Números Racionales. 102 ejercicios para practicar con soluciones. 1 Realiza las siguientes sumas y restas de fracciones: a) Solución:

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Números Racionales. 102 ejercicios para practicar con soluciones. 1 Realiza las siguientes sumas y restas de fracciones: a) Solución:"

Transcripción

1 Números Racionales. 0 ejercicios para practicar con soluciones. Realiza las siguientes sumas y restas de fracciones 0 0 Realiza las siguientes sumas y restas de fracciones a ) b ) Ordena de forma creciente las siguientes fracciones. Calcula el valor de las siguientes expresiones 0

2 0 0 a ) b ) Cuánto le falta a para valer? Reduce a común denominador y ordena de forma creciente las siguientes fracciones y y 0 0 y y Calcula el valor de las siguientes expresiones a ) 0

3 Expresa los números como multiplicación de factores iguales y luego en forma de potencia ( ) ( ) ( ) - Expresa los números como multiplicación de factores iguales y luego en forma de potencia ( ) ( ) ( ) - Calcula el valor de las siguientes expresiones Calcula el valor de las siguientes expresiones

4 a ) Calcula el valor de las siguientes expresiones Calcula el valor de la siguiente expresión Reduce a común denominador las siguientes fracciones y y

5 ; 0 ; 0 0 m.c.m.() y 0 ; ; 0 0 m.c.m.() y Ordena de forma decreciente las siguientes fracciones y 0 0 m.c.m.(0) y 0 > > > > > > Realiza las siguientes operaciones ) a 0 ) b

6 Reduce a común denominador las siguientes fracciones y y y m.c.m.() 0 y 0 y m.c.m.() y 0 Interpreta las siguientes expresiones como multiplicaciones y calcula su valor Los de. Los de. Los de Los de Calcula el valor de las siguientes expresiones

7 0 0 Realiza las siguientes sumas y restas de fracciones 0 Calcula el valor de las siguientes expresiones Ana lee el sábado los / de un libro y el domingo los /. Qué día leyó más?

8 Sábado m.c.m. () Domingo > > Ana lee más el sábado. Reduce a común denominador las siguientes fracciones m.c.m.() ; ; m.c.m. () ; 0 ; Calcula el valor de la siguiente expresión La suma de tres fracciones es. Una de ellas es y otra. Cuánto vale la tercera? 0

9 Suma de las dos fracciones De una botella de aceite se saca / de su contenido un día y / de lo que quedaba al día siguiente. Qué fracción de líquido queda en la botella? Después del primer día queda en la botella del contenido El segundo día se extrae de del contenido En total se ha sacado de la botella del contenido Se ha sacado la mitad del contenido de la botella por lo que en la botella queda la otra mitad Calcula el valor de las siguientes expresiones En la clase de cada alumnos juegan al fútbol durante el recreo mientras que de cada juega al baloncesto. En cuál de los dos deportes participarán menos alumnos?

10 Fútbol m.c.m.() Baloncesto En el baloncesto participarán menos alumnos. Realiza las siguientes operaciones m.c.m. () m.c.m.() Un coche tiene que recorrer una distancia de 00 km en horas. La primera hora recorre / de la distancia la segunda /0 y la última /. Cuántos kilómetros recorrió cada hora? Primera hora Segunda hora Tercera hora km km km. 0 Ana Juan y Luis se reparten una tarta. A Ana le corresponde / de la tarta y a Juan /. Qué fracción de tarta le queda a Luis? A Luis le queda de la tarta 0

11 A dos primos les toca los de una herencia familiar. Si uno de ellos recibe Cuánto recibirá el otro? Recibirá 0 de la herencia Calcula el valor de las siguientes expresiones 0 0 Julio pasa del día en el colegio lo dedica a comer a estudiar a hacer deporte y el resto a dormir. Qué fracción de día dedica a dormir? Julio dedica del día a dormir Un ciclista recorre el primer día / de la distancia el segundo día / y el tercero /. Qué fracción de distancia lleva recorrido? Lleva recorridos los de la distancia

12 Reduce a común denominador y ordena de forma creciente las siguientes fracciones Raúl se gasta de su paga en el cine y en la compra de una revista Qué fracción de su dinero se ha gastado? El contenido de una botella de litros y medio se repartió en vasos. Qué fracción de litro se echa en cada vaso? litros y medio de litro En vasos de litro en cada vaso Calcula el valor de la siguiente expresión 0 Realiza las siguientes operaciones

13 0 Realiza las siguientes operaciones El cociente de dividir entre un número es. Cuál es el número? Calcula el valor de la siguiente expresión Reduce a común denominador y ordena de forma decreciente las siguientes fracciones m.c.m. () > > > > m.c.m.() > 0 > 0 > >

14 Calcula el valor de las siguientes expresiones 0 0 Carlos dedica / de su tiempo a estudiar / a hacer deporte y / a dormir. Cuál es la actividad a la que dedica menos tiempo? Estudiar m.c.m.() Deporte Dormir Carlos dedica menos tiempo a hacer deporte. Cuántos vasos de / de litro se podrán llenar con el agua de una botella de litros? 0 vasos Una tarta está compuesta de 0 kg. de manzanas 0 kg. de harina y 0 kg. de azúcar. Qué fracción de peso tendrá cada ingrediente? Manzanas kg. 00 Harina kg. 0 Azúcar kg. 000 Cuántos gramos hay en una bolsa de dos kilogramos y tres cuartos?

15 kg gramos Escribe en forma decimal y fraccionaria los siguientes números milésimas centésimas décimas diezmilésimas milésimas centésimas 00 décimas 0 diezmilésimas Escribe los siguientes números decimales en forma de fracción Una frutería vende cada semana 0Kg. de manzanas. Cuál es el número mínimo de cajas de manzanas que necesitaran comprar si cada caja pesa 000g?

16 Vemos lo que pesa cada caja en kilogramos 000 kg 000g kg Necesitarán comprar cajas. Expresa en forma decimal las siguientes fracciones Expresa en forma decimal las siguientes fracciones e identifica las formas decimales que aparecen

17 número decimal exacto 0... número decimal periódico mixto número decimal periódico puro -... número decimal periódico puro Expresa los siguientes números decimales en forma de fracción Si hay niñas por cada alumnos en una clase Cuál es el porcentaje de niñas en la clase? 00 El % de los alumnos de la clase son niñas Expresa primero en forma de fracción y luego opera

18 Un atleta corre los 0 metros en 0 segundos y milésimas. Le piden el resultado con dos cifras decimales. Qué marca dará si aproxima por defecto? 0 seg. aproximando por defecto 0 seg Ordena de forma decreciente los números 0 ) Pasando los decimales a fracción se obtiene ) Reduciendo las fracciones a denominador común 0 ) Como > > > entonces > 0 > > ) Cuántos minutos son décimas de hora? Y 0 de hora? de 0 minutos 0 minutos ) ). Entonces 0 de 0 minutos 0 0 minutos 0 Efectúa las operaciones indicadas utilizando fracciones y expresa el resultado en forma decimal ( 0... ) ( ) El precio de un libro es euros y nos descuentan un % al comprarlo; por otro lado un disco cuyo importe es 0 euros tiene una rebaja del %. En cuál de los dos productos habremos pagado más euros?

19 El precio final del libro es euros 0 euros 00 El precio final del disco es 0 euros 0 - euros 00 Por tanto pagaremos más por el disco ya que euros > 0 euros Si el % de la población son mujeres. Qué fracción de hombres hay? Hombres 00 % % % En forma de fracción % Ordena de menor a mayor los siguientes números 0 y 0 0 y 0 y Con igual denominador es menor la que tiene menor numerador. El premio de un sorteo se reparte entre personas. Qué parte del premio recibirá cada uno de ellos? Qué fracción corresponde a lo que reciben personas? Representa el resultado en la recta real. Cada persona recibirá del premio Cinco personas recibirán del premio 0

20 Escribe primero los decimales en forma de fracción y luego calcula 0 ) ) Cuántos vasos de / de litro se podrán llenar con el agua de una botella de litros? 0 vasos Representa en la recta real los siguientes números h h h h Ordena de forma creciente ) Expresando en forma fraccionaria los decimales Reduciendo a denominador común 0 0 ) ) Ordenando las fracciones obtenidas y sustituyéndolas por sus equivalentes Escribe los siguientes números decimales en forma de fracción

21 Expresa primero en forma de fracción y después halla el resultado simplificado de la siguiente operación ) 0 ) De una parcela se dedica el 0% al cultivo del olivo y los 00 m restantes al almendro. Cuál es la superficie total de la parcela? Al almendro se dedican 00% - 0% 0% partes de la finca. 00 Esos equivalen a 00 m. Por tanto la medida de la parcela es una cantidad x tal que x 00. Despejando x m tiene la parcela. Un atleta corre los 0 metros en 0 segundos y milésimas. Le piden el resultado con dos cifras decimales. Qué marca dará si aproxima por defecto? 0 seg. aproximando por defecto 0 seg Un hortelano planta dos tercios de su huerta de tomates y un quinto de pimientos y el resto lo deja sin cultivar. Qué fracción de la huerta no ha cultivado? Si la huerta tenía 0 m cuántos ha plantado de tomates? Qué tipo de número se obtiene?

22 0 La fracción de la superficie plantada es La fracción que queda sin plantar es La superficie plantada de tomates es 0... m que es un decimal periódico puro. Ordena de mayor a menor los siguientes números Pasando los decimales a fracciones se obtiene y Reduciendo las fracciones a denominador común Ordenando las fracciones Y por tanto Con las partes de los del dinero que recibió Eva por su cumpleaños ha comprado un libro y un CD. Entre los dos gastó 00. Cuánto dinero reunió Eva en su cumpleaños? de son 0 0 Los del dinero que recibió x son 00 x Entonces x recibió Eva por su cumpleaños En la compra de unos pantalones han realizado un descuento del %. Qué fracción del precio total de los pantalones se ha pagado después del descuento? El descuento del % equivale a la fracción 00 La fracción que se ha pagado después del descuento es

23 Expresa los siguientes números decimales en forma de fracción 0 e) 0 f) e) f) g) h) 0... Representa en la recta los siguientes números reales h h h h 0 h h h h Clasifica los siguientes números decimales en racionales o irracionales y explica la razón 000

24 RACIONAL ya que las fracciones son números racionales. RACIONAL porque el cociente de la fracción es un número decimal exacto. 000 RACIONAL ya que el resultado de la raíz es y es un número entero. IRRACIONAL ya que la raíz tiene ilimitadas cifras decimales. 0 Expresa con palabras los números representados en la recta Los números mayores que Todos los números mayores que y menores que Los números menores que 0 o los números negativos Representa en la recta real los números que son Mayores que - y menores o iguales que 0 Menores que y mayores que - Menores que - o mayores que. Menores o iguales que -

25 Representa en la recta los siguientes números reales 0 h h h h 0 Clasifica los siguientes números decimales en racionales o irracionales y explica la razón IRRACIONAL porque es un número decimal no periódico.... RACIONAL porque es un número decimal periódico y se puede expresar en forma fraccionaria. Su periodo es... RACIONAL porque es un número decimal periódico y se puede expresar en forma fraccionaria. Su periodo es... IRRACIONAL porque es un número decimal no periódico. Representa en la recta números comprendidos entre y

26 h h h h h 0 Representa en la recta real los números Menores que - y mayores que - Mayores que y menores que Menores que - o mayores que - Mayores que Escribe el número que corresponde a cada punto señalado en la recta h h h h h - 0 h h h h h

27 Clasifica los siguientes números decimales en racionales o irracionales y explica la razón RACIONAL porque es un número decimal periódico y se puede expresar en forma fraccionaria 0... IRRACIONAL porque es un número decimal no periódico.... RACIONAL porque es un número decimal periódico y se puede expresar en forma fraccionaria 0 RACIONAL porque es un número decimal exacto Escribe cuatro números racionales y cuatro números irracionales. Números racionales ; ;... ; Números irracionales...; ; ; Representa en la recta real el valor aproximado con tres cifras decimales de h 0 Representa en la recta 0 y. El intervalo 0.

28 Representa en la recta real todos los números comprendidos entre y y escribe después cinco números que estén en ese intervalo. Cinco números del intervalo son 0; ; ; Da la aproximación por exceso de cada uno de los números π para que el error sea menor que una milésima. 0 π 0 Se reparten en partes iguales 000 euros entre tres hermanos. Cuánto recibirá cada uno? Indica que tipo de número es el resultado. 000 recibirá cada uno. El resultado de la división es un número decimal periódico puro.

29 Observa la semirrecta y el intervalo siguientes y responde a las preguntas Pertenece a la semirrecta y al intervalo? Es un punto del intervalo? Y de la semirrecta? Es un punto del intervalo o de la semirrecta? Hay algún punto que sea del intervalo y no de la semirrecta? Sí pertenece a los dos. No es un punto del intervalo. Sí de la semirrecta. No es un punto del intervalo ni de la semirrecta. No hay ningún punto que sea del intervalo y no de la semirrecta porque todos los puntos del intervalo están en la semirrecta. Clasifica los siguientes números decimales en racionales o irracionales y explica la razón π 0000 π IRRACIONAL porque el numerador de la fracción es un número decimal no periódico. IRRACIONAL ya que la solución de la raíz tiene ilimitadas cifras decimales no periódicas. IRRACIONAL ya que el numerador de la fracción tiene ilimitadas cifras decimales no periódicas. RACIONAL porque el cociente de la fracción es un número decimal periódico Representa en la recta real los siguientes números

30 h h h h 0 Representa en la recta real los siguientes números π Cuál es el área del ruedo de una plaza de toros de 0 m de diámetro? Da el resultado con tres cifras decimales. Qué tipo de número es? El radio de la plaza es 0 0 metros A π r A 00 m El resultado es un número irracional. 0 0 Escribe un número real que esté comprendido entre y y - y - - y - 0

31 y y y - y - y - - y - y - - -

Números Reales. 87 ejercicios para practicar con soluciones. 1 Ordena de menor a mayor las siguientes fracciones: y

Números Reales. 87 ejercicios para practicar con soluciones. 1 Ordena de menor a mayor las siguientes fracciones: y Números Reales. 8 ejercicios para practicar con soluciones Ordena de menor a mayor las siguientes fracciones: y 8 Reducimos a común denominador: 0 80 0 00 0 y 0 0 0 0 0 0 8 0 El orden de las fracciones,

Más detalles

EJERCICIOS DE NÚMEROS REALES

EJERCICIOS DE NÚMEROS REALES EJERCICIOS DE NÚMEROS REALES 1. Clasifica los siguientes números en racionales o irracionales: 3/5, 0 75, 7, -4, 632, 0 141441114 2. Escribe tres números irracionales que estén dados por raíces y tres

Más detalles

Nombre: 90 X 40= 640+ 230= Calcula el termino que falta en cada operación. Escribe el número anterior y el posterior 1.000.000 9.386.999 599.999.

Nombre: 90 X 40= 640+ 230= Calcula el termino que falta en cada operación. Escribe el número anterior y el posterior 1.000.000 9.386.999 599.999. Calcula el termino que falta en cada operación.8 + = 87..7 =.7 +.7 =.87. =.7 X = 8. : = X 0 =.00.7 : = Escribe el número anterior y el posterior.000.000.8... 0.000.000 00.000.000 0 X 0= 0+ 0= Escribe con

Más detalles

Un obrero efectúa la tercera parte de un trabajo, un segundo obrero hace las tres cuartas partes del resto y un tercer obrero termina el trabajo:

Un obrero efectúa la tercera parte de un trabajo, un segundo obrero hace las tres cuartas partes del resto y un tercer obrero termina el trabajo: En una tormenta de granizo han sido dañadas manzanas de cada en la huerta de Ana, mientras que en la de Clara han sido dañadas de cada. En qué huerta hay, proporcionalmente, más manzanas dañadas? Un obrero

Más detalles

TEMA 1: NÚMEROS REALES

TEMA 1: NÚMEROS REALES TEMA 1: NÚMEROS REALES 3º ESO Matemáticas Apuntes para trabajo del alumnos en el aula. 1. Fracciones. Números racionales Si se multiplican o dividen el numerador y el denominador de una fracción por un

Más detalles

RELACIÓN EJERCICIOS NÚMEROS RACIONALES Y REALES 4º B CURSO 2010-11

RELACIÓN EJERCICIOS NÚMEROS RACIONALES Y REALES 4º B CURSO 2010-11 RELACIÓN EJERCICIOS NÚMEROS RACIONALES Y REALES º B CURSO 00- Expresa las siguientes fracciones en forma decimal e indica de qué tipo es dicho cociente / /0 0/ / Entero, Decimal exacto 0 0, Periódico puro,

Más detalles

DECIMALES. Ejercicio nº 1.- a Expresa en forma de fracción: a.1) 2,3. a.2) 2,08. 31 7 b) Escribe en forma decimal las fracciones: y.

DECIMALES. Ejercicio nº 1.- a Expresa en forma de fracción: a.1) 2,3. a.2) 2,08. 31 7 b) Escribe en forma decimal las fracciones: y. DECIMALES Ejercicio nº 1.- a Expresa en forma de fracción: a.1) 1,2 a.2) 2,08 1 7 b) Escribe en forma decimal las fracciones: y. 0 Justifica, previamente, si los decimales van a ser exactos o periódicos.

Más detalles

a, donde a NÚMEROS REALES Dividir y tomar partes de una unidad. FRACIÓN LA FORMA a Como OPERADOR RAZÓN PORCENTAJE COCIENTE

a, donde a NÚMEROS REALES Dividir y tomar partes de una unidad. FRACIÓN LA FORMA a Como OPERADOR RAZÓN PORCENTAJE COCIENTE NÚMEROS REALES Dividir y tomar partes de una unidad. FRACIÓN LA FORMA a Como OPERADOR RAZÓN PORCENTAJE COCIENTE Que se pueden escribir de la forma b a, donde a y b son enteros y b 0. Operaciones: suma,

Más detalles

www.matesxronda.net José A. Jiménez Nieto

www.matesxronda.net José A. Jiménez Nieto NÚMEROS REALES 1. NÚMEROS IRRACIONALES: CARACTERIZACIÓN. En el tema correspondiente a números racionales hemos visto que estos números tienen una característica esencial: su expresión decimal es exacta

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidad 1: Números reales. 1 Unidad 1: Números reales. 1.- Números racionales e irracionales Números racionales: Son aquellos que se pueden escribir como una fracción. 1. Números enteros 2. Números decimales

Más detalles

1) Qué fracción de año representan 7 meses? Y 3 meses? Y 6 meses? 3) Cuántas manzanas son 2/5 de una caja que contiene 50 manzanas?

1) Qué fracción de año representan 7 meses? Y 3 meses? Y 6 meses? 3) Cuántas manzanas son 2/5 de una caja que contiene 50 manzanas? FRACCIONES Y DECIMALES ) Qué fracción de año representan meses? Y meses? Y meses? ) Un grifo llena un depósito en horas. Qué parte del depósito llenará: primero, en horas; segundo, en horas, y tercero,

Más detalles

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto.

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. Unidad 1 Números 1.- Números Naturales Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. El conjunto de números naturales se representa por la letra N Operaciones

Más detalles

Fracciones. 5.1. Cuentas y problema del día. 2. Realiza la siguiente operación: 849,37 + 28,395. 1. Realiza la siguiente operación: 530,98 38,923

Fracciones. 5.1. Cuentas y problema del día. 2. Realiza la siguiente operación: 849,37 + 28,395. 1. Realiza la siguiente operación: 530,98 38,923 Fracciones.1. Cuentas y problema del día 1. Realiza la siguiente operación: 2. Realiza la siguiente operación: 849,7 + 28,9 0,98 8,92 8 4 9, 7 0, 9 8 +. Completa la siguiente operación: 8 92,7 Ò 6, 8 9

Más detalles

Operaciones con fracciones I

Operaciones con fracciones I Matemáticas.º ESO Unidad Ficha 1 Operaciones con fracciones I La suma y resta de fracciones con igual denominador es otra fracción que tiene por: - Numerador: la suma o resta de los numeradores. - Denominador:

Más detalles

Las fracciones y sus términos

Las fracciones y sus términos Las fracciones Las fracciones y sus términos Comparación de fracciones con la unidad Comparación de fracciones entre sí Fracciones decimales La fracción de una cantidad Fracciones equivalentes Simplificar

Más detalles

4 FRACCIONES 4.1. Indica mediante una fracción la parte coloreada de cada figura. a) b) c) a) 2 6 b) 2 4 c) 3 8

4 FRACCIONES 4.1. Indica mediante una fracción la parte coloreada de cada figura. a) b) c) a) 2 6 b) 2 4 c) 3 8 FRACCIONES EJERCICIOS PROPUESTOS. Indica mediante una fracción la parte coloreada de cada figura. a) b) c) a) b) c) 8. Representa en un segmento la fracción 0.. Representa mediante un dibujo las siguientes

Más detalles

SOLUCIONES DE LAS ACTIVIDADES DE EVALUACIÓN

SOLUCIONES DE LAS ACTIVIDADES DE EVALUACIÓN Evaluación inicial 1. La primera piedra que se colocó para la catedral de Notre-Dame en París, fue en MCLXIII. Se tardaron 170 años en finalizarla. En que año se acabó la construcción? MCLXIII = 1.163

Más detalles

1 Operaciones con números naturales

1 Operaciones con números naturales Unidad 1. Números naturales, enteros y decimales 1 Operaciones con números naturales Página 11 1. Resuelve estas expresiones en el orden en que aparecen: a) 13 2 5 b) 2 + 6 (13 2 5) c) 2 + 6 (13 2 5) 7

Más detalles

IES Juan García Valdemora NÚMEROS REALES Departamento de Matemáticas NÚMEROS REALES

IES Juan García Valdemora NÚMEROS REALES Departamento de Matemáticas NÚMEROS REALES NÚMEROS REALES. NÚMEROS RACIONALES Desde la aparición de las sociedades humanas los números desempeñan un papel fundamental para ordenar y contar los elementos de un conjunto. Así surgen, en primer lugar,

Más detalles

6º lección TEMA 6.- LAS FRACCIONES

6º lección TEMA 6.- LAS FRACCIONES º lección TEMA.- LAS FRACCIONES -.Los términos de una fracción son el numerador y el denominador. -. El denominador indica el número de partes iguales en que se divide la unidad. -. El numerador indica

Más detalles

SISTEMA DE NUMERACIÓN DECIMAL. 2.533 Ante período

SISTEMA DE NUMERACIÓN DECIMAL. 2.533 Ante período Los números Decimales, esas comas SISTEMA DE NUMERACIÓN DECIMAL Relación Fracción-Nº Decimal. Parte entera Parte decimal 2.533 Ante período Período Toda fracción se puede escribir en forma decimal, para

Más detalles

3º ESO GUÍA DEL BLOQUE ARITMÉTICA

3º ESO GUÍA DEL BLOQUE ARITMÉTICA Números Porcentajes Sucesiones C ontenidos E jercicios C ompetencias Números enteros. Múltiplos y divisores. Fracciones. Comparación de fracciones. Representación de fracciones en la recta. Operaciones

Más detalles

TRABAJO DE MATEMÁTICAS (1º parte) PENDIENTES DE 3º E.S.O.

TRABAJO DE MATEMÁTICAS (1º parte) PENDIENTES DE 3º E.S.O. TRABAJO DE MATEMÁTICAS (1º parte) PENDIENTES DE 3º E.S.O. OPERACIONES CON FRACCIONES 1.-) Calcula: a) = b) = c) = d) = 2.-) Calcula: a) b) [ = c) = d) = 3.-) Calcula: a) = b) = 4.-) Calcula: d) e) f) 5.-)

Más detalles

OPERACIONES CON FRACCIONES

OPERACIONES CON FRACCIONES OPERACIONES CON FRACCIONES ADICIÓN Y SUSTRACCIÓN DE FRACCIONES A) Con el mismo denominador º de E. Primaria Para sumar o restar fracciones con el mismo denominador se suman o se restan los numeradores

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD 1 Pág. 1 Página 43 PRACTICA Relación entre fracción y decimal 1 Transforma en número decimal las siguientes fracciones: 11 1 e 9 4 11 11, 4,083 1 0,05 9 4 0, e 1 03 0,351 11 3 300 1 03 3 300 Clasifica

Más detalles

Números decimales. 1.1. Lectura de las fracciones decimales

Números decimales. 1.1. Lectura de las fracciones decimales Números decimales 1. Fracción decimal Son de uno muy frecuente y se las representa con la notación particular, que consiste en escribir sólo el numerador y recordar el número de ceros que siguen a la unidad

Más detalles

TEMA 5. NÚMEROS DECIMALES Y SISTEMA MÉTRICIO DECIMAL

TEMA 5. NÚMEROS DECIMALES Y SISTEMA MÉTRICIO DECIMAL TEMA 5. NÚMEROS DECIMALES Y SISTEMA MÉTRICIO DECIMAL 1. Escribe con cifras los siguientes números: a) Cuarenta y cinco unidades y tres décimas. b) Diez unidades veinticuatro centésimas. c) Trescientas

Más detalles

Trabajo Práctico N 1: Números enteros y racionales

Trabajo Práctico N 1: Números enteros y racionales Matemática año Trabajo Práctico N 1: Números enteros y racionales Problemas de repaso: 1. Realiza las siguientes sumas y restas: a. 1 (-) = b. 7 + (-77) = c. 1 (-6) = d. 1 + (-) = e. 0 (-0) + 1 = f. 0

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 1 EJERCICIOS Fracciones: significado y representación 1 Qué fracción se ha representado en cada una de estas figuras? 1 2 8 2 12 2 Colorea en cada triángulo la fracción que se indica: 1 2

Más detalles

( ) ( ) = ( ) = ( ) ) ( ( ) c) 128. 2 2 b) 7 7 3 4. c) 6 : 6. 2 2 2 7 7 7 c) 6 : 6 6 6. Tema 2 - Hoja 1: Potencias de exponente entero y fraccionario

( ) ( ) = ( ) = ( ) ) ( ( ) c) 128. 2 2 b) 7 7 3 4. c) 6 : 6. 2 2 2 7 7 7 c) 6 : 6 6 6. Tema 2 - Hoja 1: Potencias de exponente entero y fraccionario Tema - Hoja : Potencias de exponente entero y fraccionario Expresa los números como multiplicación de factores iguales y luego en forma de potencia: a b c 8 d 6 ( ( ( a = b = = = ( c 8 d = 6 = Expresa

Más detalles

FRACCIONES Y NÚMEROS RACIONALES. obtienen al dividir la unidad en n partes iguales.

FRACCIONES Y NÚMEROS RACIONALES. obtienen al dividir la unidad en n partes iguales. ESCUELA SECUNDARIA No. 264 MIGUEL SERVET GUÍA PARA EL EXAMEN DE MATEMÁTICAS DE 1 A, 1 B, 1 C, 1 D, CORRESPONDIENTE AL PRIMER BIMESTRE. La siguiente información te servirá para que estudies, sólo deberás

Más detalles

www.matesxronda.net José A. Jiménez Nieto

www.matesxronda.net José A. Jiménez Nieto NÚMEROS RACIONALES. INTRODUCCIÓN NÚMEROS ENTEROS Y OPERACIONES Al principio, las cantidades sólo se expresaban con palabras, se contaban cosas concretas. El símbolo para los números aparece mucho más tarde

Más detalles

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO.

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 1. LOS NÚMEROS NATURALES POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 2. LOS NÚMEROS ENTEROS. VALOR ABSOLUTO DE UN NÚMERO ENTERO. REPRESENTACIÓN GRÁFICA. OPERACIONES.

Más detalles

Ejercicios Tema 1. a) b) c) d) e) f) Ejercicio 6. Escribe en forma de intervalo y representa:

Ejercicios Tema 1. a) b) c) d) e) f) Ejercicio 6. Escribe en forma de intervalo y representa: Ejercicios Tema 1 Números Reales Ejercicio 1. Clasifica los siguientes números en el lugar que conjunto que corresponde: a) b) c) Ejercicio 2. Clasifica los siguientes números: Ejercicio 3. a) Cuáles de

Más detalles

EJERCICIOS REFUERZO MATEMÁTICAS 3 ESO 1º TRIMESTRE

EJERCICIOS REFUERZO MATEMÁTICAS 3 ESO 1º TRIMESTRE EJERCICIOS REFUERZO MATEMÁTICAS ESO º TRIMESTRE NÚMEROS RACIONALES º. Amplifica las siguientes fracciones para que todas tengan denominador º. Cuál de las siguientes fracciones es una fracción amplificada

Más detalles

1. El sistema de los números reales

1. El sistema de los números reales 1. El sistema de los números reales Se iniciará definiendo el conjunto de números que conforman a los números reales, en la siguiente figura se muestra la forma en la que están contenidos estos conjuntos

Más detalles

LOS NÚMEROS DECIMALES DESCOMPOSICIÓN DE NÚMEROS DECIMALES. 28,246 = 2D + 8 U + 2d + 4 c + 6 m 28,246 = 20 + 8 + 0,2 + 0,04 + 0,006

LOS NÚMEROS DECIMALES DESCOMPOSICIÓN DE NÚMEROS DECIMALES. 28,246 = 2D + 8 U + 2d + 4 c + 6 m 28,246 = 20 + 8 + 0,2 + 0,04 + 0,006 LOS NÚMEROS DECIMALES DESCOMPOSICIÓN DE NÚMEROS DECIMALES Los números decimales tienen dos partes separadas por una coma. 28,246 es un número decimal. Parte entera Parte decimal 6º de E. Primaria Decenas

Más detalles

9,7 5 2,6 5 0,5 5. Unidades decimales En forma de fracción En forma decimal 4 décimas 4/10 0,4 23/100 47 1.000. 3 unidades 5 30 décimas

9,7 5 2,6 5 0,5 5. Unidades decimales En forma de fracción En forma decimal 4 décimas 4/10 0,4 23/100 47 1.000. 3 unidades 5 30 décimas 6 Números decimales Unidades decimales 1 Observa el ejemplo resuelto y completa. 6 10 6 décimas 8 10 8 décimas 14 14 centésimas 26 26 centésimas 2 Escribe. En forma de número decimal 2 10 5 7 0,2 10 5

Más detalles

1º ESO. a) 10 3 + 6 7 + ( 3 2 ) 5 = d) 10 + ( 2 + 3 2 ) 16 4 : 2 = b) ( 12 + 8 ) 2 3 + 6 ( 12 8 ) = e) 15 7 2 + 3 1 + 2 =

1º ESO. a) 10 3 + 6 7 + ( 3 2 ) 5 = d) 10 + ( 2 + 3 2 ) 16 4 : 2 = b) ( 12 + 8 ) 2 3 + 6 ( 12 8 ) = e) 15 7 2 + 3 1 + 2 = NÚMERO NATURAL. Para resolver una serie de operaciones combinadas: - primero efectuaremos las operaciones indicadas en los..., - Después, las... y..., - Y por último, las... y.... 2.- Traduce al sistema

Más detalles

3Soluciones a los ejercicios y problemas

3Soluciones a los ejercicios y problemas Soluciones a los ejercicios y problemas PÁGINA 0 Pág. P RACTICA Números reales a) Clasifica los siguientes números como racionales o irracionales: ; ;, ) 9 7;,; ; ; π b) Alguno de ellos es entero? c) Ordénalos

Más detalles

Hay dos excepciones: - con el 2, por ejemplo: 1/2: Un medio - con el 3, por ejemplo:1/3: Un tercio

Hay dos excepciones: - con el 2, por ejemplo: 1/2: Un medio - con el 3, por ejemplo:1/3: Un tercio Las FRACCIONES son números que representan trozos o partes de la unidad. Los números enteros y las fracciones forman el conjunto de los NÚMEROS RACIONALES (Q). Se leen comenzando por el número de arriba

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 7 PRACTICA Números reales a) Clasifica los siguientes números como racionales o irracionales: ; 9 ;, 7; ),; ; b) Alguno de ellos es entero? c) Ordénalos de menor a mayor. a) Racionales: ; 9

Más detalles

1 Números racionales

1 Números racionales 8 _ 0-0.qxd //0 : Página Números racionales INTRODUCCIÓN Esta unidad desarrolla conceptos y técnicas ya conocidos de otros cursos. Sin embargo, es conveniente repasar las distintas interpretaciones que

Más detalles

Guía 1: Fracciones decimales

Guía 1: Fracciones decimales Guía : Fracciones decimales Las fracciones decimales son aquellas que tienen como denominador un múltiplo de (, 0, 000) y por numerador un número cualquiera. Los décimos, centésimos y milésimos se pueden

Más detalles

Razones y Proporciones

Razones y Proporciones Razones y Proporciones Razon: Una razón es el cuociente entre dos cantidades. Se escribe a b donde a se denomina antecedente y b se denomina consecuente. o a:b y se lee: a es a b en Proporción: Una proporción

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos NÚMEROS REALES NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de

Más detalles

ACTIVIDADES 1º ESO. 3.- Halla el cociente y el resto: a) 2647 : 8 = d) 7482 : 174 = b) 1345 : 29 = e) 7971 : 2 657 = c) 9045 : 45 = f) 27178 : 254 =

ACTIVIDADES 1º ESO. 3.- Halla el cociente y el resto: a) 2647 : 8 = d) 7482 : 174 = b) 1345 : 29 = e) 7971 : 2 657 = c) 9045 : 45 = f) 27178 : 254 = IES ARUCAS DOMINGO RIVERO DEPARTAMENTO DE MATEMÁTICAS ACTIVIDADES 1º ESO 1.- Calcula: a) 18 (6 + 9 3) = e) (6 17) + (3 4) = b) 5 (18 7) + 4 = f) (33 5) (4 19) c) 4 (6 + 5 + 11) = g) (1 + 11) (15 + 7) =

Más detalles

FRACCIONES. 1.- Indica qué pareja o parejas de fracciones son equivalentes:

FRACCIONES. 1.- Indica qué pareja o parejas de fracciones son equivalentes: FRACCIONES.- Indica qué pareja o parejas de fracciones son equivalentes: a) y 0 b) y c) y 0.- Escribe tres fracciones equivalentes que expresen la parte coloreada del segmento AB :.- Razona, haciendo un

Más detalles

TEMA 1: FRACCIONES Y DECIMALES.

TEMA 1: FRACCIONES Y DECIMALES. 1.1 Numeros racionales TEMA 1: FRACCIONES Y DECIMALES. Ejemplo Vamos a ver si los siguientes números son fraccionarios o no: 1 1 2.......................... Esto nos permite escribir un número de muchas

Más detalles

Las fracciones son unos números especiales que expresan las partes iguales que tomamos del total en que se ha dividido la unidad.

Las fracciones son unos números especiales que expresan las partes iguales que tomamos del total en que se ha dividido la unidad. UNIDAD 6: FRACCIONES 6. Conocimiento de fracciones Las fracciones son unos números especiales que expresan las partes iguales que tomamos del total en que se ha dividido la unidad. 6.. Términos Los términos

Más detalles

Soluciones a las actividades

Soluciones a las actividades Soluciones a las actividades BLOQUE I Aritmética. Números enteros y racionales. Los números reales. Potencias y radicales Números enteros y racionales. Operaciones con enteros El día de enero la temperatura

Más detalles

Transformación Decimal a Racional

Transformación Decimal a Racional Números Racionales Llamaremos número racional a una relación entre dos cantidades escrita de la forma Donde q, el denominador, representara la cantidad de partes en que la unidad esta separada y p, el

Más detalles

3.2. Conceptos generales. (A) Una fracción es el cociente, razón o división de dos números enteros. El dividendo se llama

3.2. Conceptos generales. (A) Una fracción es el cociente, razón o división de dos números enteros. El dividendo se llama 3. NÚMEROS RACIONALES. 3.1. Introducción. Expresiones comunes tales como "un tercio de cerveza", "medio litro de agua", "tres cuartos de kilo de carne", "son las doce cuarto",... no pueden ser representadas,

Más detalles

La unidad fraccionaria es cada una de las partes que se. Una fracción es el cociente de dos números enteros a y b,

La unidad fraccionaria es cada una de las partes que se. Una fracción es el cociente de dos números enteros a y b, Unidad fraccionaria La unidad fraccionaria es cada una de las partes que se obtienen al dividir la unidad en n partes iguales. Definición de fracción Una fracción es el cociente de dos números enteros

Más detalles

LECCIÓN 10 5 PROBLEMAS RESUELTOS

LECCIÓN 10 5 PROBLEMAS RESUELTOS LECCIÓN 10 PROBLEMAS RESUELTOS Problema 1. Cuál es el menor número de personas con las cuales, usándolas todas, se pueden formar grupos (exactos) de 6 personas o grupos (exactos) de 8 personas? A. 14 D.

Más detalles

NÚMEROS RACIONALES. Evaluación A. Ten en cuenta. Recuerda. Recuerda

NÚMEROS RACIONALES. Evaluación A. Ten en cuenta. Recuerda. Recuerda NÚMEROS RACIONALES Evaluación A 1. Ordena de menor a mayor estas fracciones: 1 2, 9 20, 18 25, 3 5 Ten en cuenta Para ordenar fracciones, expresamos la solución mediante las fracciones iniciales, no las

Más detalles

LA DIVISIÓN. La división exacta. Jorge reparte, a partes iguales, 48 chicles entre 6 amigos. Cuántos chicles tocan a cada uno?

LA DIVISIÓN. La división exacta. Jorge reparte, a partes iguales, 48 chicles entre 6 amigos. Cuántos chicles tocan a cada uno? LA DIVISIÓN Términos de la división exacta La división exacta Jorge reparte, a partes iguales, 48 chicles entre 6 amigos. Cuántos chicles tocan a cada uno? Dividendo Divisor 48 6 8 Cociente Corresponden

Más detalles

I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1

I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1 ECUACIONES Y SISTEMAS. PROBLEMAS 1. El lado de un cuadrado mide 3 m más que el lado de otro cuadrado. Si la suma de las dos áreas es 89 m, calcula las dimensiones de los cuadrados.. La suma de dos números

Más detalles

1 El Número Real. 4.- Orden en R. Desigualdades numéricas. Intervalos

1 El Número Real. 4.- Orden en R. Desigualdades numéricas. Intervalos 1 El Número Real 1.- Los números irracionales. Números reales. 2.- Aproximación decimal de un número real. 2.1.- Aproximaciones 2.2.- Error absoluto y cota de error 2..- Error relativo 2.4.- Aproximaciones

Más detalles

Ámbito Científico y Tecnológico. Repaso de números enteros y racionales

Ámbito Científico y Tecnológico. Repaso de números enteros y racionales Ámbito Científico y Tecnológico. Repaso de números enteros y racionales 1 Prioridad de las operaciones Si en una operación aparecen sumas, o restas y multiplicaciones o divisiones, el resultado varía según

Más detalles

2 Quita paréntesis y calcula. a) (+5) ( 3) (+8) + ( 4) b) ( 7) (+5) + ( 6) + (+4) c) +( 9) (+13) ( 11) + (+5) d) (+8) + ( 3) ( 15) (+6) (+2)

2 Quita paréntesis y calcula. a) (+5) ( 3) (+8) + ( 4) b) ( 7) (+5) + ( 6) + (+4) c) +( 9) (+13) ( 11) + (+5) d) (+8) + ( 3) ( 15) (+6) (+2) Matemáticas pendientes 2º E.S.O. Los números enteros suma y resta de números enteros 1 Calcula. a) 5 8 4 + 3 6 + 9 b) 10 11 + 7 13 + 15 6 c) 9 2 7 11 + 3 + 18 10 d) 7 15 + 8 + 10 9 6 + 11 2 Quita paréntesis

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS NÚMEROS NATURALES: Son los que utilizamos para contar Ejemplo: Contar el número de alumnos de la clase, escribir el número de la matrícula de un coche Se representan N{0,1,2, } Ejercicio:

Más detalles

NÚMEROS NÚMEROS REALES

NÚMEROS NÚMEROS REALES NÚMEROS NÚMEROS REALES A los números que utilizamos para contar la cantidad de elementos de un conjunto no vacío se los denomina números naturales. Designamos con N al conjunto de dichos números. N = {,,,,,...

Más detalles

UNIDAD 5. FRACCIONES Y OPERACIONES

UNIDAD 5. FRACCIONES Y OPERACIONES UNIDAD. FRACCIONES Y OPERACIONES. FRACCIONES.. LA FRACCIÓN COMO OPERADOR Y COMO NÚMERO.. FRACCIONES EQUIVALENTES.. REDUCCIÓN DE FRACCIONES A COMÚN DENOMINADOR.. OPERACIONES CON FRACCIONES.. FRACCIONES

Más detalles

FRACCIONES DECIMALES Y FRACCIONES COMUNES

FRACCIONES DECIMALES Y FRACCIONES COMUNES FRACCIONES DECIMALES Y FRACCIONES COMUNES 1. Representa en una recta numérica los siguientes números a) 0. d) 3.50 g) 3.5 j) 9.80 b) 4.0 e) 3.30 h). k).0 c).6 f) 5.0 i).55 l)0.0 j) ¾ k) 3/5 l) /5 m) 6/6.

Más detalles

I. Números y operaciones

I. Números y operaciones 1. Escribe con cifras: I. Números y operaciones Tres millones doscientos mil tres Veinte millones y medio Setecientos millones Dos millones setecientos mil cuatrocientos dos Ciento veinticinco mil doscientos

Más detalles

Tema 3. Números racionales

Tema 3. Números racionales Tema 3. Números racionales Primer Parcial en semana del 15 al 19 de noviembre 1 Fracciones Esquema Concepto de Fracción Significados de las fracciones Representaciones y modelos Tipos de fracciones 2 Concepto-definición

Más detalles

3. Un número x dividido por 12 da como cociente 7 y resto 9. a) Halla x b) Qué número tienes que sumar a x para que la división por 12 sea exacta?

3. Un número x dividido por 12 da como cociente 7 y resto 9. a) Halla x b) Qué número tienes que sumar a x para que la división por 12 sea exacta? . a) Expresa en forma polinómica: 8 b) Representa en el sistema binario el número. a) Calcula: (+).()+.(4) b) Escribe en forma de potencia: 6. Un número x dividido por da como cociente 7 y resto 9. a)

Más detalles

Victoria Aguilera Fernández

Victoria Aguilera Fernández Victoria Aguilera Fernández G.T. Elaboración de Materiales y Recursos Didácticos en un Centro TIC. Fracciones.- / 1 FRACCIÓN Una fracción es la expresión numérica que representa la división de un todo

Más detalles

Fracciones numéricas enteras

Fracciones numéricas enteras Números racionales Fracciones numéricas enteras En matemáticas, una fracción numérica entera expresa la división de un número entero en partes iguales. Una fracción numérica consta de dos términos: El

Más detalles

1. ESQUEMA - RESUMEN Página. 2. EJERCICIOS DE INICIACIÓN Página. 3. EJERCICIOS DE DESARROLLO Página. 4. EJERCICIOS DE AMPLIACIÓN Página

1. ESQUEMA - RESUMEN Página. 2. EJERCICIOS DE INICIACIÓN Página. 3. EJERCICIOS DE DESARROLLO Página. 4. EJERCICIOS DE AMPLIACIÓN Página 1. ESQUEMA - RESUMEN Página 2 2. EJERCICIOS DE INICIACIÓN Página 12 3. EJERCICIOS DE DESARROLLO Página 25 4. EJERCICIOS DE AMPLIACIÓN Página 26 5. EJERCICIOS DE REFUERZO Página 28 6. EJERCICIOS RESUELTOS

Más detalles

Los Números Racionales y Decimales. Operaciones.

Los Números Racionales y Decimales. Operaciones. Módulo Uno. Tema 3. Los Números Racionales y Decimales. Operaciones. Ámbito Científico y Tecnológico. Módulo Uno. Tema 3 Versión: Febrero 2013 Los Números Racionales y Decimales. Operaciones. Educación

Más detalles

Los números naturales

Los números naturales 1 Los números naturales 1. Sistema de numeración decimal Con las cifras 3 y 5, y sin repetirlas, forma dos números distintos de dos cifras y ordénalos de menor a mayor. 35 < 53 P I E N S A Y C A L C U

Más detalles

Fracciones. 1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. 1.b. Definición y elementos de una fracción

Fracciones. 1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. 1.b. Definición y elementos de una fracción 1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. Fracciones Pon, al menos tres ejemplos de 1ª Forma: utilización de fracciones en el lenguaje habitual. Uno original

Más detalles

IDENTIFICAR LOS MÚLTIPLOS Y DIVISORES DE UN NÚMERO

IDENTIFICAR LOS MÚLTIPLOS Y DIVISORES DE UN NÚMERO OBJETIVO IDENTIICAR LOS MÚLTIPLOS Y DIVISORES DE UN NÚMERO NOMBRE: CURSO: ECHA: Los múltiplos de un número son aquellos que se obtienen multiplicando dicho número por,,,, es decir, por los números naturales.

Más detalles

EJERCICIOS PROPUESTOS 5,27 5 2 7 42,36 4 2 3 6 235,04 2 3 5 0 4 110,204 1 1 0 2 0 4

EJERCICIOS PROPUESTOS 5,27 5 2 7 42,36 4 2 3 6 235,04 2 3 5 0 4 110,204 1 1 0 2 0 4 5 NÚMEROS DECIMALES EJERCICIOS PROPUESTOS 5.1 Expresa los siguientes números en los distintos órdenes de unidades. Número C D U d c m 5,27 5 2 7 42,36 235,04 110,204 Número C D U d c m 5,27 5 2 7 42,36

Más detalles

Matemáticas y Tecnología. Unidad 2 Los números racionales

Matemáticas y Tecnología. Unidad 2 Los números racionales CENTRO PÚBLICO DE EDUCACIÓN DE PERSONAS ADULTAS ESPA Matemáticas y Tecnología Unidad Los números racionales Nota Al final del texto se encuentra la solución de los ejercicios de la página del libro Concepto

Más detalles

III. NÚMEROS DECIMALES

III. NÚMEROS DECIMALES III. NÚMEROS DECIMALES 3.1 Significado de los números decimales. Partes de un número decimal Tipos de números decimales 3.2 Ordenación de los números decimales. 3.3 Operaciones con números decimales. Suma

Más detalles

1 números naturales. ejercicios

1 números naturales. ejercicios 1 números naturales ejercicios 1 Di cuáles de estos números son números naturales: 4 1 6 5 3 7 18 55,5 4, 18, 55, 6 y 7. Representa en una recta los siguientes números naturales. 0 1 4 1 8 0 1 4 8 1 3

Más detalles

NÚMEROS REALES. Página 27 REFLEXIONA Y RESUELVE. El paso de Z a Q. El paso de Q a Á

NÚMEROS REALES. Página 27 REFLEXIONA Y RESUELVE. El paso de Z a Q. El paso de Q a Á NÚMEROS REALES Página 7 REFLEXIONA Y RESUELVE El paso de Z a Q Di cuáles de las siguientes ecuaciones se pueden resolver en Z y para cuáles es necesario el conjunto de los números racionales, Q. a) x 0

Más detalles

Guía de Matemáticas Primer Grado

Guía de Matemáticas Primer Grado Guía de Matemáticas Primer Grado 1 Cómo recibe el nombre de nuestro sistema de numeración y que se agrupa de diez en diez las unidades, centenas, etc.? a) Sistema natural b) Sistema vigesimal c) Sistema

Más detalles

UNIDAD 3: NÚMEROS DECIMALES

UNIDAD 3: NÚMEROS DECIMALES UNIDAD 3: NÚMEROS DECIMALES Si dividimos la unidad en 10 partes iguales, cada parte es una DÉCIMA. Cuando necesitamos expresar cantidades más pequeñas que la unidad, utilizamos LAS UNIDADES DECIMALES.

Más detalles

Numerador = Denominador = 2.- Copia y representa la parte coloreada con una fracción, en cada caso. Indica cómo se leen. Numerador = Denominador =

Numerador = Denominador = 2.- Copia y representa la parte coloreada con una fracción, en cada caso. Indica cómo se leen. Numerador = Denominador = TEMA 6 : LAS FRACCIONES Página 1 1.- Escribe estas cantidades con una fracción. Señala el numerador y el denominador. seis novenos = tres octavos = un medio = siete décimos = cuatro quintos = dos treceavos

Más detalles

MATEMÁTICA MÓDULO 1 Eje temático: Números y proporcionalidad

MATEMÁTICA MÓDULO 1 Eje temático: Números y proporcionalidad MATEMÁTICA MÓDULO 1 Eje temático: Números y proporcionalidad 1. CONJUNTOS NUMÉRICOS Empezaremos este curso de preparación PSU revisando los diferentes conjuntos numéricos con los que has trabajado tanto

Más detalles

EJERCICIOS PARA NAVIDAD (RECUPERACIÓN PRIMERA EVALUACIÓN). CURSO: Fecha de entrega: Viernes. 14 de enero. Fecha de examen: Viernes, 21 de enero.

EJERCICIOS PARA NAVIDAD (RECUPERACIÓN PRIMERA EVALUACIÓN). CURSO: Fecha de entrega: Viernes. 14 de enero. Fecha de examen: Viernes, 21 de enero. º E.S.O. MATEMÁTICAS I.E.S. LOSADA EJERCICIOS PARA NAVIDAD (RECUPERACIÓN PRIMERA EVALUACIÓN). CURSO: 10-11 Fecha de entrega: Viernes. 1 de enero. Fecha de examen: Viernes 1 de enero. Alumno/a:. Grupo:

Más detalles

EJERCICIOS PROPUESTOS. Arquímedes nació en el año 287 a. C. en Siracusa (Sicilia). Cuántos años han transcurrido desde su nacimiento?

EJERCICIOS PROPUESTOS. Arquímedes nació en el año 287 a. C. en Siracusa (Sicilia). Cuántos años han transcurrido desde su nacimiento? NÚMEROS RACIONALES EJERCICIOS PROPUESTOS. Arquímedes nació en el año a. C. en Siracusa (Sicilia). Cuántos años han transcurrido desde su nacimiento? () años. De qué número es la tercera parte? Y la sexta?

Más detalles

Si dividimos la unidad en 10 partes iguales, cada una de ellas es una décima.

Si dividimos la unidad en 10 partes iguales, cada una de ellas es una décima. NÚMEROS DECIMALES 1. DÉCIMA, CENTÉSIMA Y MILÉSIMA. 1.1. CONCEPTO. Si dividimos la unidad en 10 partes iguales, cada una de ellas es una décima. Si dividimos la unidad en 100 partes iguales, cada una de

Más detalles

TRABAJO DE RECUPERACIÓN MATEMÁTICAS 1º ESO TEMA 1 : LOS NÚMEROS NATURALES. 1. Escribe en números romanos las siguientes cantidades:

TRABAJO DE RECUPERACIÓN MATEMÁTICAS 1º ESO TEMA 1 : LOS NÚMEROS NATURALES. 1. Escribe en números romanos las siguientes cantidades: TRABAJO DE RECUPERACIÓN MATEMÁTICAS 1º ESO NOMBRE: GRUPO: TEMA 1 : LOS NÚMEROS NATURALES 1. Escribe en números romanos las siguientes cantidades: a) 42 b) 159 c) 520 2. Escribe como se leen estas cantidades:

Más detalles

GUÍA NÚMERO 1. Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA

GUÍA NÚMERO 1. Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA GUÍA NÚMERO 1 NÚMEROS NATURALES Y CARDINALES ( IN, IN 0 ) Los elementos

Más detalles

NÚMEROS RACIONALES. Evaluación A. Ten en cuenta. Recuerda. Recuerda

NÚMEROS RACIONALES. Evaluación A. Ten en cuenta. Recuerda. Recuerda NÚMEROS RACIONALES Evaluación A 1. Ordena de menor a mayor estas fracciones: 1 2, 9 20, 18 25, 3 5 Para ordenar fracciones, expresamos la solución mediante las fracciones iniciales, no las equivalentes

Más detalles

Fracciones y decimales (páginas 62 66)

Fracciones y decimales (páginas 62 66) A NOMRE FECHA PERÍODO Fracciones y decimales (páginas 6 66) Un decimal que termina, tal como 0, es un decimal terminal Todos los decimales terminales son números racionales 0,000 Un decimal que se repite,

Más detalles

Operaciones básicas con números enteros y con fracciones

Operaciones básicas con números enteros y con fracciones Curso de Acceso CFGS Operaciones básicas con números enteros y con fracciones OPEACIONES CON NÚMEOS ENTEOS Suma de números enteros Cuando tienen el mismo signo Se suman los valores y se deja el signo que

Más detalles

33 ESO. «Es imposible aprender matemáticas sin resolver ejercicios» Godement. Matemático

33 ESO. «Es imposible aprender matemáticas sin resolver ejercicios» Godement. Matemático «Es imposible aprender matemáticas sin resolver ejercicios» ESO Godement. Matemático ÍNDICE: MI QUESITO DIARIO 1. FRACCIONES QUÉ SON?. EQUIVALENCIA Y SIMPLIFICACIÓN. LA FRACCION COMO OPERADOR 4. OPERACIONES

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 0 PRACTICA Números enteros y racionales Calcula: ) ) ) [ )] ) ) ) [ )] ) [ )] d) ) [ ) )] ) ) ) [ )] ) ) ) ) ) ) ) ) [ )] ) [ )] ) ) ) ) ) d)) [ ) )] ) [ ) ] ) 0 ) ) ) Calcula mentalmente:

Más detalles

NÚMEROS REALES. Página 27 REFLEXIONA Y RESUELVE. El paso de Z a Q. El paso de Q a Á

NÚMEROS REALES. Página 27 REFLEXIONA Y RESUELVE. El paso de Z a Q. El paso de Q a Á NÚMEROS REALES Página 7 REFLEXIONA Y RESUELVE El paso de Z a Q Di cuáles de las siguientes ecuaciones se pueden resolver en Z y para cuáles es necesario el conjunto de los números racionales, Q. a) x 0

Más detalles

T. P. Números Racionales: Q. a es igual a 1?, cuándo es menor?, cuándo es mayor?

T. P. Números Racionales: Q. a es igual a 1?, cuándo es menor?, cuándo es mayor? T. P. Números Racionales Q Si a b pertenecen a los enteros, a b SIEMPRE pertenece a los enteros? Exploren las distintas posibilidades (positivos negativos. Den ejemplos de acuerdo con cada caso posible.

Más detalles

ACTIVIDADES MATEMÁTICAS 1º ESO NÚMEROS NATURALES Y DIVISIBILIDAD

ACTIVIDADES MATEMÁTICAS 1º ESO NÚMEROS NATURALES Y DIVISIBILIDAD ACTIVIDADES MATEMÁTICAS 1º ESO NÚMEROS NATURALES Y DIVISIBILIDAD 1. El número 3 es: a) Natural. b) Consecutivo de 4. c) Par. 2. El número 51 es: a) Múltiplo de 2. b) Múltiplo de 3. c) Anterior a 50. 3.

Más detalles

Escribe los números que faltan. Colorea la cifra de las decenas en rojo. Nombre:... Fecha:... Mª Carmen Tabarés

Escribe los números que faltan. Colorea la cifra de las decenas en rojo. Nombre:... Fecha:... Mª Carmen Tabarés Escribe los números que faltan. Colorea la cifra de las decenas en rojo 0 5 9 10 13 17 22 28 31 42 54 66 70 75 81 89 93 Completa estas series. ~ Sumo +2 40 42 ~ Resto 2 40 38 Colorea los ábacos según el

Más detalles

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE 2 ( 12 HORAS)

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE 2 ( 12 HORAS) UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE HORAS) Saberes procedimentales Saberes declarativos Identifica y realiza operaciones básicas con expresiones aritméticas. Jerarquía de las operaciones aritméticas.

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 38 EJERCICIOS Sistemas de numeración 1 Con los símbolos = 1, = 5 y = 20, escribe los números 8, 23, 65 y 118. Crees que es un sistema adecuado para escribir números grandes? Se trata de un

Más detalles