Ejercicio 1 Dada la matriz A = 1. Calcula los valores propios. 2. Determina una base de vectores propios. 3. Diagonaliza la matriz.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ejercicio 1 Dada la matriz A = 1. Calcula los valores propios. 2. Determina una base de vectores propios. 3. Diagonaliza la matriz."

Transcripción

1 Métodos Numéricos: soluciones Tema 7: Valores y vectores propios Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Mayo 8 Versión. Ejercicio Dada la matriz A µ.. Calcula los valores propios.. Determina una base de vectores propios. 3. Diagonaliza la matriz. 4. Verifica los resultados con Maple.. Valores propios. Calculamos el polinomio característico p(λ) A λi λ λ p(λ) λ λ 3. la ecuación característica p(λ) λ λ 3 Obtenemos λ λ 3. El espectro de A es σ(a) { 3}.. Base de vectores propios. Vectores propios asociados a λ. (A + I) v ~ µ µ µ x y ½ ½ x +y x + y x +y x + y ½ x t y t t R.

2 Soluciones a los ejercicios: Valores y vectores propios Vectores propios µ v tv t µ v.. Vectores propios asociados a λ 3. (A 3I) v ~ µ µ µ x y ½ x +y x + y x y vectores propios Base de vectores propios 3. Diagonalización V µ v tv t µ ½ x t y t µ v V {v v }. D V AV. V. µ t R D µ µ µ µ µ 3 3 µ µ. 6 3 Ejercicio Consideramos la matriz µ a a A. a a. Demuestraqueelpolinomiocaracterísticoes p(λ) λ traza(a) λ +det(a).. Demuestra que A tiene dos valores propios reales distintos si y sólo si [traza(a)] > 4det(A). Recuerdaquelatrazadeunamatrizeslasumadeloselementosdela diagonal.

3 Soluciones a los ejercicios: Valores y vectores propios 3. p(λ) det(a λi) a λ a a λ a (a λ)(a λ) a a λ (a + a ) λ + a a a a λ traza(a) λ +det(a).. La ecuación tiene soluciones λ traza (A) λ +det(a) q traza (A) ± [traza (A)] 4det(A) λ tendremos dos soluciones reales si [traza (A)] 4det(A) >. Ejercicio 3 Consideramos al matriz µ 5 8 A 6 6. Determina el número de valores propios reales de A usando la traza y el determinante... Calcula el polinomio característicos y el espectro. 3. Determina un base de vectores propios y diagonaliza A. 4. Verifica los resultados con Maple.. polinomio característico traza (A) det (A) 8 p (λ) λ λ +8 [traza (A)] 4det(A) 9 > tenemos dos valores propios reales.. Cálculo de los valores propios p (λ) λ λ +8.

4 Soluciones a los ejercicios: Valores y vectores propios 4 λ ± ( Espectro σ (A) {4 7}. Radio espectral ρ (A) Vectores propios 3.. Vectores propios asociados a λ 4. (A 4I) v ~ µ µ µ 9 8 x 6 y ½ 9x +8y 6x +y x +y. ½ x t y t t R. Vectores propios µ µ v t v 3.. Vectores propios asociados a λ 7. (A 7I) v ~ µ 8. µ µ x 6 9 y ½ ½ x +8y x +3y 6x +9y x +3y ( x t y 3t t R. Vectores propios µ µ 3 v t tomamos v /3. Diagonalización Matriz de cambio D D V AV. µ 3 V V µ 3 µ µ µ µ µ µ

5 Soluciones a los ejercicios: Valores y vectores propios 5 Ejercicio 4 Dada la matriz A. Calcula los valores propios Determina una base de vectores propios. 3. Diagonaliza la matriz. 4. Verifica los resultados con Maple.. Valores propios Polinomio característico p (λ) A λi 3 λ λ λ ( a col. + a col) ( a col.) Sacamos factor ( λ) de a columna ( λ) λ 6 λ 5 λ λ 6 5 λ λ ( λ)[(5 λ)( 8 λ)+3++( 8 λ)] ( λ) 4 5λ +8λ + λ +5 6 λ ( λ) λ + λ 6 {z } factorizamos λ ± 5 λ + λ 6 ( p (λ) ( λ)(λ ) (λ +3) espectro σ (A) { 3 }.. Base de vectores propios... Vectores propios asociados a λ 3. (A +3I) v ~

6 Soluciones a los ejercicios: Valores y vectores propios 6 Reducimos por filas (3 a ) ( a ) ( a ) (3 a ) x y z ( a + a ) ( a ) (3 a 3 a ) (3 a ) ½ x y z y x t y z t t R. Vector propio asociado v. Vectores propios asociados a λ (A I) v ~ x y z Reducimos por filas a ( a ) 4 a ( a ) ( a + a ) ( a ) (3 a +5 a ) (3 a ) ½ x y 6z z Vector propio asociado v.3 Vectores propios asociados a λ x t y t z t R.

7 Soluciones a los ejercicios: Valores y vectores propios 7 Reducimos filas ( a +4 a ) ( a ) (3 a 5 a ) (3 a ) 5 a ( a ) (3 a + a ) (3 a ) (A I) v x y z ½ x y 6z y +4z x y +6z 8t +6t t y 4t z t t R. Vectores propios asociados v t 4 t R tomamos Base de vectores propios 3. Diagonalización Matriz de cambio v 3 Inversa por Gauss-Jordan 4 (3 a a ) (3 a ) 4 V {v v v 3 }. D V AV. V 4 4 3

8 Soluciones a los ejercicios: Valores y vectores propios 8 Inversa 4 (3 a + a ) (3 a ) ( a 3 a ) ( a ) ( a 4 3 a ) ( a ) ( a a ) ( a ) V Diagonalizamos D V AV Ver Resolución con Maple Ejercicio 5 Dada la matriz A 4. Calcula los valores propios.. Determina una base de vectores propios. 3. Diagonaliza la matriz. 4. Verifica los resultados con Maple. 4. Valores propios Polinomio característico p (λ) A λi λ 4 λ λ

9 Soluciones a los ejercicios: Valores y vectores propios 9 p (λ) ( λ) (4 λ) ( λ) ( λ) ( λ)[( λ)(4 λ) 4] ( λ) λ 5λ λ ( λ)(λ 5) espectro σ (A) { 5}.. Base de vectores propios.. Vectores propios asociados a λ. Av ~ 4 x y z Reducimos por filas ( a + a ) ( a ) a ( a ) 3 a + a (3 a ) ½ x y y z x t y t z t t R. Vector propio asociado v. Vectores propios asociados a λ. (A I) v ~ 3 x y z ½ ½ x +3y z x + z y y x t y z t t R. Vector propio asociado v

10 Soluciones a los ejercicios: Valores y vectores propios.3 Vectores propios asociados a λ 3 5. (A 5I) v 4 x y 4 z Reducimos filas ( a ) ( a ) ( a ) ( a 4 ) 4 ( a + a ) ( a 4 ) 4 ½ x + y +z y +4z x ( y z) (4t t) t y 4t z t t R. Vectores propios asociados v t 4 t R tomamos Base de vectores propios 3. Diagonalización Matriz de cambio Inversa v 3 4 V {v v v 3 }. D V AV. V V 5

11 Soluciones a los ejercicios: Valores y vectores propios Diagonalizamos D V AV Ver Resolución con Maple. Ejercicio 6 Dada la matriz 5 5 A queremos determinar el valor propio dominante usando el método de la potencia a partir del vector x (). Haz las 4 primeras iteraciones de forma manual.. Escribe un programa Maple que permita aplicar el método de la potencia. Verifica su funcionamiento con el valor de las iteraciones calculadas manualmente. 3. Aproxima el valor propio dominante con 5 decimales. Determina un vector propio asociado.. Iteraciones manuales. x () Fase. y () Ax () x () 5 c

12 Soluciones a los ejercicios: Valores y vectores propios Fase. y () Ax () Fase 3. y (3) Ax () Fase 4. x ().8 x (3) y (4) Ax (3) x (4) c c c Para el resto de los apartados ver Resolución con Maple. Valor propio dominante λ Ejercicio 7 Sea A una matriz de dimensiones n n con espectro entonces se cumple. λ + λ + + λ n traza(a). λ λ λ n det(a). σ(a) {λ λ...λ n } Usando estas propiedades y los resultados del ejercicio anterior determina el espectro de 4 4 A 5 3 Verifica los resultados con Maple.

13 Soluciones a los ejercicios: Valores y vectores propios 3 Tenemos traza(a) 4+3+ det(a) 36 y las relaciones ½ λ + λ + λ 3 λ λ λ 3 36 en el ejercicio anterior hemos obtenido el valor propio λ 6 entonces ½ λ + λ +6 λ λ 636 ½ λ + λ 5 λ λ 6 Despejamos en la primera ecuación y sustituimos en la segunda ½ λ 5 λ λ (5 λ )6 la ecuación de segundo grado λ 5λ +6 y obtenemos λ 5 ± 5 4 que produce las soluciones ½ 5+ λ 3 λ y λ λ 3. por lo tanto el espectro de A es Ejercicio 8 Consideramos la matriz σ (A) { 3 6}. A Determina el valor propio dominante usando el método de la potencia.. Determina el valor propio de módulo mínimo usando el método de la potencia inversa. 3. Usando la traza y el determinante calcula el espectro de A. 4. Verifica los resultados con Maple.

14 Soluciones a los ejercicios: Valores y vectores propios 4 El valor propio dominante es y el valor propio de módulo mínimo es λ λ.969. Calculamos la traza traza (A). Para el determinante simplificamos previamente operando por filas obtenemos las ecuaciones ½ λ3 + λ λ 3 λ 4 6 ½ λ3 + λ λ 3 λ λ λ Ejercicio 9 Consideramos la matriz 4 4 A 5 3 que tiene un valor propio próximo a λ 3... Calcula dicho valor propio y un vector propio asociado usando el método de la potencia desplazada. Inicia las iteraciones con el vector x () 5. Verifica el resultado con Maple. Se obtiene el valor propio λ 3. Ver Resolución con Maple.

15 Soluciones a los ejercicios: Valores y vectores propios 5 Ejercicio Determina una matriz A con espectro λ.3 λ 5.67 λ y que tenga como vectores propios asociados v.3.4 v v Tenemos la relación donde y Obtenemos la inversa de V es V D V AV D V A VDV por lo tanto la matriz buscada es A Para los Ejercicios y3 ver Resolución con Maple. Ejercicio Usando el método de la potencia determina el valor propio dominante y un valor propio asociado para la matriz obtenida en el Ejercicio. Ejercicio Usando el método de la potencia inversa determina el valor propiodemódulomínimoyunvalorpropioasociadoparalamatrizobtenidaenel Ejercicio. Ejercicio 3 Aplicaelmétododelapotenciadesplazadaconλ 5. ala matriz obtenida en el Ejercicio.

E.T.S. Minas: Métodos Matemáticos Ejercicios Tema 4 Métodos iterativos para sistemas de ecuaciones

E.T.S. Minas: Métodos Matemáticos Ejercicios Tema 4 Métodos iterativos para sistemas de ecuaciones ETS Minas: Métodos Matemáticos Ejercicios Tema Métodos iterativos para sistemas de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

Métodos Numéricos: Ejercicios resueltos

Métodos Numéricos: Ejercicios resueltos Métodos Numéricos: Ejercicios resueltos Tema 6: Resolución aproximada de sistemas de ecuaciones lineales Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica

Más detalles

Métodos Numéricos: Guía de estudio Tema 7 Valores y vectores propios

Métodos Numéricos: Guía de estudio Tema 7 Valores y vectores propios Métodos Numéricos: Guía de estudio Tema 7 Valores y vectores propios Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Abril 2009, versión 1.1

Más detalles

VALORES Y VECTORES PROPIOS

VALORES Y VECTORES PROPIOS VALORES Y VECTORES PROPIOS En diversos campos de la ingeniería y las matemáticas surge el problema de calcular los valores escalares λ y los vectores x 0 tales que para la matriz cuadrada A se cumple Ax

Más detalles

Tema 6: Resolución aproximada de sistemas de ecuaciones lineales

Tema 6: Resolución aproximada de sistemas de ecuaciones lineales Métodos Numéricos: Resumen y ejemplos Tema 6: Resolución aproximada de sistemas de ecuaciones lineales Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de

Más detalles

Contenido. 1 Definiciones y propiedades. 2. Método de la potencia. 3. Método de la potencia inversa. 4. Método de la potencia inversa desplazada

Contenido. 1 Definiciones y propiedades. 2. Método de la potencia. 3. Método de la potencia inversa. 4. Método de la potencia inversa desplazada ETS Minas: Métodos Matemáticos Resumen y ejemplos Tema 5: Valores y vectores propios Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Octubre

Más detalles

ÁLGEBRA LINEAL. EXAMEN FINAL 18 de Enero de b) (0, 5 puntos) Estudia si la siguiente afirmación es verdadera o falsa, justificando

ÁLGEBRA LINEAL. EXAMEN FINAL 18 de Enero de b) (0, 5 puntos) Estudia si la siguiente afirmación es verdadera o falsa, justificando ÁLGEBRA LINEAL EXAMEN FINAL 8 de Enero de Apellidos y Nombre: Duración del examen: 3 horas Publicación de notas: enero Revisión de Examen: feb Ejercicio. ( puntos a (, puntos Estudia si la siguiente afirmación

Más detalles

Parte 3. Vectores y valores propios

Parte 3. Vectores y valores propios Parte 3. Vectores y valores propios Gustavo Montero Escuela Universitaria Politécnica Universidad de Las Palmas de Gran Canaria Curso 2006-2007 Valores y vectores propios Valor propio Se dice que el número

Más detalles

Método de potencia directo e inverso

Método de potencia directo e inverso Clase No. 12: Método de potencia directo e inverso MAT 251 Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) 26.09.2011 1 / 20 Método de la potencia Este método puede encontrar el eigenvalor más grande

Más detalles

METODOS ITERATIVOS. Hermes Pantoja Carhuavilca. Facultad de Ingeniería Mecanica Universidad Nacional de Ingenieria

METODOS ITERATIVOS. Hermes Pantoja Carhuavilca. Facultad de Ingeniería Mecanica Universidad Nacional de Ingenieria Facultad de Ingeniería Mecanica Universidad Nacional de Ingenieria Métodos Numéricos Contenido 1 Métodos Iterativos Introducción Definición Métodos Iterativos Método de Jacobi Convergencia Método de Gauss

Más detalles

Fundamentos Matemáticos de la Ingeniería. Tema 4: Diagonalización de matrices. Curso

Fundamentos Matemáticos de la Ingeniería. Tema 4: Diagonalización de matrices. Curso Fundamentos Matemáticos de la Ingeniería Tema 4 Hoja Escuela Técnica Superior de Ingeniería Civil e Industrial Esp en Hidrología Fundamentos Matemáticos de la Ingeniería Tema 4: Diagonaliación de matrices

Más detalles

Contenido. 1 Definiciones y propiedades. 2. Método de la potencia. 3. Método de la potencia inversa. 4. Método de la potencia inversa desplazada.

Contenido. 1 Definiciones y propiedades. 2. Método de la potencia. 3. Método de la potencia inversa. 4. Método de la potencia inversa desplazada. Métodos Numéricos: Resumen y ejemplos Tema 7: Valores y vectores propios Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Abril 9 Versión 7 Contenido

Más detalles

2. Sistemas de ecuaciones lineales

2. Sistemas de ecuaciones lineales 2 Sistemas de ecuaciones lineales 2 Ejercicios resueltos Ejercicio 2 Estudiar el número de condición de Frobenius de la matriz a b A a + ε b Solución: El determinante de A es A ab + ba + ε b ε Si b 0 y

Más detalles

Resolución de Sistema de Ecuaciones Lineales

Resolución de Sistema de Ecuaciones Lineales Resolución de Sistema de Ecuaciones Lineales Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Métodos Computacionales Hermes Pantoja Carhuavilca 1 de

Más detalles

Cálculo Numérico. Curso Ejercicios: Preliminares I

Cálculo Numérico. Curso Ejercicios: Preliminares I Cálculo Numérico. Curso 07-08. Ejercicios: Preliminares I 1. (a) Compruebe que la inversa de una matriz, L, triangular inferior de orden n puede calcularse como sigue: Para j = 1,,..., n e i = j, j + 1,...,

Más detalles

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República ALN Repaso matrices In. Co. Facultad de Ingeniería Universidad de la República Definiciones básicas - Vectores Definiciones básicas - Vectores Construcciones Producto interno: ( x, y n i x y i i ' α Producto

Más detalles

Diagonalización. Tema Valores y vectores propios Planteamiento del problema Valores y vectores propios

Diagonalización. Tema Valores y vectores propios Planteamiento del problema Valores y vectores propios 61 Matemáticas I : Álgebra Lineal Tema 6 Diagonalización 61 Valores y vectores propios 611 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial

Más detalles

Parte 3. Vectores y valores propios

Parte 3. Vectores y valores propios Parte 3. Vectores y valores propios Gustavo Montero Escuela Universitaria Politécnica Universidad de Las Palmas de Gran Canaria Curso 2004-2005 1 Introducción a los valores y vectores propios 2 3 4 5 Valores

Más detalles

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos.

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada

Más detalles

RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS

RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS 1. Determinantes El determinante de una matriz cuadrada n n A = a 21 a 22 a 2n a n1 a n2 a nn es un número real, y se representa por: A = a 21 a 22 a 2n a

Más detalles

TEMA 6. EIGENVALORES Y EIGENVECTORES

TEMA 6. EIGENVALORES Y EIGENVECTORES TEMA 6. EIGENVALORES Y EIGENVECTORES M. C. Roberto Rosales Flores INSTITUTO TECNOLÓGICO SUPERIOR DE TLAXCO Ingeniería en Logística M. C. Roberto Rosales Flores (ITST TEMA 6. EIGENVALORES Y EIGENVECTORES

Más detalles

Sesión 18: Diagonalización (I) Método práctico para diagonalizar una matriz cuadrada A M nxn K

Sesión 18: Diagonalización (I) Método práctico para diagonalizar una matriz cuadrada A M nxn K Sesión 8: Diagonalización (I) Método práctico para diagonalizar una matriz cuadrada A M nxn K ) Calculamos los valores propios de A y sus multiplicidades algebraicas con: d A λ = det A λi nxn = Si d A

Más detalles

Autovalores y autovectores Diagonalización y formas canónicas

Autovalores y autovectores Diagonalización y formas canónicas Autovalores y autovectores Diagonalización y formas canónicas Autovalores y autovectores.propiedades Sea V un espacio vectorial sobre K y f End(V ). Fijada una base de V, existirá una matriz cuadrada A,

Más detalles

E.T.S. Minas: Métodos Matemáticos Soluciones Tema 3: Resolución aproximada de ecuaciones

E.T.S. Minas: Métodos Matemáticos Soluciones Tema 3: Resolución aproximada de ecuaciones E.T.S. Minas: Métodos Matemáticos Soluciones Tema 3: Resolución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Octubre

Más detalles

TEMA III: DIAGONALIZACIÓN.

TEMA III: DIAGONALIZACIÓN. TEMA III: DIAGONALIZACIÓN. OBJETIVOS: Generales: 1. Captar el motivo que justifica el problema de la diagonalización de endomorfismos. 2. Resolver y aplicar dicho problema cuando sea posible. Específicos:

Más detalles

Capítulo 1: Diagonalización de matrices

Capítulo 1: Diagonalización de matrices Capítulo : Diagonalización de matrices Matrices y determinantes Definición Una matriz es un arreglo rectangular de números reales a a a m a A a a m a n a n a nm La matriz es de orden n m si consta de n

Más detalles

Tema 11.- Autovalores y Autovectores.

Tema 11.- Autovalores y Autovectores. Álgebra 004-005 Ingenieros Industriales Departamento de Matemática Aplicada II Universidad de Sevilla Tema - Autovalores y Autovectores Definición, propiedades e interpretación geométrica La ecuación característica

Más detalles

Podemos pues formular los dos problemas anteriores en términos de matrices.

Podemos pues formular los dos problemas anteriores en términos de matrices. Tema 5 Diagonalización 51 Introducción Valores y vectores propios 511 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial V de dimensión

Más detalles

Grado en Edificación MATERIAL DOCENTE: PRESENTACIÓN DEL TEMA III. Ana Isabel Garralda Guillem y Manuel Ruiz Galán

Grado en Edificación MATERIAL DOCENTE: PRESENTACIÓN DEL TEMA III. Ana Isabel Garralda Guillem y Manuel Ruiz Galán MATEMÁTICAS TICAS I Grado en Edificación MATERIAL DOCENTE: PRESENTACIÓN DEL TEMA III Ana Isabel Garralda Guillem y Manuel Ruiz Galán Tema. Diagonalización de matrices.1. Diagonalización de matrices por

Más detalles

Valores y Vectores Propios

Valores y Vectores Propios Valores y Vectores Propios Iván Huerta Facultad de Matemáticas Pontificia Universidad Católica de Chile ihuerta@mat.puc.cl Segundo Semestre, 1999 Definición Valores y Vectores Propios Valores y Vectores

Más detalles

3. Sistemas inconsistentes y sistemas indeterminados

3. Sistemas inconsistentes y sistemas indeterminados . Sistemas inconsistentes sistemas indeterminados. Ejercicios resueltos Ejercicio. Dado el sistema: 4x + 5 x + 5 a Realizar la factorización QR de la matriz, resolverlo basándose en ella a. Mediante el

Más detalles

2.5 Teorema de Jordan

2.5 Teorema de Jordan Capítulo 2/ Forma canónica de Jordan (Versión 13-03-2015) 15 2.5 Teorema de Jordan En esta sección queremos abordar ya el caso general de un endomorfismo f : V V cualquiera (no necesariamente con un único

Más detalles

GEOMETRÍA EN EL PLANO. Dos rectas perpendiculares tienen las pendientes inversas y de signo contrario. Calculamos la pendiente de la recta dada:

GEOMETRÍA EN EL PLANO. Dos rectas perpendiculares tienen las pendientes inversas y de signo contrario. Calculamos la pendiente de la recta dada: GEOMETRÍA EN EL PLANO. La ecuación de la recta que pasa por el punto A(4, 6) y es perpendicular a la recta 4x y + = 0 es: A) x + y + 8 = 0 B) 6x 4y 48 = 0 C) x + y = 0 (Convocatoria junio 00. Examen tipo

Más detalles

Álgebra Lineal. Tema 8. Valores y vectores propios. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas

Álgebra Lineal. Tema 8. Valores y vectores propios. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas Álgebra Lineal Tema 8. Valores y vectores propios Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J. S ALAS, A. T ORRENTE Y E.J.S. V ILLASEÑOR

Más detalles

TRANSFORMACIONES LINEALES 1. TRANSFORMACIONES NÚCLEO E IMAGEN

TRANSFORMACIONES LINEALES 1. TRANSFORMACIONES NÚCLEO E IMAGEN RANSFORMACIONES LINEALES 1 RANSFORMACIONES NÚCLEO E IMAGEN DEFINICION : Sean V W espacios vectoriales Una transformación lineal de V en W es una función que asigna a cada vector v V un único vector v W

Más detalles

1.2 Valores y vectores propios. Método de las potencias y Rayleigh.

1.2 Valores y vectores propios. Método de las potencias y Rayleigh. 20 Prelininares. 1.2 Valores y vectores propios. Método de las potencias y Rayleigh. 1.2.1 Cálculo del Polinomio Caracterstico: ALGORITMO DE SOURIAU. ENTRADA: la matriz A 1 = A, p 1 = traza(a 1 ), n =

Más detalles

Ejercicio 3 de la Opción A del modelo 1 de 2008.

Ejercicio 3 de la Opción A del modelo 1 de 2008. Ejercicio 3 de la Opción A del modelo 1 de 2008. Dado el sistema de ecuaciones lineales x + λy z = 0 2x + y + λz = 0 x + 5y λz = λ +1 [1 5 puntos] Clasifícalo según los valores del parámetro λ. (b) [1

Más detalles

Ejercicios resueltos del capítulo 4

Ejercicios resueltos del capítulo 4 Ejercicios resueltos del capítulo 4 Ejercicios impares resueltos..a Calcular los autovalores y subespacios invariantes asociados a la matriz: A = Calculamos el polinomio característico y resolvemos: λ

Más detalles

Algunos Tipos de matrices. Matrices. Algunos Tipos de matrices. Algunos Tipos de matrices

Algunos Tipos de matrices. Matrices. Algunos Tipos de matrices. Algunos Tipos de matrices Matrices Una matriz de orden m n es un conjunto ordenado de m n números reales dispuestos en m filas y n columnas de la forma: A = a 11 a 12 a 1j a 1n a 21 a 22 a 2j a 2n a i1 a i2 a ij a in a m1 a m2

Más detalles

Diagonalización de matrices

Diagonalización de matrices 7 Diagonalización de matrices 7.1. Matrices diagonalizables Existen diversos procesos en los que el estado en cada uno de sus pasos se puede representar por un determinado vector y en los que, además,

Más detalles

Tema 6: Autovalores y autovectores

Tema 6: Autovalores y autovectores Tema 6: Autovalores y autovectores Curso 216/217 Ruzica Jevtic Universidad San Pablo CEU Madrid Referencias Lay D. Linear algebra and its applications (3rd ed). Chapter 5. 2 Autovalores y autovectores

Más detalles

VALORES Y VECTORES PROPIOS

VALORES Y VECTORES PROPIOS 45 Capítulo 6 VALORES Y VECTORES PROPIOS Martínez Héctor Jairo Sanabria Ana María Semestre, 7 6 Introducción Aunque, en general, la imagen de un vector bajo una transformación de un espacio vectorial en

Más detalles

1. DIAGONALIZACIÓN. FORMAS CANÓNICAS

1. DIAGONALIZACIÓN. FORMAS CANÓNICAS 1 1. DIAGONALIZACIÓN. FORMAS CANÓNICAS 1. Se considera la matriz: A = ( 2 3 4 13 con coeficientes en R. Hallar los valores propios, los vectores propios y una matriz P que permita la diagonalización de

Más detalles

E.T.S. Minas: Métodos Matemáticos Soluciones Tema 2 Aproximación e interpolación

E.T.S. Minas: Métodos Matemáticos Soluciones Tema 2 Aproximación e interpolación E.T.S. Minas: Métodos Matemáticos Soluciones Tema 2 Aproximación e interpolación Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Curso 2006/07

Más detalles

Definición (matriz): Definición (dimensión de una matriz): Si una matriz tiene m renglones y n columnas se dice que es de dimensión m n.

Definición (matriz): Definición (dimensión de una matriz): Si una matriz tiene m renglones y n columnas se dice que es de dimensión m n. Índice general 1. Álgebra de Matrices 1 1.1. Conceptos Fundamentales............................ 1 1.1.1. Vectores y Matrices........................... 1 1.1.2. Transpuesta................................

Más detalles

MATEMÁTICAS I 13 de junio de 2007

MATEMÁTICAS I 13 de junio de 2007 MATEMÁTICAS I 13 de junio de 2007 2º EXAMEN PARCIAL Sólo una respuesta a cada cuestión es correcta. Respuesta correcta: 0.2 puntos. Respuesta incorrecta: -0.1 puntos Respuesta en blanco: 0 puntos 1.- Si

Más detalles

Vectores y Valores Propios

Vectores y Valores Propios Capítulo 11 Vectores y Valores Propios Las ideas de vector y valor propio constituyen conceptos centrales del álgebra lineal y resultan una valiosa herramienta en la solución de numerosos problemas de

Más detalles

6.5.7 Orientación de un espacio vectorial eucĺıdeo Producto vectorial Diagonalización de formas bilineales simétricas...

6.5.7 Orientación de un espacio vectorial eucĺıdeo Producto vectorial Diagonalización de formas bilineales simétricas... Contents 6 Formas Bilineales y Producto Escalar 3 6.1 Formas bilineales............................... 3 6.1.1 Matriz de una forma bilineal....................... 4 6.1. Formas bilineales simétricas.......................

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) 2a 2c 2b 2u 2w 2v. a b c. u v w. p q r. a b c.

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) 2a 2c 2b 2u 2w 2v. a b c. u v w. p q r. a b c. UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) - Calcular los siguientes determinantes: 3 3 a) b) 3 5 5 3 4 5 Hoja : Matrices y sistemas de ecuaciones lineales

Más detalles

Ejercicios tipo test de las lecciones 1 y El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1, 2, 1) y

Ejercicios tipo test de las lecciones 1 y El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1, 2, 1) y Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS Ejercicios tipo test de las lecciones 1 y 2. 1. El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1,

Más detalles

Matrices y sistemas de ecuaciones lineales. Autovalores y autovectores.

Matrices y sistemas de ecuaciones lineales. Autovalores y autovectores. Tema 5 Matrices y sistemas de ecuaciones lineales Autovalores y autovectores 5 Introducción Una matriz es una disposición ordenada de elementos de la forma: a a a m a a a m a n a n a nm Sus filas son las

Más detalles

Diagonalización. Índice General. Nelson Möller. 1 Matrices Semejantes 2. 2 Matrices diagonalizables 2

Diagonalización. Índice General. Nelson Möller. 1 Matrices Semejantes 2. 2 Matrices diagonalizables 2 Diagonalización Nelson Möller Índice General 1 Matrices Semejantes 2 2 Matrices diagonalizables 2 3 Polinomio característico de una matriz 4 3.2 Valores propios.... 5 4 Vectores propios. 6 4.1 Ejemplo...

Más detalles

Álgebra Lineal. Tema 7. La forma canónica de Jordan

Álgebra Lineal. Tema 7. La forma canónica de Jordan Álgebra Lineal Tema 7 La forma canónica de Jordan Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J S ALAS, A T ORRENTE Y EJS V ILLASEÑOR Índice

Más detalles

Hoja de diagonalización MATEMÁTICAS I

Hoja de diagonalización MATEMÁTICAS I Hoja de diagonalización MATEMÁTICAS I 8-9.- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) Ax así como los subespacios vectoriales

Más detalles

Determinantes. Reducción de matrices. Caso diagonalizable

Determinantes. Reducción de matrices. Caso diagonalizable Tema 4 Determinantes Reducción de matrices Caso diagonalizable En este tema consideraremos matrices cuadradas y, para ellas, introduciremos el concepto de autovalor de una matriz Veremos también cómo algunas

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES Universidad de Granada Máster de Profesorado U. D. SISTEMAS DE ECUACIONES Director del trabajo : D. Antonio López Megías SISTEMAS DE ECUACIONES Pilar FERNÁNDEZ CARDENETE Granada,

Más detalles

Ejercicio 1 de la Opción A del modelo 1 de Solución

Ejercicio 1 de la Opción A del modelo 1 de Solución Ejercicio 1 de la Opción A del modelo 1 de 2008 Sean f : R R y g : R R las funciones definidas por f(x) = x 2 -(x + 1) + ax + b y g(x) = ce Se sabe que las gráficas de f y g se cortan en el punto ( 1,

Más detalles

1. DIAGONALIZACIÓN Y FORMAS CANÓNICAS

1. DIAGONALIZACIÓN Y FORMAS CANÓNICAS 1 1. DIAGONALIZACIÓN Y FORMAS CANÓNICAS Sea f : V V un endomorfismo de V, f End(V, con V un K-espacio vectorial de dimensión n, y sean B = {e 1,..., e n } B = {e 1,..., e n} bases de V. La matriz de f

Más detalles

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 3: Solución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

PROBLEMAS RESUELTOS del espacio vectorial curso

PROBLEMAS RESUELTOS del espacio vectorial curso PROBLEMAS RESUELTOS del espacio vectorial curso - - Consideremos el conjunto R formado por todas las parejas () de números reales Se define en R la operación interna ()( )( ) una de las operaciones eternas

Más detalles

Tema 2: Diagonalización

Tema 2: Diagonalización TEORÍA DE ÁLGEBRA II: Tema 2. DIPLOMATURA DE ESTADÍSTICA 1 Tema 2: Diagonalización 1 Introducción Sea f : R n R n lineal. Dada una base B de R n podemos asociar a f la matriz A 1 = [f, B] M n. Si C es

Más detalles

Es decir, det A = producto de diagonal principal producto de diagonal secundaria. Determinante de una matriz cuadrada de orden 3

Es decir, det A = producto de diagonal principal producto de diagonal secundaria. Determinante de una matriz cuadrada de orden 3 1.- DETERMINANTE DE UNA MATRIZ CUADRADA Determinante de una matriz cuadrada de orden 1 Dada una matriz cuadrada de orden 1, A = (a), se define det A = det (a) = a Determinante de una matriz cuadrada de

Más detalles

Aplicaciones Lineales. Diagonalización de matrices.

Aplicaciones Lineales. Diagonalización de matrices. Tema 2 Aplicaciones Lineales. Diagonalización de matrices. 2.1. Definiciones y propiedades Nota 2.1.1. En este tema trabajaremos con los Espacios Vectoriales R n y R m definidos sobre el cuerpo R. Definición

Más detalles

Profesor Francisco R. Villatoro 13 de Diciembre de 1999 SOLUCIONES. 1. Una matriz A de n n es diagonalmente dominante (estrictamente) por filas si

Profesor Francisco R. Villatoro 13 de Diciembre de 1999 SOLUCIONES. 1. Una matriz A de n n es diagonalmente dominante (estrictamente) por filas si Cuarta relación de problemas Técnicas Numéricas Profesor Francisco R. Villatoro 13 de Diciembre de 1999 SOLUCIONES 1. Una matriz A de n n es diagonalmente dominante estrictamente por filas si a ii > a

Más detalles

Geometría afín y proyectiva, 2016 SEMANA 4

Geometría afín y proyectiva, 2016 SEMANA 4 Geometría afín y proyectiva, 2016 SEMANA 4 Sonia L. Rueda ETS Arquitectura. UPM September 30, 2016 Geometría afín y proyectiva 1. Álgebra Lineal 2. Geometría afín y eucĺıdea 3. Cónicas y cuádricas Álgebra

Más detalles

Clase 7 Herramientas de Álgebra Lineal

Clase 7 Herramientas de Álgebra Lineal Clase 7 Herramientas de Álgebra Lineal 1 Formas cuadráticas La descomposición en valores singulares 3 Normas de matrices 4 Ejercicios Dada una matriz M R n n, la función escalar x T Mx, donde x R n, es

Más detalles

TERCER EXAMEN PARCIAL ALGEBRA LINEAL I 23 DE MAYO DE 2014 (CON SOLUCIONES)

TERCER EXAMEN PARCIAL ALGEBRA LINEAL I 23 DE MAYO DE 2014 (CON SOLUCIONES) TERCER EXAMEN PARCIAL ALGEBRA LINEAL I 23 DE MAYO DE 2014 (CON SOLUCIONES) Instrucciones: Resolver los 5 problemas justificando todas sus afirmaciones y presentando todos sus cálculos. 1. Sea F un campo.

Más detalles

y C= determinar la matriz X que verifica la ecuación matricial A B X=C X+I, siendo I =

y C= determinar la matriz X que verifica la ecuación matricial A B X=C X+I, siendo I = EJERCICIOS: TEMA 1: MATRICES. 1º/ Dadas las matrices: A= 2 1 1 0 1 1 1 1, B= 2 0 3 1 y C= 2 1 0 1 determinar la matriz X que verifica la ecuación matricial A B X=C X+I, siendo I = 1 0 0 1. 2º/ Determinar

Más detalles

ETS Minas: Métodos matemáticos Ejercicios resueltos Tema 1 Preliminares

ETS Minas: Métodos matemáticos Ejercicios resueltos Tema 1 Preliminares ETS Minas: Métodos matemáticos Ejercicios resueltos Tema Preliminares Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Curso 006/07 Agosto 006,

Más detalles

Álgebra Lineal. Tema 5 Ecuaciones diferenciales lineales

Álgebra Lineal. Tema 5 Ecuaciones diferenciales lineales Álgebra Lineal. Tema 5 Dep. Matemática Aplicada. UMA Tasa relativa de crecimiento Si x(t representa alguna cantidad física como el volumen de una sustancia, la población de ciertas especies, o el número

Más detalles

ACTIVIDADES SELECTIVIDAD MATRICES

ACTIVIDADES SELECTIVIDAD MATRICES ACTIVIDADES SELECTIVIDAD MATRICES Ejercicio 1 Para qué valores de m tiene solución la ecuación matricial? (b) Resuelve la ecuación matricial dada para. Ejercicio 2 Siendo I la matriz identidad de orden

Más detalles

EXAMEN A PP 1A SEMANA

EXAMEN A PP 1A SEMANA EXAMEN A PP A SEMANA XAVI AZNAR Ejercicio. Defina. Simetría. Proyección. Homotecia vectorial y escriba sus polinomios mínimos. Demostración.. Una simetría σ de base B y dirección D es un endomorfismo tal

Más detalles

IES Fco Ayala de Granada Sobrantes del 2010 (Modelo 6) Soluciones Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Sobrantes del 2010 (Modelo 6) Soluciones Germán-Jesús Rubio Luna. Opción A Opción A Ejercicio 1 opción A, modelo 6 del 010 [ 5 puntos] Dada la función f : R R definida como f(x)= a.sen(x)+ bx + cx + d, determina los valores de las constantes a, b, c y d sabiendo que la gráfica

Más detalles

INSTITUTO TECNOLOGICO SUPERIOR DE TEPOSCOLULA CARRERA: INGIENERIA SISTEMAS COMPUTACIONALES CATEDRATICO: ING. MARCO ANTONIO RUIZ VICENTE

INSTITUTO TECNOLOGICO SUPERIOR DE TEPOSCOLULA CARRERA: INGIENERIA SISTEMAS COMPUTACIONALES CATEDRATICO: ING. MARCO ANTONIO RUIZ VICENTE INSTITUTO TECNOLOGICO SUPERIOR DE TEPOSCOLULA CARRERA: INGIENERIA SISTEMAS COMPUTACIONALES 2 SEMESTRE MATERIA: ALGEBRA LINEAL CATEDRATICO: ING. MARCO ANTONIO RUIZ VICENTE NOMBRE DEL ALUMNO: FERNANDO LUZ

Más detalles

Métodos Numéricos: Ejercicios Resueltos Tema 1: Preliminares

Métodos Numéricos: Ejercicios Resueltos Tema 1: Preliminares Métodos Numéricos: Ejercicios Resueltos Tema : Preliminares Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Curso 2006/07 Febrero 2007, versión.

Más detalles

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a

Más detalles

Cálculo de autovalores

Cálculo de autovalores Cálculo de autovalores Damián Ginestar Peiró Departamento de Matemática Aplicada Universidad Politécnica de Valencia Curso 2011-2012 (UPV) Cálculo de autovalores Curso 2011-2012 1 / 28 Índice 1 Preliminares

Más detalles

a + ar + + ar n 1 = a(rn 1) r 1 = a(rn 1) + ar n+1 ar n

a + ar + + ar n 1 = a(rn 1) r 1 = a(rn 1) + ar n+1 ar n 1 Matemáticas I 8 Febrero 07 1. Demuestra, por inducción, que si r 1 a + ar + + ar n 1 = arn 1 2 puntos Si n = 1, ambos miembros dan a. Supongamos cierta la igualdad para n 1 y probémosla para n + 1: a

Más detalles

IES Francisco Ayala Modelo 2 (Septiembre) de 2008 Soluciones Germán Jesús Rubio Luna. Opción A. x - bx - 4 si x > 2

IES Francisco Ayala Modelo 2 (Septiembre) de 2008 Soluciones Germán Jesús Rubio Luna. Opción A. x - bx - 4 si x > 2 IES Francisco Ayala Modelo (Septiembre) de 008 Soluciones Germán Jesús Rubio Luna Opción A Ejercicio n 1 de la opción A de septiembre de 008 ax + x si x Sea f: R R la función definida por: f(x). x - bx

Más detalles

CAPÍTULO 5: AUTOVALORES Y AUTOVECTORES, FORMA CANÓNICA DE JORDAN

CAPÍTULO 5: AUTOVALORES Y AUTOVECTORES, FORMA CANÓNICA DE JORDAN CAPÍTULO 5: AUTOVALORES Y AUTOVECTORES, FORMA CANÓNICA DE JORDAN 5.1- Definición: matrices semejantes. Se dice que dos matrices A y B son semejantes si existe una matriz regular P tal que se verifica B

Más detalles

Más ejercicios y soluciones en fisicaymat.wordpress.com MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES

Más ejercicios y soluciones en fisicaymat.wordpress.com MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES - Considere el sistema 3 5 7 0 3 3 6 0 3 4 6 0 a) Estudie para qué valores del número real a, la única solución del sistema es la nula. b) Resuélvalo, si

Más detalles

Álgebra lineal y matricial

Álgebra lineal y matricial Capítulo Álgebra lineal y matricial.. Vectores y álgebra lineal Unconjuntodennúmerosreales(a,,a n )sepuederepresentar: como un punto en el espacio n-dimensional; como un vector con punto inicial el origen

Más detalles

Departamento de Ingeniería Matemática - Universidad de Chile

Departamento de Ingeniería Matemática - Universidad de Chile Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Álgebra Lineal 8-7 Formas cuadráticas SEMANA 4: FORMAS CUADRÁTICAS 7 Formas cuadráticas y matrices definidas positivas

Más detalles

f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t).

f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t). Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Álgebra Convocatoria de enero de 20 de enero de 20 (2.5 p.) ) Se considera la aplicación lineal f : R 4 R definida por: f(x y

Más detalles

5.1. Concepto de diagonalización y ejemplo de aplicación. Supongamos que queremos calcular una potencia elevada de una matriz cuadrada, por ejemplo,

5.1. Concepto de diagonalización y ejemplo de aplicación. Supongamos que queremos calcular una potencia elevada de una matriz cuadrada, por ejemplo, Apuntes de Álgebra Lineal Capítulo 5 Diagonalización 51 Concepto de diagonalización y ejemplo de aplicación Supongamos que queremos calcular una potencia elevada de una matriz cuadrada, por ejemplo, calcular

Más detalles

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Sobrantes de 011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 4 del 011 [ 5 puntos] Queremos hacer junto a la carretera un cercado rectangular

Más detalles

1.IV Aproximación numérica de valores y vectores propios.

1.IV Aproximación numérica de valores y vectores propios. .IV Aproximación numérica de valores y vectores propios. Manuel Palacios Departamento de Matemática Aplicada Centro Politécnico Superior. Universidad de Zaragoza Primavera 2007 Contents Introducción 2

Más detalles

Espacios Vectoriales, Valores y Vectores Propios

Espacios Vectoriales, Valores y Vectores Propios , Valores y Vectores Propios José Juan Rincón Pasaye, División de Estudios de Postgrado FIE-UMSNH Curso Propedéutico de Matemáticas para la Maestría en Ciencias opciones: Sistemas de Control y Sistemas

Más detalles

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5 DETERMINANTES Determinantes Concepto de determinante A cada matriz cuadrada A se le asigna un escalar particular denominado determinante de A, denotado por A o por det (A). A = Determinante de orden uno

Más detalles

Capítulo 2. Determinantes Introducción. Definiciones

Capítulo 2. Determinantes Introducción. Definiciones Capítulo 2 Determinantes 2.1. Introducción. Definiciones Si nos centramos en la resolución de un sistema A x = b con A una matriz n n, podemos calcular A 1 y la resolución es inmendiata. El problema es

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

METODOS NUMERICOS TALLER 3, SEMESTRE

METODOS NUMERICOS TALLER 3, SEMESTRE y y METODOS NUMERICOS 67 TALLER SEMESTRE Tema: Método de Newton para resolver FX)= Métodos iterativos de Jacobi Gauss-Seidel y relajación Se recomienda realizar los ejercicios propuestos en el teto guía

Más detalles

1. DIAGONALIZACIÓN DE ENDOMORFISMOS

1. DIAGONALIZACIÓN DE ENDOMORFISMOS . DIAGONALIZACIÓN DE ENDOMORFISMOS. Se considera la matriz: A ( 2 3 4 3 con coecientes en R. Hallar los valores propios, los vectores propios y una matriz P que permita la diagonalización de A. Calcular

Más detalles

Este documento es de distribución gratuita y llega gracias a El mayor portal de recursos educativos a tu servicio!

Este documento es de distribución gratuita y llega gracias a  El mayor portal de recursos educativos a tu servicio! Este documento es de distribución gratuita y llega gracias a Ciencia Matemática El mayor portal de recursos educativos a tu servicio! Capítulo 5 Cónicas 5.1 Definiciones y ecuaciones reducidas Nota En

Más detalles

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. PAU Madrid. Matemáticas II. Año 22. Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. Se considera una varilla AB de longitud 1. El extremo A de esta varilla recorre completamente la circunferencia

Más detalles

Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3: Aplicaciones Tema 3.5 Cadenas de Markov

Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3: Aplicaciones Tema 3.5 Cadenas de Markov Cálculo científico y técnico con HP49g/49g+/48gII/5g Módulo 3: Aplicaciones Tema 3.5 Cadenas de Markov Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de

Más detalles

A1.- Determina a y b sabiendo que el sistema de ecuaciones. x + 3y +z = 1 -x + y +2z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas.

A1.- Determina a y b sabiendo que el sistema de ecuaciones. x + 3y +z = 1 -x + y +2z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas. A1.- Determina a y b sabiendo que el sistema de ecuaciones x + 3y +z = 1 -x + y +z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas. Para que el sistema tenga, al menos, dos soluciones distintas

Más detalles

5.1.- Autovalores y autovectores. Definición y propiedades. La ecuación característica. El teorema de Cayley-Hamilton.

5.1.- Autovalores y autovectores. Definición y propiedades. La ecuación característica. El teorema de Cayley-Hamilton. MATEMÁTICAS I (Curso 2-22) Primer Curso del Grado en Ingeniería Electrónica, Robótica y Mecatrónica, Ingeniería de la Energía e Ingeniería de Organización Industrial Departamento de Matemática Aplicada

Más detalles

Tema 1: Matrices. Sistemas de ecuaciones. Determinantes

Tema 1: Matrices. Sistemas de ecuaciones. Determinantes Tema 1: Matrices. Sistemas de ecuaciones. Determinantes José M. Salazar Octubre de 2016 Tema 1: Matrices. Sistemas de ecuaciones. Determinantes Lección 1. Matrices. Sistemas de ecuaciones. Determinantes

Más detalles