio de módulo mínimo y un vector propio asociado Toma como valor inicial µ x () (b) Verifica el resultado calculando los valores y vectores propios de A (a) Empezamos calculando la inversa de A A A µ µ 6 4 3/6 /3 8 3/ µ A Aplicamos el método de la potencia a A Fase µ x () Fase µ µ y () A x () µ Fase y () A x () c 666 x () µ y () c 486 µ µ 486 µ

13 Resumen y ejemplos Tema 5: Valores y vectores propios 3 Fase 3 Fase 4 Fase 5 Fase 6 Fase 7 Fase 8 c 738 µ x () 4839 y (3) A x () µ c x (3) µ y (3) c y (4) A x (3) µ c 4 56 x (4) µ y (4) c y (5) A x (4) µ c x (5) µ y (5) c y (6) A x (5) µ c 6 58 x (6) µ y (6) c y (7) A x (6) µ c 7 56 x (7) µ y (7) c µ y (8) A x (7) 5 5 c 8 5

14 Resumen y ejemplos Tema 5: Valores y vectores propios 4 Fase 9 x (8) c 8 y (8) y (9) A x (8) µ 5 µ 5 5 c 9 5 x (9) µ y (9) c 9 5 Podemos tomar el valor propio de módulo máximo de A µ max 5 y el vector propio asociado de µ max µ v 5 Ahora calculamos el valor propio de módulo mínimo de A el valor propio asociado a λ min es λ min µ max 5 v µ 5 (b)verificamos el resultado calculando los valores y vectores propios de A µ Polinomio característico p (λ) A λi 8 λ 4 6 λ ( 8 λ)(6 λ) + 48 λ 8λ + Valores propios p(λ) λ 8x + λ 8 ± ± 6 (

15 Resumen y ejemplos Tema 5: Valores y vectores propios 5 λ 6 λ Vemos que efectivamente el valor propio de módulo mínimo de A es λ min Vector propio asociado a λ min µ 4 4 ½ x +4y x +4y ½ (A I) v µ x y x t y t t R Los vectores propios son de la forma v tv con µ v si normalizamos obtenemos ˆv µ / µ ½ x +y x +y 4 Método de la potencia inversa desplazada Objetivo Aproximar un valor propio λ a partir de una estimación λ w λ Valores propios de B (A αi) Veamos la relación que existe entre los valores propios de una matriz A y de la matriz (A αi) Sea (λ v) par de valor-vector propio de A Entonces (λ α v) es par valor-vector propio de B (A αi) Demostración Sabemos que se cumple Av λv restamos αv de los dos miembros de la igualdad Av αv λv αv

16 Resumen y ejemplos Tema 5: Valores y vectores propios 6 aplicando las propiedades distributivas resulta (A αi) v (λ α) v Bv (λ α) v por lo tanto µ λ α es un valor propio de B con vector propio asociado v Fundamento del método Si λ está próximo al valor propio λ de A entonces B A λi tiene un valor propio δ λ λ con δ pequeño y podemos aplicar el método de la potencia inversa a B para determinar δ λ λ Empezamos con A matriz n n con valores propios λ > λ > > λ j > > λ n y vectores propios v v v n y supongamos que disponemos de una estimación inicial λ w λ j Calculamos B A λi que tiene un valor propio de módulo mínimo δ min λ j λ Calculamos B que tiene un valor propio dominante µ max δ min λ j λ y aplicamos el método de la potencia a B para obtener µ max yun vector propio asociado v 3 Entonces µ max λ j λ λ j µ max + λ Ejemplo 4 Dada la matriz A 3 3 obtener un valor propio próximo a λ 8 y un vector propio asociado Empieza las iteraciones con 5 x ()

17 Resumen y ejemplos Tema 5: Valores y vectores propios 7 Calculamos B A λi Calculamos B B B A λi Aplicamos el método de la potencia a B y determinamos µ max Fase 5 x () Fase y () B x () Fase x () c y () y () B x () x () c c

18 Resumen y ejemplos Tema 5: Valores y vectores propios 8 Fase 3 Fase 4 Fase 5 Fase 6 Fase 7 y (3) B x () c x (3) y (3) c y (4) B x (3) c x (4) y (4) c y (5) B x (4) c x (5) y (5) c y (6) B x (5) c x (6) y (6) c y (7) B x (6) c 7 5 x (7) y (7) c

19 Resumen y ejemplos Tema 5: Valores y vectores propios 9 Fase 8 y (8) B x (7) c 8 5 x (8) y (8) 84 6 c Hemos obtenido el valor propio de módulo máximo de B µ max 5 con el vector propio asociado v Ahora calculamos el valor propio de A próximo a λ 8 el vector propio asociado es λ µ max 5 v

Contenido. 1 Definiciones y propiedades. 2. Método de la potencia. 3. Método de la potencia inversa. 4. Método de la potencia inversa desplazada.

Contenido. 1 Definiciones y propiedades. 2. Método de la potencia. 3. Método de la potencia inversa. 4. Método de la potencia inversa desplazada. Métodos Numéricos: Resumen y ejemplos Tema 7: Valores y vectores propios Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Abril 9 Versión 7 Contenido

Más detalles

TEMA 11. Autovalores y autovectores. Diagonalización y formas canónicas.

TEMA 11. Autovalores y autovectores. Diagonalización y formas canónicas. TEMA 11 F MATEMÁTICOS TEMA 11 Autovalores y autovectores Diagonalización y formas canónicas 1 Introducción Definición 1 (Matrices semejantes) Sean A y B dos matrices cuadradas de orden n Decimos que A

Más detalles

Métodos Numéricos: Resumen y ejemplos Tema 5: Resolución aproximada de ecuaciones

Métodos Numéricos: Resumen y ejemplos Tema 5: Resolución aproximada de ecuaciones Métodos Numéricos: Resumen y ejemplos Tema 5: Resolución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Abril 009,

Más detalles

Matrices, determinantes, sistemas de ecuaciones lineales.

Matrices, determinantes, sistemas de ecuaciones lineales. UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Resúmenes Curso 2007-2008 Matrices, determinantes, sistemas de ecuaciones lineales. Una matriz A de orden m n es una colección de m

Más detalles

Diagonalización de matrices.

Diagonalización de matrices. Diagonalización de matrices. 1. Diagonalización de matrices. Definición 1.1 Sea A una matriz cuadrada,, decimos que es un autovalor de A si existe un vector no nulo tal que En esta situación decimos que

Más detalles

1 Aplicaciones lineales

1 Aplicaciones lineales UNIVERSIDAD POLITÉCNICA DE CARTAGENA Departamento de Matemática Aplicada y Estadística Aplicaciones lineales y diagonalización. El objetivo principal de este tema será la obtención de una matriz diagonal

Más detalles

Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3: Aplicaciones Tema 3.2 Determinación aproximada de extremos: Método de Newton-Raphson

Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3: Aplicaciones Tema 3.2 Determinación aproximada de extremos: Método de Newton-Raphson Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3: Aplicaciones Tema 3.2 Determinación aproximada de extremos: Método de Newton-Raphson Francisco Palacios Escuela Politécnica Superior de Ingeniería

Más detalles

Matriz sobre K = R o C de dimensión m n

Matriz sobre K = R o C de dimensión m n 2 Matrices y Determinantes 21 Matrices Matriz sobre K = R o C de dimensión m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Tipos de matrices: Cuadrada: n n = (a ij) i=1,,m j=1,,n Nula: (0) i,j 1 0

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Computación Numérica Sistemas Lineales / 8 Contenidos Introducción Métodos directos Gauss Gauss

Más detalles

ENDOMORFISMOS Y DIAGONALIZACIÓN.

ENDOMORFISMOS Y DIAGONALIZACIÓN. ENDOMORFISMOS Y DIAGONALIZACIÓN. En lo que resta de este tema, nos centraremos en un tipo especial de aplicaciones lineales: los endomorfismos. Definición: Endomorfismo. Se llama endomorfismo a una aplicación

Más detalles

Valores y Vectores Propios

Valores y Vectores Propios Valores y Vectores Propios Departamento de Matemáticas, CSI/ITESM de abril de 9 Índice 9.. Definiciones............................................... 9.. Determinación de los valores propios.................................

Más detalles

Ejercicios resueltos del capítulo 1

Ejercicios resueltos del capítulo 1 Ejercicios resueltos del capítulo Ejercicios impares resueltos..b Resolver por el método de Gauss el sistema x +x x +x 4 +x = x x +x 4 = x +x +x = x +x x 4 = F, ( ) F 4, () F, ( ) F, () 8 6 8 6 8 7 4 Como

Más detalles

λ = es simple se tiene que ( )

λ = es simple se tiene que ( ) Sección 6 Diagonalización 1- (enero 1-LE) Sea 1 1 = 1 1 a) Es diagonalizable la matriz? En caso afirmativo, calcula las matrices P y D tales que 1 P P = D b) Existe algún valor de a para el que ( 3, 6,

Más detalles

ARITMÉTICA Y ÁLGEBRA

ARITMÉTICA Y ÁLGEBRA ARITMÉTICA Y ÁLGEBRA 1.- Discutir el siguiente sistema, según los valores de λ: Resolverlo cuando tenga infinitas soluciones. Universidad de Andalucía SOLUCIÓN: Hay cuatro ecuaciones y tres incógnitas,

Más detalles

Tema 5: Diagonalización de matrices

Tema 5: Diagonalización de matrices Tema 5: Diagonalización de matrices La intención en este tema es dada una matriz cuadrada ver si existe otra matriz semejante a ella que sea diagonal Recordemos (ver Tema : Matrices determinantes y sistemas

Más detalles

Tema 5: Diagonalización de matrices

Tema 5: Diagonalización de matrices Tema 5: Diagonalización de matrices La intención en este tema es, dada una matriz cuadrada, ver si existe otra matriz semejante a ella que sea diagonal. Recordemos del Tema 4 que dos matrices cuadradas

Más detalles

Matrices. p ij = a ik b kj = a i1 b 1j + a i2 b 2j + + a in b nj.

Matrices. p ij = a ik b kj = a i1 b 1j + a i2 b 2j + + a in b nj. Matrices Introducción Una matriz de m filas y n columnas con elementos en el cuerpo K es un rectángulo de elementos de K (es decir, números) del tipo a a 2 a n a 2 a 22 a 2n A = (a ij ) = a m a m2 a mn

Más detalles

Tema 4 Álgebra Lineal Numérica

Tema 4 Álgebra Lineal Numérica Tema 4 Álgebra Lineal Numérica Departamento de Matemática Aplicada Universidad de Málaga Escuela Politécnica Superior Qué es un Sistema Lineal? Qué es un Sistema Lineal? Conocimientos previos Definiciones.

Más detalles

IES Francisco Ayala Modelo 1 (Septiembre) de 2007 Solución Germán Jesús Rubio Luna. Opción A

IES Francisco Ayala Modelo 1 (Septiembre) de 2007 Solución Germán Jesús Rubio Luna. Opción A IES Francisco Ayala Modelo (Septiembre) de 7 Germán Jesús Rubio Luna Opción A Ejercicio n de la opción A de septiembre, modelo de 7 3x+ Sea f: (,+ ) R la función definida por f(x)= x. [ 5 puntos] Determina

Más detalles

7. Forma de Lagrange para el polinomio interpolador. 9. Forma de Newton para el polinomio interpolador

7. Forma de Lagrange para el polinomio interpolador. 9. Forma de Newton para el polinomio interpolador Métodos Numéricos: Resumen y ejemplos Tema 2: Aproximación e interpolación Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Febrero 2008, Version

Más detalles

Autovalores y autovectores. Diagonalización y formas canónicas

Autovalores y autovectores. Diagonalización y formas canónicas Capítulo 4 Autovalores y autovectores Diagonalización y formas canónicas Dado un homomorfismo, nos hemos planteado el problema de elegir bases cualesquiera de manera que la matriz del homomorfismo sea

Más detalles

Operaciones con matrices

Operaciones con matrices Operaciones con matrices Problemas teóricos En todos los problemas de esta lista se supone que F es un campo (cuerpo). Si no conoce bien el concepto de campo, entonces puede pensar que F = R. Operaciones

Más detalles

Ejemplo 1. Ejemplo introductorio

Ejemplo 1. Ejemplo introductorio . -Jordan. Ejemplo 1. Ejemplo introductorio. -Jordan Dos especies de insectos se crían juntas en un recipiente de laboratorio. Todos los días se les proporcionan dos tipos de alimento A y B. 1 individuo

Más detalles

ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; (A ) = A. 2. La inversa de A 1 es A; (A 1 ) 1 = A. 3. (AB) = B A.

ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; (A ) = A. 2. La inversa de A 1 es A; (A 1 ) 1 = A. 3. (AB) = B A. ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; A = A. 2. La inversa de A 1 es A; A 1 1 = A. 3. AB = B A. 4. Las matrices A A y AA son simétricas. 5. AB 1 = B 1 A 1, si A y B son no singulares. 6. Los escalares

Más detalles

Tema 1: Matrices y Determinantes

Tema 1: Matrices y Determinantes Tema 1: Matrices y Determinantes September 14, 2009 1 Matrices Definición 11 Una matriz es un arreglo rectangular de números reales a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm Se dice que una matriz

Más detalles

Matrices, Determinantes y Sistemas de ecuaciones lineales

Matrices, Determinantes y Sistemas de ecuaciones lineales Tema 1 Matrices, Determinantes y Sistemas de ecuaciones lineales 1.1. Matrices Definición: Una MATRIZ es un conjunto de números reales dispuestos en forma de rectángulo, que usualmente se delimitan por

Más detalles

Espacios vectoriales con producto interior

Espacios vectoriales con producto interior Espacios vectoriales con producto interior Longitud, norma o módulo de vectores y distancias entre puntos Generalizando la fórmula pitagórica de la longitud de un vector de R 2 o de R 3, definimos la norma,

Más detalles

TEMA 3: Matrices y sistemas de ecuaciones lineales. Álgebra y estructuras finitas/discretas (Grupos A)

TEMA 3: Matrices y sistemas de ecuaciones lineales. Álgebra y estructuras finitas/discretas (Grupos A) TEMA 3: Matrices y sistemas de ecuaciones lineales Álgebra y estructuras finitas/discretas Grupos A Curso 2007-2008 1 2 1 Anillos y cuerpos Definición 1 Un anillo viene dado por un conjunto R y por dos

Más detalles

ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3

ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3 ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2. Transformaciones ortogonales (Curso 2010 2011) 1. Se considera el espacio vectorial euclídeo IR referido a una base ortonormal. Obtener la expresión

Más detalles

Examen de Junio de 2011 (Común) con soluciones (Modelo )

Examen de Junio de 2011 (Común) con soluciones (Modelo ) Opción A Junio 011 común ejercicio 1 opción A ['5 puntos] Se desea construir un depósito cilíndrico cerrado de área total igual a 54 m. Determina el radio de la base y la altura del cilindro para que éste

Más detalles

Matrices triangulares y matrices ortogonales

Matrices triangulares y matrices ortogonales Matrices triangulares y matrices ortogonales Problemas para examen Matrices diagonales 1. Sea a R n. Se denota por diag(a) la matriz diagonal con entradas a 1,..., a n : diag(a) = [ a j δ j,k ] n j,k=1.

Más detalles

Tema 5: Sistemas de Ecuaciones Lineales

Tema 5: Sistemas de Ecuaciones Lineales Tema 5: Sistemas de Ecuaciones Lineales Eva Ascarza-Mondragón Helio Catalán-Mogorrón Manuel Vega-Gordillo Índice 1 Definición 3 2 Solución de un sistema de ecuaciones lineales 4 21 Tipos de sistemas ecuaciones

Más detalles

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 3: Solución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los

Más detalles

Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 2: Recursos avanzados Tema 2.1 Resolución numérica de ecuaciones

Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 2: Recursos avanzados Tema 2.1 Resolución numérica de ecuaciones Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 2: Recursos avanzados Tema 2.1 Resolución numérica de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad

Más detalles

PROBLEMAS DE ÁLGEBRA II - 1ER CUATRIMESTRE HTTP://FISICAUNED.WORDPRESS.COM ÍNDICE

PROBLEMAS DE ÁLGEBRA II - 1ER CUATRIMESTRE HTTP://FISICAUNED.WORDPRESS.COM ÍNDICE PROBLEMAS DE ÁLGEBRA II - ER CUATRIMESTRE ÍNDICE Parte. Teoría básica Endomorfismos vectoriales con significado geométrico 3 Diagonalización de matrices 4 Matrices diagonalizables 5 Definiciones que aparecen

Más detalles

JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola.

JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola. Junio 00 (Prueba Específica) JUNIO 00 Opción A.- Dada la parábola y 3 área máima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola., y la recta y 9, hallar las dimensiones

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás 6 de julio de 2016 2 Índice general 1. Álgebra 5 1.1. Año 2000............................. 5 1.2. Año 2001.............................

Más detalles

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad y Laterales Curso Propedéutico de Cálculo Sesión 2: y Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico y Esquema Laterales 1 Laterales 2 y Esquema Laterales

Más detalles

Sistemas de Ecuaciones Lineales

Sistemas de Ecuaciones Lineales Sistemas de Ecuaciones Lineales 1 Sistemas de ecuaciones y matrices Definición 1 Una ecuación lineal en las variables x 1, x 2,..., x n es una ecuación de la forma con a 1, a 2... y b números reales. a

Más detalles

λ autovalor / valor propio v autovector / vector propio

λ autovalor / valor propio v autovector / vector propio 1. INTRODUCCIÓN Problema estándar Problema generalizado CÁLCULO DE AUTOVALORES λ autovalor / valor propio v autovector / vector propio Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada

Más detalles

Álgebra Lineal, Ejercicios

Álgebra Lineal, Ejercicios Álgebra Lineal, Ejercicios MATRICES 1 Se llama traza de una matriz cuadrada a la suma de los elementos de su diagonal principal Sea G el conjunto de todas las matrices cuadradas de orden n con traza nula

Más detalles

Definición de la matriz inversa

Definición de la matriz inversa Definición de la matriz inversa Ejercicios Objetivos Aprender la definición de la matriz inversa Requisitos Multiplicación de matrices, matriz identidad, habilidades básicas de resolver sistemas de ecuaciones

Más detalles

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 3 Especifico) Solucíon Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 3 Especifico) Solucíon Germán-Jesús Rubio Luna. Opción A Opción A Ejercicio opción A, modelo 3 Septiembre 03 específico x Sea f la función definida por f(x) = para x > 0, x (donde ln denota el logaritmo neperiano) ln(x) [ 5 puntos] Estudia y determina las asíntotas

Más detalles

E.T.S. Minas: Métodos Matemáticos Ejercicios Tema 2 Aproximación e interpolación

E.T.S. Minas: Métodos Matemáticos Ejercicios Tema 2 Aproximación e interpolación E.T.S. Minas: Métodos Matemáticos Ejercicios Tema 2 Aproximación e interpolación Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Curso 2006/07

Más detalles

Matrices y determinantes

Matrices y determinantes Matrices y determinantes 1 Ejemplo Cuál es el tamaño de las siguientes matrices? Cuál es el elemento a 21, b 23, c 42? 2 Tipos de matrices Matriz renglón o vector renglón Matriz columna o vector columna

Más detalles

Conjuntos y matrices. Sistemas de ecuaciones lineales

Conjuntos y matrices. Sistemas de ecuaciones lineales 1 Conjuntos y matrices Sistemas de ecuaciones lineales 11 Matrices Nuestro objetivo consiste en estudiar sistemas de ecuaciones del tipo: a 11 x 1 ++ a 1m x m = b 1 a n1 x 1 ++ a nm x m = b n Una solución

Más detalles

Una matriz es una arreglo rectangular ordenado de elementos, comúnmente llamados escalares, dispuestos en m renglones y n columnas.

Una matriz es una arreglo rectangular ordenado de elementos, comúnmente llamados escalares, dispuestos en m renglones y n columnas. MATRICES Las matrices tienen una importancia fundamental en el análisis económico sobre todo en el estudio de sistemas de ecuaciones lineales, como en el modelo insumo-producto. Cuando trabajamos con modelos

Más detalles

Matemáticas Febrero 2013 Modelo A

Matemáticas Febrero 2013 Modelo A Matemáticas Febrero 0 Modelo A. Calcular el rango de 0 0 0. 0 a) b) c). Cuál es el cociente de dividir P(x) = x x + 9 entre Q(x) = x +? a) x x + x 6. b) x + x + x + 6. c) x x + 5x 0.. Diga cuál de las

Más detalles

Forma canónica de Jordan. Ejemplos 2 2 y 3 3

Forma canónica de Jordan. Ejemplos 2 2 y 3 3 Forma canónica de Jordan. Ejemplos 2 2 y 3 3 GAL2 IMERL 26 de agosto de 2010 forma canónica de Jordan forma canónica de Jordan repaso (forma canónica de Jordan) forma canónica de Jordan forma canónica

Más detalles

EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES

EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES DETERMINANTES Y SISTEMAS DE ECUACIONES JUNIO 06/07. a) Calcula el rango de la matriz A según los valores del parámetro a 3 a A = 4 6 8 3 6 9 b)

Más detalles

BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES.

BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. Matrices: Se llama matriz de dimensión m n a un conjunto de números reales dispuestos en m filas y n columnas de la siguiente forma: 11 a 12 a 13... a 1n A= a a 21

Más detalles

Seno y coseno de una matriz

Seno y coseno de una matriz Miscelánea Matemática 5 (200 29 40 SMM Seno y coseno de una matriz Rafael Prieto Curiel Instituto Tecnológico Autónomo de México ITAM rafaelprietocuriel@yahoocom Introducción En muchas áreas de las matemáticas

Más detalles

P. A. U. LAS PALMAS 2005

P. A. U. LAS PALMAS 2005 P. A. U. LAS PALMAS 2005 OPCIÓN A: J U N I O 2005 1. Hallar el área encerrada por la gráfica de la función f(x) = x 3 4x 2 + 5x 2 y la rectas y = 0, x = 1 y x = 3. x 3 4x 2 + 5x 2 es una función polinómica

Más detalles

Ejercicios de Matrices, determinantes y sistemas de ecuaciones lineales. Álgebra 2008

Ejercicios de Matrices, determinantes y sistemas de ecuaciones lineales. Álgebra 2008 Ejercicios de Matrices, determinantes sistemas de ecuaciones lineales. Álgebra 8 - Dado el sistema de ecuaciones lineales 5 (a) ['5 puntos] Clasifícalo según los valores del parámetro λ. (b) [ punto] Resuélvelo

Más detalles

Ecuaciones matriciales AX = B y XA = B. Cálculo de la matriz inversa

Ecuaciones matriciales AX = B y XA = B. Cálculo de la matriz inversa Ecuaciones matriciales AX = B y XA = B Cálculo de la matriz inversa Objetivos Aprender a resolver ecuaciones matriciales de la forma AX = B y XA = B Aprender a calcular la matriz inversa con la eliminación

Más detalles

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 2 ) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 2 ) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala de Granada Septiembre de 01 (Modelo ) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Septiembre 01 ['5 puntos] Un alambre de 10 metros de longitud se divide en dos trozos.

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Este tema resulta fundamental en la mayoría de las disciplinas, ya que son muchos los problemas científicos y de la vida cotidiana que requieren resolver simultáneamente

Más detalles

cuadrada de 3 filas y tres columnas cuyo determinante vale 2.

cuadrada de 3 filas y tres columnas cuyo determinante vale 2. PROBLEMAS DE SELECTIVIDAD. BLOQUE ÁLGEBRA MATEMÁTICAS II 0 2 0. Se dan las matrices A, I y M, donde M es una matriz de dos 3 0 filas y dos columnas que verifica M 2 = M. Obtener razonadamente: a) Todos

Más detalles

MENORES, COFACTORES Y DETERMINANTES

MENORES, COFACTORES Y DETERMINANTES MENORES, COFACTORES Y DETERMINANTES 1. Introducción. 2. Determinante de una matriz de 3 x 3. 3. Menores y cofactores. 4. Determinante de una matriz de n x n. 5. Matriz triangular. 6. Determinante de una

Más detalles

Lección 1. Algoritmos y conceptos básicos.

Lección 1. Algoritmos y conceptos básicos. Página 1 de 8 Lección 1. Algoritmos y conceptos básicos. Objetivos. La primera lección del curs está dedicada a repasar los conceptos y algoritmos del álgebra lineal, básicos para el estudio de la geometría

Más detalles

Definición de la matriz inversa

Definición de la matriz inversa Definición de la matriz inversa Objetivos Aprender la definición de la matriz inversa Requisitos Multiplicación de matrices, habilidades básicas de resolver sistemas de ecuaciones Ejemplo El número real

Más detalles

Capitulo 6. Matrices y determinantes

Capitulo 6. Matrices y determinantes Capitulo 6. Matrices y determinantes Objetivo. El alumno aplicará los conceptos fundamentales de las matrices, determinantes y sus propiedades a problemas que requieran de ellos para su resolución. Contenido.

Más detalles

Universidad de Jaén Departamento de Matemáticas Ingeniería Técnica en Informática de Gestión.

Universidad de Jaén Departamento de Matemáticas Ingeniería Técnica en Informática de Gestión. Universidad de Jaén Departamento de Matemáticas Ingeniería Técnica en Informática de Gestión. Algebra I I Relación de problemas 3. Espacios vectoriales. 1.-Estudiar si los siguientes conjuntos forman o

Más detalles

2.4 ECUACIONES DE EIGENVALORES (2.4_AL_T_062, Revisión: 15-10-06)

2.4 ECUACIONES DE EIGENVALORES (2.4_AL_T_062, Revisión: 15-10-06) .4 ECUACIONES DE EIGENVALORES (.4_AL 06, Revisión: 5-0-06) Consideremos la multiplicación de una matriz por un vector, i.e.: y = Ax ; en D esto es y x = y x A transforma x y, esto es, un punto en D a otro

Más detalles

Tema 3 Resolución de Sistemas deecuaciones Lineales

Tema 3 Resolución de Sistemas deecuaciones Lineales Tema 3 Resolución de Sistemas de Ecuaciones Lineales E.T.S.I. Informática Indice 1 Introducción 2 Resolución de Sistemas Triangulares Triangulación por el Método de Gauss Variante de Gauss-Jordan Comentarios

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Lineal Ma1010 Departamento de Matemáticas ITESM Álgebra Lineal - p. 1/16 En esta lectura veremos el proceso para obtener la factorización QR de una matriz. Esta factorización es utilizada para

Más detalles

Práctica 2 Métodos de búsqueda para funciones de una variable

Práctica 2 Métodos de búsqueda para funciones de una variable Práctica 2 Métodos de búsqueda para funciones de una variable Introducción Definición 1. Una función real f se dice que es fuertemente cuasiconvexa en el intervalo (a, b) si para cada par de puntos x 1,

Más detalles

Conjunto R n y operaciones lineales en R n

Conjunto R n y operaciones lineales en R n Conjunto R n y operaciones lineales en R n Objetivos. Definir el conjunto R n y operaciones lineales en R n, estudiar propiedades de las últimas. Requisitos. Conjunto de los números reales R, propiedades

Más detalles

BLOQUE 1 : ÁLGEBRA. EJERCICIO 1 Resuelve la ecuación : EJERCICIO 4 Dado el sistema de ecuaciones :

BLOQUE 1 : ÁLGEBRA. EJERCICIO 1 Resuelve la ecuación : EJERCICIO 4 Dado el sistema de ecuaciones : EJERCICIO 1 Resuelve la ecuación : BLOQUE 1 : ÁLGEBRA = 0 EJERCICIO 2 Dado el sistema de ecuaciones : a) Discutirlo según los distintos valores de k. b) Resolverlo en los casos en que sea posible. EJERCICIO

Más detalles

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +...

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 x 1 + a 0 Siendo a n, a n -1... a 1, a o números,

Más detalles

Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones.

Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones. Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones. 0.. Concepto de derivada. Definición. Sea f : S R R, a (b, c) S. Decimos que f es derivable en a si existe: f(x) f(a)

Más detalles

UNIVERSIDAD CARLOS III DE MADRID

UNIVERSIDAD CARLOS III DE MADRID UNIVERSIDAD CARLOS III DE MADRID Departamento de Economía Tema 1: Matrices y sistemas de ecuaciones lineales Empezaremos por recordar conceptos ya conocidos de álgebra lineal como las matrices, determinantes,

Más detalles

Introducción a los espacios vectoriales

Introducción a los espacios vectoriales 1 / 64 Introducción a los espacios vectoriales Pablo Olaso Redondo Informática Universidad Francisco de Vitoria November 19, 2015 2 / 64 Espacios vectoriales 1 Las 10 propiedades de un espacio vectorial

Más detalles

CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES

CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES Parte A: determinantes. A.1- Definición. Por simplificar, consideraremos que a cada matriz cuadrada se le asocia un número llamado determinante que se

Más detalles

Resolución. Resolución gráfica de problemas de optimización

Resolución. Resolución gráfica de problemas de optimización Resolución de problemas de optimización Para resolver mente un problema de optimización como éste empezamos representando sus restricciones con igualdad. (0, 4) (0, 4) (4, 0) Para resolver mente un problema

Más detalles

TEMA 4: RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES.

TEMA 4: RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES. TEMA 4 Ejercicios / 1 TEMA 4: RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES. 1. Tenemos un sistema homogéneo de 5 ecuaciones y 3 incógnitas: a. Es posible que sea incompatible?. Por qué? b. Es posible

Más detalles

Tema 4.- Espacios vectoriales. Transformaciones lineales.

Tema 4.- Espacios vectoriales. Transformaciones lineales. Ingeniería Civil Matemáticas I -3 Departamento de Matemática Aplicada II Escuela Superior de Ingenieros Universidad de Sevilla Tema 4- Espacios vectoriales Transformaciones lineales 4- Espacios y subespacios

Más detalles

IES Fco Ayala de Granada (Modelo 2 del 2012) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada (Modelo 2 del 2012) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada (Modelo del 01) Soluciones Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO 011-01 Opción A Ejercicio 1, Opción A, Modelo de 01 Sea la

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas real de con Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura real de con Índice real de con real de con.

Más detalles

CÁLCULO DIFERENCIAL Muestras de examen

CÁLCULO DIFERENCIAL Muestras de examen CÁLCULO DIFERENCIAL Muestras de examen Febrero 2012 T1. [2] Demostrar que la imagen continua de un conjunto compacto es compacto. T2. [2.5] Definir la diferencial de una función en un punto y demostrar

Más detalles

1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO

1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO 1 1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO Muchos de los fenómenos que se investigan en la geometría utilizan nociones como las de longitud de un vector y ángulo entre vectores. Para introducir estos dos

Más detalles

Matrices escalonadas y escalonadas reducidas

Matrices escalonadas y escalonadas reducidas Matrices escalonadas y escalonadas reducidas Objetivos. Estudiar las definiciones formales de matrices escalonadas y escalonadas reducidas. Comprender qué importancia tienen estas matrices para resolver

Más detalles

Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico.

Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. Tema 1: Matrices El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. 1. Terminología Comenzamos con la definición de matriz

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN

INSTRUCCIONES GENERALES Y VALORACIÓN UNIVERSIDADES P ÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO 215-216 MATERIA: MATEMÁTICAS II MODELO INSTRUCCIONES GENERALES Y VALORACIÓN Después

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 1 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250)

ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250) Universidad Central de Venezuela Facultad de Ingeniería Ciclo Básico Departamento de Matemática Aplicada ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250) Semestre 1-2011 Mayo 2011 Álgebra Lineal y Geometría

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de innovación didáctica Departamento de Matemáticas Universidad de Extremadura Índice Puntos y vectores en En R 3, conviene distinguir

Más detalles

TEMA 4: Espacios y subespacios vectoriales

TEMA 4: Espacios y subespacios vectoriales TEMA 4: Espacios y subespacios vectoriales 1. Espacios vectoriales Sea K un cuerpo. Denominaremos a los elementos de K escalares. Definición 1. Un espacio vectorial sobre K es un conjunto V cuyos elementos

Más detalles

TEMA 4: DERIVADAS. En símbolos, la pendiente de la curva en P = lim Q P (pendiente de P Q).

TEMA 4: DERIVADAS. En símbolos, la pendiente de la curva en P = lim Q P (pendiente de P Q). TEMA 4: DERIVADAS 1. La derivada de una función. Reglas de derivación 1.1. La pendiente de una curva. La pendiente de una curva en un punto P es una medida de la inclinación de la curva en ese punto. Si

Más detalles

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 Matrices y determinantes (Curso 2011 2012) 2. Sea A una matriz diagonal n n y supongamos que todos los elementos de su diagonal son distintos entre sí.

Más detalles

Valores propios y vectores propios

Valores propios y vectores propios Capítulo 6 Valores propios y vectores propios En este capítulo investigaremos qué propiedades son intrínsecas a una matriz, o su aplicación lineal asociada. Como veremos, el hecho de que existen muchas

Más detalles

PASO 1: Poner el problema en forma estandar.

PASO 1: Poner el problema en forma estandar. MÉTODO DEL SIMPLEX PASO Poner el problema en forma estandar: La función objetivo se minimiza y las restricciones son de igualdad PASO 2 Encontrar una solución básica factible SBF PASO 3 Testar la optimalidad

Más detalles

Álgebra lineal y geometría para la ingeniería. María Isabel García Planas

Álgebra lineal y geometría para la ingeniería. María Isabel García Planas Álgebra lineal y geometría para la ingeniería María Isabel García Planas Primera edición: Enero 011 Editor: la autora ISBN: 978-84-614-8386-0 Depósito legal: B-135-011 c M ā Isabel García Planas, Está

Más detalles

2. Ortogonalidad. En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U.

2. Ortogonalidad. En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U. 2 Ortogonalidad En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U 1 Vectores ortogonales Definición 11 Dos vectores x, ȳ U se dicen ortogonales si: x ȳ = 0 Veamos algunas propiedades

Más detalles

Curso de Álgebra Lineal

Curso de Álgebra Lineal Curso de Álgebra Lineal 1. NÚMEROS COMPLEJOS 1.1 Definición, origen y operaciones fundamentales con números complejos Definición. Un número complejo, z, es una pareja ordenada (a, b) de números reales

Más detalles

TEMA 2: MATRICES. 2.2.1 Operaciones elementales y matrices elementales. 2.2.2 Proceso de escalonamiento de una matriz no nula.

TEMA 2: MATRICES. 2.2.1 Operaciones elementales y matrices elementales. 2.2.2 Proceso de escalonamiento de una matriz no nula. TEMA 2: MATRICES 21 Generalidades sobre matrices 211 Definición de matriz Tipos de matrices 212 Operaciones algebraicas con matrices 213 Matriz traspuesta y traspuesta-conjugada 214 Submatrices 22 Proceso

Más detalles

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Sobrantes de 011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 4 del 011 [ 5 puntos] Queremos hacer junto a la carretera un cercado rectangular

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Página 74 Determinantes de orden 2 Resuelve cada uno de los siguientes sistemas de ecuaciones y calcula el determinante de la matriz de los coeficientes:

Más detalles

EJERCICIOS RESUELTOS DE INECUACIONES. Juan Jesús Pascual. Inecuaciones

EJERCICIOS RESUELTOS DE INECUACIONES. Juan Jesús Pascual. Inecuaciones MATEMÁTICAS EJERCICIOS RESUELTOS DE INECUACIONES Juan Jesús Pascual Inecuaciones Índice ejercicios resueltos A. Inecuaciones lineales con una incógnita B. Inecuaciones de segundo grado con una incógnita

Más detalles