Medidas de centralización

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Medidas de centralización"

Transcripción

1 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos en ella el valor 0.5 y el valor de la varable correspondente. S no aparece el 0.5 nterpolamos. Ordenamos los ntervalos de menor a mayor, y como antes buscamos F = 0.5 para saber en que ntervalo estamos y aplcamos la fórmula: 1 Me = l + a n Debemos dferencar dos casos: Para ntervalos de gual ampltud buscamos aquel que Moda Cuartles Decles Percentles Es el valor de la varable que más veces aparece, es decr el valor de la varable con mayor frecuenca absoluta. Son meddas de poscón cuyo cálculo se realza gual que la medana. Los cuartles son 4, Q 1 (F =0.5),Q (F = 0.5), Q 3 (F 3 = 0.75), y Q 4 (F 4 = 1). Suele ser necesaro nterpolar, aunque la defncón nos dce que el cuartl prmero es el valor de la varable que deja por debajo al menos el 5% de la muestra. Son meddas de poscón cuyo cálculo se realza gual que la medana. Los decles son 10, D 1 (F = 0.1), D (F = 0.),... D 8 (F 8 = 0.8), y D 10 (F 10 = 1). Suele ser necesaro nterpolar, aunque la defncón nos dce que el decl prmero es el valor de la varable que deja por debajo al menos el 10% de la muestra. Son meddas de poscón cuyo cálculo se realza gual que la medana. Los percentles son 100, P 1 (F = 0.01), P 0 (F 0 = 0.),... P 80 (F 80 = 0.8), y P 100 (F 100 = 1). Suele ser necesaro nterpolar, aunque la defncón nos dce que el percentl prmero es el valor de la varable que deja por debajo al menos el 1% de la muestra. presente mayor n 1 1 = n n 1 Mo = l + a 1 + = n n + 1 Para ntervalos de dstnta ampltud calculamos una nueva columna h = n /a, que nos permte comparar los ntervalos equtatv. Buscamos el ntervalo con mayor h 1 1 = h h 1 Mo = l + a 1 + = h h + 1 Buscamos el ntervalo que contene el cuartl buscado como hacíamos en la meda y aplcamos la fórmula: q 1 Q q = l + a 4 Sendo q = 1,, 3, ó 4 n Buscamos el ntervalo que contene el decl buscado como hacíamos en la meda y aplcamos la fórmula: d 1 D d = l + a 10 Sendo d = 1,,..., 10 n Buscamos el ntervalo que contene el percentl buscado como hacíamos en la meda y aplcamos la fórmula: P p = l + a p n Sendo p = 1,, 3,..., 50,..., 100

2 Medda Meddas de dspersón = Varanza S x = = 0 Desvacón típca S x = = = 0 ( x x) Datos no agrupados ( x x) Datos agrupados n n - x n = = x = x n x = x - x x x Recorrdo ntercuartílco R.I = Q 3 Q 1 Q3 Q1 Recorrdo sem ntercuartílco R.S.I = Coefcente de varacón C.V = x Sx 100 Varables bdmensonales, momentos. Momentos a mn = Respecto al orgen x m y n n j j m ab = Respecto a la meda a ( x x) ( y y) j b n j Ejercco 1 En una clínca nfantl se han do anotando durante un mes el número de metros que el nño anda segudo sn caerse el prmer día que comenza a camnar. Se obtuveron los sguentes datos: º d emetros º de nños Calcular: a) La tabla de frecuencas b) Dagrama de barras para frecuencas relatvas c) Dagrama de barras para frecuencas acumuladas absolutas d) Meda artmétca y desvacón típca e) S la dstanca recorrda se ncrementa un 10%, cuál es el número medo y la desvacón típca de metros recorrdos? f) S la dstanca se ncrementa en o,5 metros, cómo varían esos parámetros muestrales? Resolucón apartado a) Para crear la tabla de frecuencas calculamos la frecuenca absoluta acumulada, la frecuenca relatva y la frecuenca relatva acumulada. º de metros º de

3 3 nños(n ) f F Como vemos el sumatoro de las frecuencas absolutas nos da el tamaño muestral y la suma de las frecuencas relatvas nos da 1. Resolucón apartado b y c) Resolucón apartado d) La meda y varanza son: La meda es 4.1 y la varanza S = = Resolucón apartado e) S la dstanca recorrda por el nño aumenta un 10%, lo que hacemos es multplcar la varable por 0.1. S multplcamos una varable por una constante, la meda queda multplcada por esa constante y la varanza multplcada por esa constante al cuadrado.

4 4 Resolucón apartado f) S la dstanca que recorre cada nño se ncrementa en 0.5 metros, lo que ocurre es que le estamos sumando una constante a la varable. En este caso al sumarle una constante a la varable la meda que da sumada por la constante y la varanza no se modfca. La varanza como ya vmos no camba al sumarle una constante. Ejercco Un profesor mparte dos asgnaturas x e y de un msmo curso y establece el aprobado en 5 puntos. En una determnada convocatora los resultados obtendos por los alumnos en cada asgnatura fueron: Puntuacón n x n y a) Cuál de las ods asgnaturas es en térmnos relatvos más dfícl? b) En cuál de las dos asgnaturas la dspersón de las notas es mayor? c) S un alumno saca un 6, en qué asgnatura obtene mejor clasfcacón? Resolucón apartado a) Para compara muestras utlzamos el coefcente de varacón de Pearson, que nos da la relacón entre la varabldad y la meda de la muestra.

5 5 Las meddas que caracterzan a la varable x son: Las meddas que caracterzan a la varable y son: La meda de la varable x es 4.64 y la desvacón típca La meda dela varable y es 5.46 y la desvacón típca es La medana en la asgnatura x es 5, mentras que en la asgnatura y es 4, por lo que la asgnatura y parece ser más dfícl Resolucón apartado b) La varable x presenta mayor grado de dspersón que la varable y. Resolucón apartado c)

6 6 Ejercco 3 Se consdera una varable estadístca x cuyo dagrama de frecuencas acumuladas relatvas aparece representado en la fgura sguente: Calcular: a) La meda b) La varanza c) El porcentaje de observacones que son menores o guales a.5. d) El valor de la muestra tal que un 5% de las observacones sean menores o guales que él. Resolucón apartado a) Para poder calcular la meda debemos conocer culaes son las frecuencas de los dferentes valores que toma la varable estadístca en estudo. La frecuenca relatva acumulada es la frecuenca resultante de sumar las frecuencas relatvas, y por tanto: X 3 F f = 0.5 La meda es.5 Resolucón apartado b) La varanza es:

7 7 Resolucón apartado c) Queremos conocer cual es el tanto por cento de ndvduos de la muestra que están por debajo del valor de la varable.5. Para ella nterpolamos: 1 x Resolucón apartado d) El valor de la varable que deja a la zquerda al menos el 5% de la muestra es el, ya que como vemos hasta ese valor de la varable se acumula ya el 50% de la muestra. Ejercco 3 En un estudo sobre un determnado tpo de plantas se estuda la longtud folar. Los resultados obtendos fueron: x n a) Dbujar el dagrama de barras y el polígono de frecuencas b) Calcular meda medana, moda, varanza y prmer cuartl. c) Representar el hstograma de frecuencas absolutas y el polígono de frecuencas para los ntervalos de clase, , , , d) Para esta agrupacón calcular medda, medana, moda, prmer cuartl, percentl 60 y el rango percentl de valor 4.5.

8 8 Resolucón apartado a) Resolucón apartado b) Calculamos las frecuencas relatvas y relatvas acumuladas: Para calcular el prmer cuartl más exactamente nterpolamos, aunque la defncón nos dce que el prmer cuartl es el valor de la varable que deja a la zquerda al menos al 5% de la muestra. El prmer cuartl se corresponde con el valor 0.5 de la frecuenca acumulada, y por tanto:

9 9 Resolucón apartado c) S agrupamos en ntervalos tenemos que crear una nueva tabla de frecuencas, con una nueva columna con la marca de clase o punto medo de cada ntervalo, y con las nuevas frecuencas asgnadas a cada ntervalo. Tenemos la columna con la marca de clase x, la frecuenca absoluta y absoluta acumulada, la frecuenca relatva y relatva acumulada, y la columna h. Esta nueva varable debemos calcularla sempre que trabajemos con ntervalos de dstnta ampltud para poder calcular la moda. Al ser los ntervalos de dferente ampltud no podemos tener solo en cuenta la frecuenca a la hora de calcular la moda, es necesaro tomar cada ntervalo con su frecuenca pero en relacón a la ampltud de dcho ntervalo. Resolucón apartado d) La meda sufre una pequeña varacón debdo a que al agrupar los datos en ntervalos se perde nformacón, aunque se gane en facldad de cálculo. En el caso de ntervalos para calcular la medana, moda, cuartles, decles y Percentles tenemos fórmulas:

10 10 La moda vene dada por: En prmer lugar buscamos el ntervalo que la contene y que será el ntervalo cuya h sea mayor. Una vez encontrado el ntervalo, que en este caso se corresponde con el ntervalo , aplcamos la fórmula. El prmer cuartl vendrá dado por: En prmer lugar buscamos el ntervalo que lo contene y que será el ntervalo cuya F sea el prmer valor superor a 0.5. Una vez encontrado el ntervalo, que en este caso se corresponde con el ntervalo , aplcamos la fórmula.

11 11 Percentl 60: Lo prmero es localzar el ntervalo que contene al menos el 60% de la muestra y cuya frecuenca relatva absoluta sea la nmedatamente superor a 0.6. En este caso es el ntervalo El rango percentl 4.5. En este caso sabemos el valor de la varable y lo que nos nteresa saber es el porcentaje de muestra que queda por debajo de este valor. Para conocer el ntervalo con el que debemos trabajar buscamos en que ntervalo se encuentra el valor de la varable 4.5 y aplcamos la fórmula:

12 1

13 13 Cuestón S la recta de regresón de y sobre x es y = a 1 x + b 1, y la d ex sobre y es y = = a x + b, Qué expresón tomará el coefcente de correlacón? Aplcarlo al caso de las rectas: Y = x + 3 y = 3 x - 1 El coefcente de correlacón de Pearson vene dado por la raíz del producto de las pendentes o coefcentes de regresón de las rectas de y sobre x y de x sobre y. El problema es que en este caso ambas rectas de regresón están despejadas en funcón de y, o lo que es lo msmo en la recta de x/y hemos nvertdo el coefcente de regresón y por tanto el coefcente de correlacón de Pearson es: En la recta de x/y la varable que debe estar despejada es la x, y por tanto las rectas de regresón son: Cuestón 3 La recta de regresón de y sobre x es y = -x y la de x sobre y es y = - x + 4. Calcular: a) Coefcente de regresón b) Coefcente de correlacón c) Meda de x y de y. d) S la varanza de x es, cuánto vale la varanza de y? Resolucón apartado a) Los coefcentes de regresón son las pendentes de las rectas de regresón:

14 14 Resolucón apartado b) El coefcente de correlacón es la raíz cuadrada del producto de las pendentes: Resolucón apartado c) Las dos rectas de regresón se cortan al menos en un punto, el punto ( x, y ) ambas ecuacones obtendremos ambas medas:. S resolvemos el sstema formado por Resolucón apartado d)

15 15 Cuestón 3 En un estudo sobre de termnadas parcelas se obtuveron los sguentes datos: Resolucón La relacón funconal más empleada es la lneal. Para saber s una relacón funconal es buena utlzamos el coefcente de correlacón de Pearson.

16 16 Según esto la varable que mejor expresa y sería la varable x. Vamos ahora a calcular los valores de y esperados para los valores de x y z dados. Prevamente y a partr de los datos aportados por el problema calculamos las rectas de regresón de y/x y la de y/z: Al calcular y a partr de la varable x obtenemos un valor absurdo, a pesar que la relacón funconal de tpo lneal exstente entre ellas era muy buena. Sn embargo la relacón entre z e y era peor pero al fjarnos en los datos dados en el problema el resultado obtendo con esta relacón es mucho mejor. Esta contradccón aparente tene una fácl explcacón, la relacón entre x e y es muy buena en el rango estudado cuando extrapolamos para obtener un resultado la relacón ya no es buena. mentras que en la relacón entre z e y es gual de buena cuando nterpolamos y cuando extrapolamos. Cuestón 4 En un estudo de regresón lneal entre las varables x peso de una persona e y presón sstólca, se encontraron las rectas de regresón con ecuacones: Y = 5 x + 1 Y = 0.01 x + 4 a) Cuál debería ser la recta de regresón de y/x?, y la de x/y? B) Habría una dependenca lneal grande entre ambas varables x e y? Resolucón La recta de x/y está despejada en funcón de y:

17 17 Cuestón 5 En un estudo de regresón lneal entre dos varables estadístcas (x, y) se determnó la recta de regresón de y sobre x, y de x sobre y. Supongamos que en la recta de y/x cuando x = 4 obtenemos un valor para y = 7, mentras que en la recta de regresón de x/y cuando y = 7 obtenemos un valor para x = 4. Puede garantzarse que r es necesaramente ± 1?. S es así justfcarlo, y s no, explcar que puede decrse sobre los valores de las medas artmétcas de x y de y. Resolucón Las dos rectas de regresón ya vmos que se cortan en al menos un punto que es el punto ( x, y ) podemos hacer dos suposcones: El punto (, y ) coefcente de correlacón de Pearson.. En este caso x = (4, 7). En este caso no podemos afrmar nada sobre el valor que puede tomar el El punto ( x, y ) (4, 7). En este caso ambas rectas pasan por el punto (, y ) x y por el punto (4, 7). Dos rectas que tengan dos puntos comunes concden. En este caso podemos afrmar que el valor del coefcente de correlacón de Pearson es ± 1. Cuestón 6 Cuáles de los sguentes pares pueden ser los coefcentes de regresón de y sobre x y de x sobre y en este orden de dos rectas de regresón?,, (-3, -5), 3,, 3,. Explcar por qué y calcular r cuando sea posble. Resolucón

18 18 Cuestón 7 (examen febrero 96) En el estudo de la asocacón de dos varables (X, Y) se obtuveron los datos (, 3), (3, 4). Calcular el coefcente de correlacón lneal para esta muestra de datos. puede afrmarse a partr de los datos que exste una buena relacón lneal entre las varables en la poblacón? Cuestón 8 Dada una varable bdmensonal X e Y que se estuda en 0 ndvduos, puede ocurrr que una muestra presente coefcente de correlacón de Pearson gual a cero?. y un coefcente V de Kramer dstnto de cero? Cuestón 9

Descripción de una variable

Descripción de una variable Descrpcón de una varable Tema. Defncones fundamentales. Tabla de frecuencas. Datos agrupados. Meddas de poscón Meddas de tendenca central: meda, medana, moda Ignaco Cascos Depto. Estadístca, Unversdad

Más detalles

INTRODUCCIÓN. Técnicas estadísticas

INTRODUCCIÓN. Técnicas estadísticas Tema : Estadístca Descrptva Undmensonal ITRODUCCIÓ Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. (Ejemplo: lómetros recorrdos en un ntervalo de tempo a una velocdad

Más detalles

Bloque 5. Probabilidad y Estadística Tema 2. Estadística descriptiva Ejercicios resueltos

Bloque 5. Probabilidad y Estadística Tema 2. Estadística descriptiva Ejercicios resueltos Bloque 5. Probabldad y Estadístca Tema. Estadístca descrptva Ejerccos resueltos 5.-1 Dada la sguente tabla de ngresos mensuales, calcular la meda, la medana y el ntervalo modal. Ingresos Frecuenca Menos

Más detalles

EJERCICIOS RESUELTOS TEMA 2

EJERCICIOS RESUELTOS TEMA 2 EJERCICIOS RESUELTOS TEMA.1. La Moda, para el grupo de Varones de la Tabla 1, es: A) 4,5; B) 17; C) 60.. Con los datos de la Tabla 1, la meda en para las Mujeres es: A) gual a la meda para los Varones;

Más detalles

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1 Tema 8 - Estadístca - Matemátcas CCSSI 1º Bachllerato 1 TEMA 8 - ESTADÍSTICA 8.1 NOCIONES GENERALES DE ESTADÍSTICA 8.1.1 INTRODUCCIÓN Objetvo: La estadístca tene por objeto el desarrollo de técncas para

Más detalles

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos. ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

Tema 1: Análisis de datos unidimensionales

Tema 1: Análisis de datos unidimensionales Tema : Análss de datos undmensonales. Varables estadístcas undmensonales. Representacones gráfcas.. Característcas de las dstrbucones de frecuencas undmensonales.. Varables estadístcas undmensonales. Representacones

Más detalles

TEMA 10: ESTADÍSTICA

TEMA 10: ESTADÍSTICA TEMA 10: La Estadístca es la parte de las matemátcas que se ocupa de recoger, organzar y analzar grandes cantdades de datos para estudar alguna característca de un colectvo. 1. VARIABLES S UIDIMESIOALES

Más detalles

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio.

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio. Tema 9 - Estadístca - Matemátcas B 4º E.S.O. 1 TEMA 9 - ESTADÍSTICA 9.1 DOS RAMAS DE LA ESTADÍSTICA 9.1.1 - INTRODUCCIÓN La estadístca tene por objeto el desarrollo de técncas para el conocmento numérco

Más detalles

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1).

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1). TRABAJO 1: Varables Estadístcas Undmensonales (Tema 1). Técncas Cuanttatvas I. Curso 2016/2017. APELLIDOS: NOMBRE: GRADO: GRUPO: DNI (o NIE): A: B: C: D: En los enuncados de los ejerccos que sguen aparecen

Más detalles

3. VARIABLES ALEATORIAS.

3. VARIABLES ALEATORIAS. 3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)

Más detalles

Media es la suma de todas las observaciones dividida por el tamaño de la muestra.

Media es la suma de todas las observaciones dividida por el tamaño de la muestra. Estadístcos Los estadístcos son valores calculados con los datos de una varable cuanttatva y que mden alguna de las característcas de la dstrbucón muestral. Las prncpales característcas son: tendenca central,

Más detalles

Además podemos considerar diferentes tipos de medidas de resumen. Entre ellas tenemos:

Además podemos considerar diferentes tipos de medidas de resumen. Entre ellas tenemos: MEDIDAS DE POSICIÓN Y DISPERSIÓN Estadístca En la clase anteror vmos como resumr la nformacón contenda en un conjunto de datos medante tablas y gráfcos. En esta clase vamos a ver como resumrlos medante

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Prmer Semestre. EstadísTICa Curso Prmero Graduado en Geomátca y Topografía Escuela Técnca Superor de Ingeneros en Topografía, Geodesa y Cartografía. Unversdad Poltécnca de Madrd

Más detalles

Medidas de Tendencia Central y de Variabilidad

Medidas de Tendencia Central y de Variabilidad Meddas de Tendenca Central y de Varabldad Contendos Meddas descrptvas de forma: curtoss y asmetría Meddas de tendenca central: meda, medana y moda Meddas de dspersón: rango, varanza y desvacón estándar.

Más detalles

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ

Más detalles

Regresión Lineal Simple y Correlación

Regresión Lineal Simple y Correlación 4 Regresón Lneal Smple y Correlacón 4.1. Fundamentos teórcos 4.1.1. Regresón La regresón es la parte de la estadístca que trata de determnar la posble relacón entre una varable numérca, que suele llamarse

Más detalles

Ejercicio nº 1. a) Elabora una tabla de frecuencias. b) Representa gráficamente la distribución.

Ejercicio nº 1. a) Elabora una tabla de frecuencias. b) Representa gráficamente la distribución. Ejercco nº En una empresa de teleonía están nteresados en saber cuál es el número de aparatos teleóncos (ncludos teléonos móvles) que se tene en las vvendas. Se hace una encuesta y, hasta ahora, han recbdo

Más detalles

Correlación y regresión lineal simple

Correlación y regresión lineal simple . Regresón lneal smple Correlacón y regresón lneal smple. Introduccón La correlacón entre dos varables ( e Y) se refere a la relacón exstente entre ellas de tal manera que a determnados valores de se asocan

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Unversdad de Cádz Departamento de Matemátcas MATEMÁTICAS para estudantes de prmer curso de facultades y escuelas técncas Tema 13 Dstrbucones bdmensonales. Regresón y correlacón lneal Elaborado por la Profesora

Más detalles

LECTURA N 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) TEMA 14: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION

LECTURA N 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) TEMA 14: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION Unversdad Católca Los Ángeles de Chmbote LECTURA N 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) TEMA 4: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION. DEFINICION Las meddas estadístcas son meddas de resumen

Más detalles

1. Concepto y origen de la estadística Conceptos básicos Tablas estadísticas: recuento Representación de graficas...

1. Concepto y origen de la estadística Conceptos básicos Tablas estadísticas: recuento Representación de graficas... TEMA. ESTADÍSTICA DESCRIPTIVA.. Concepto y orgen de la estadístca..... Conceptos báscos..... Tablas estadístcas: recuento..... Representacón de grafcas.... 6.. Varables cualtatvas... 6.. Varables cuanttatvas

Más detalles

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales ESTADÍSTICA DESCRIPTIVA Métodos Estadístcos Aplcados a las Audtorías Socolaborales Francsco Álvarez González http://www.uca.es/serv/fag/fct/ francsco.alvarez@uca.es Bajo el térmno Estadístca Descrptva

Más detalles

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA. LA MEDIANA: Es una medda de tendenca central que dvde al total de n observacones debdamente ordenadas

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

Organización y resumen de datos cuantitativos

Organización y resumen de datos cuantitativos Organzacón y resumen de datos cuanttatvos Contendos Organzacón de datos cuanttatvos: dagrama de tallos y hojas, tablas de frecuencas. Hstogramas. Polígonos. Ojvas ORGANIZACIÓN Y RESUMEN DE DATOS CUANTITATIVOS

Más detalles

Maestría en Administración. Medidas Descriptivas. Formulario e Interpretación. Dr. Francisco Javier Cruz Ariza

Maestría en Administración. Medidas Descriptivas. Formulario e Interpretación. Dr. Francisco Javier Cruz Ariza Maestría en Admnstracón Meddas Descrptvas Formularo e Interpretacón Dr. Francsco Javer Cruz Arza A contnuacón mostramos el foco de atencón de las dstntas meddas que abordaremos en el presente manual. El

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA 1. S A es un suceso de probabldad 0.3, la probabldad de su suceso contraro es: a) 0. b) 1.0 c) 0.7 (Convocatora juno 006. Eamen tpo H) S A es un suceso, la probabldad de su suceso

Más detalles

ESTADÍSTICA DESCRIPTIVA Y BIDIMENSIONAL

ESTADÍSTICA DESCRIPTIVA Y BIDIMENSIONAL ESTADÍSTICA DESCRIPTIVA Y BIDIMESIOAL ÍDICE. Defncón de Etadítca. Concepto generale 3. Tratamento de la nformacón 4. Repreentacón de lo dato. Medda de centralzacón 6. Medda de dperón 7. Etadítca bdmenonal

Más detalles

-.GEOMETRÍA.- a) 37 cm y 45 cm. b) 16 cm y 30 cm. En estos dos, se dan la hipotenusa y un cateto, y se pide el otro cateto:

-.GEOMETRÍA.- a) 37 cm y 45 cm. b) 16 cm y 30 cm. En estos dos, se dan la hipotenusa y un cateto, y se pide el otro cateto: -.GEOMETRÍA.- Ejercco nº 1.- Calcula el lado que falta en este trángulo rectángulo: Ejercco nº 2.- En los sguentes rectángulos, se dan dos catetos y se pde la hpotenusa (s su medda no es exacta, con una

Más detalles

Muestra: son datos de corte transversal correspondientes a 120 familias españolas.

Muestra: son datos de corte transversal correspondientes a 120 familias españolas. Capítulo II: El Modelo Lneal Clásco - Estmacón Aplcacones Informátcas 3. APLICACIONES INFORMÁTICAS Fchero : cp.wf (modelo de regresón smple) Seres: : consumo famlar mensual en mles de pesetas RENTA: renta

Más detalles

LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION

LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION Unversdad Católca Los Ángeles de Chmbote LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION 1. DEFINICION: Las meddas estadístcas

Más detalles

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos Reconclacón de datos expermentales MI5022 Análss y smulacón de procesos mneralúgcos Balances Balances en una celda de flotacón En torno a una celda de flotacón (o un crcuto) se pueden escrbr los sguentes

Más detalles

REGRESION Y CORRELACION

REGRESION Y CORRELACION nav Estadístca (complementos) 1 REGRESION Y CORRELACION Fórmulas báscas en la regresón lneal smple Como ejemplo de análss de regresón, descrbremos el caso de Pzzería Armand, cadena de restaurantes de comda

Más detalles

4ºB ESO Capítulo 12: Estadística LibrosMareaVerde.tk www.apuntesmareaverde.org.es

4ºB ESO Capítulo 12: Estadística LibrosMareaVerde.tk www.apuntesmareaverde.org.es 4ºB ESO Capítulo 1: Estadístca 350 Índce 1. POBLACIÓ Y MUESTRA. VARIABLES ESTADÍSTICAS 1.1. POBLACIÓ 1.. MUESTRA 1.3. IDIVIDUO 1.4. VARIABLE ESTADÍSTICA. TABLAS DE FRECUECIAS.1. FRECUECIA ABSOLUTA.. FRECUECIA

Más detalles

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas IES Menéndez Tolosa (La Línea) Físca y Químca - 1º Bach - Gráfcas 1 Indca qué tpo de relacón exste entre las magntudes representadas en la sguente gráfca: La gráfca es una línea recta que no pasa por el

Más detalles

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA . El Método de Dferencas Fntas El Método consste en una aproxmacón de las dervadas parcales por expresones algebracas con los valores de

Más detalles

1. Lección 7 - Rentas - Valoración (Continuación)

1. Lección 7 - Rentas - Valoración (Continuación) Apuntes: Matemátcas Fnanceras 1. Leccón 7 - Rentas - Valoracón (Contnuacón) 1.1. Valoracón de Rentas: Constantes y Dferdas 1.1.1. Renta Temporal y Pospagable En este caso, el orgen de la renta es un momento

Más detalles

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL.

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. Concepto de varable aleatora. Se llama varable aleatora a toda aplcacón que asoca a cada elemento del espaco muestral de un expermento, un número real.

Más detalles

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS TEMA NÚMEROS COMPLEJOS. EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS DEFINICIONES Al resolver ecuacones del tpo : x + = 0 x = ± que no tene solucón en los números reales. Los números complejos nacen del deseo

Más detalles

REGRESION LINEAL SIMPLE

REGRESION LINEAL SIMPLE REGREION LINEAL IMPLE Jorge Galbat Resco e dspone de una mustra de observacones formadas por pares de varables: (x 1, y 1 ) (x, y ).. (x n, y n ) A través de esta muestra, se desea estudar la relacón exstente

Más detalles

Efectos fijos o aleatorios: test de especificación

Efectos fijos o aleatorios: test de especificación Cómo car?: Montero. R (2011): Efectos fjos o aleatoros: test de especfcacón. Documentos de Trabajo en Economía Aplcada. Unversdad de Granada. España Efectos fjos o aleatoros: test de especfcacón Roberto

Más detalles

ESTADÍSTICA (GRUPO 12)

ESTADÍSTICA (GRUPO 12) ESTADÍSTICA (GRUPO 12) CAPÍTULO II.- ANÁLISIS DE UNA CARACTERÍSTICA (DISTRIBUCIONES UNIDIMENSIONALES) TEMA 7.- MEDIDAS DE CONCENTRACIÓN. DIPLOMATURA EN CIENCIAS EMPRESARIALES UNIVERSIDAD DE SEVILLA 1.

Más detalles

EXPERIMENTACIÓN COMERCIAL(I)

EXPERIMENTACIÓN COMERCIAL(I) EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado

Más detalles

Análisis de Regresión y Correlación

Análisis de Regresión y Correlación 1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón

Más detalles

a) Qué población (la de hombres o la de mujeres) presenta un salario medio mayor? b) Qué porcentaje de varones gana más de 900?

a) Qué población (la de hombres o la de mujeres) presenta un salario medio mayor? b) Qué porcentaje de varones gana más de 900? EJERCICIO 1. A contnuacón tene dos dstrbucones por sexo y salaro declarado en el prmer empleo tras obtener la lcencatura de un grupo de ttulados por la UNED. Salaro en Hombres en % Mujeres en % < de 600

Más detalles

Tema 1.3_A La media y la desviación estándar

Tema 1.3_A La media y la desviación estándar Curso 0-03 Grado en Físca Herramentas Computaconales Tema.3_A La meda y la desvacón estándar Dónde estudar el tema.3_a: Capítulo 4. J.R. Taylor, Error Analyss. Unv. cence Books, ausalto, Calforna 997.

Más detalles

PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES

PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE AÑOS EXÁMENES PROPUESTOS Y RESUELTOS DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES CONVOCATORIAS DE --- F Jménez Gómez Este cuaderno

Más detalles

CAPITULO 3.- ANÁLISIS CONJUNTO DE DOS VARIABLES. 3.1 Presentación de los datos. Tablas de doble entrada.

CAPITULO 3.- ANÁLISIS CONJUNTO DE DOS VARIABLES. 3.1 Presentación de los datos. Tablas de doble entrada. Introduccón a la Estadístca Empresaral Capítulo - Análss conjunto de dos varables Jesús ánchez Fernández CAPITULO - AÁLII COJUTO DE DO VARIABLE Presentacón de los datos Tablas de doble entrada En el capítulo

Más detalles

PREGUNTAS TIPO TEST Y EJERCICIOS PRÁCTICOS PROPUESTOS EN EXÁMENES DE LOS CAPÍTULOS 2, 3 Y 4 (DISTRIBUCIONES DE FRECUENCIAS UNIDIMENSIONALES )

PREGUNTAS TIPO TEST Y EJERCICIOS PRÁCTICOS PROPUESTOS EN EXÁMENES DE LOS CAPÍTULOS 2, 3 Y 4 (DISTRIBUCIONES DE FRECUENCIAS UNIDIMENSIONALES ) TUTORÍA DE ITRODUCCIÓ A LA ESTADÍSTICA. (º A.D.E.) e-mal: mozas@el.uned.es PREGUTAS TIPO TEST Y EJERCICIOS PRÁCTICOS PROPUESTOS E EXÁMEES DE LOS CAPÍTULOS, Y 4 (DISTRIBUCIOES DE FRECUECIAS UIDIMESIOALES

Más detalles

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS Ejemplos y ejercicios de Estadística Descriptiva yanálisis de Datos Diplomatura en Estadística Curso 007/08 Descripción estadística de una variable. Ejemplos

Más detalles

Pruebas Estadísticas de Números Pseudoaleatorios

Pruebas Estadísticas de Números Pseudoaleatorios Pruebas Estadístcas de Números Pseudoaleatoros Prueba de meda Consste en verfcar que los números generados tengan una meda estadístcamente gual a, de esta manera, se analza la sguente hpótess: H 0 : =

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

4. REPRESENTACIONES GRÁFICAS PARA DATOS CATEGÓRICOS.

4. REPRESENTACIONES GRÁFICAS PARA DATOS CATEGÓRICOS. 4. REPRESETACIOES GRÁFICAS PARA DATOS CATEGÓRICOS. Cuando se manejan fenómenos categórcos, se pueden agrupar las observacones en tablas de resumen, para después representarlas en forma gráfca como dagramas

Más detalles

Pregunta Hoy está nublado, cuál es la probabilidad de que mañana continúe nublado? cuál es la probabilidad de que está nublado pasado mañana?

Pregunta Hoy está nublado, cuál es la probabilidad de que mañana continúe nublado? cuál es la probabilidad de que está nublado pasado mañana? Cadenas de Marov Después de mucho estudo sobre el clma, hemos vsto que s un día está soleado, en el 70% de los casos el día sguente contnua soleado y en el 30% se pone nublado. En térmnos de probabldad,

Más detalles

Matemáticas aplicadas a las ciencias sociales Estadística y Probabilidad 1º de bachillerato

Matemáticas aplicadas a las ciencias sociales Estadística y Probabilidad 1º de bachillerato Departamento de Matemátcas Matemátcas aplcadas a las cencas socales Estadístca y Probabldad º de bachllerato Matemátcas aplcadas a las cencas socales I, pág. de 48 Departamento de Matemátcas TEMA : ESTADÍSTICA

Más detalles

APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES

APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES Documento Preparado para la Cámara de Fondos de Inversón Versón 203 Por Rodrgo Matarrta Venegas 23 de Setembre del 204 2 Análss Industral

Más detalles

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

Capítulo III Medidas de posición y de dispersión

Capítulo III Medidas de posición y de dispersión Capítulo III Meddas de poscón y de dspersón Introduccón Hasta ahora, para descrbr un conjunto de datos, se han empleado tablas y gráfcos. Estos son útles para dar rápdamente una vsón general del comportamento

Más detalles

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández MEMORIA DE LA ESTANCIA CON EL GRUPO DE VISIÓN Y COLOR DEL INSTITUTO UNIVERSITARIO DE FÍSICA APLICADA A LAS CIENCIAS TECNOLÓGICAS. UNIVERSIDAD DE ALICANTE. 1-16 de Novembre de 01 Francsco Javer Burgos Fernández

Más detalles

ENCUESTA ESTRUCTURAL DE TRANSPORTE POR CARRETERA AÑO CONTABLE 2011 INSTITUTO NACIONAL DE ESTADÍSTICAS

ENCUESTA ESTRUCTURAL DE TRANSPORTE POR CARRETERA AÑO CONTABLE 2011 INSTITUTO NACIONAL DE ESTADÍSTICAS METODOLOGÍA ENCUESTA ESTRUCTURAL DE TRANSPORTE POR CARRETERA AÑO CONTABLE 0 INSTITUTO NACIONAL DE ESTADÍSTICAS 03 ÍNDICE I. METODOLOGÍA ENCUESTA ESTRUCTURAL DE TRANSPORTE INTERURBANO DE PASAJEROS POR CARRETERA.

Más detalles

Matemáticas A 4º E.S.O. pág. 1

Matemáticas A 4º E.S.O. pág. 1 Matemátcas A º E.S.O. pág. HOJA : ESTADÍSTICA º.- Agrupa en ntervalos y construye una tabla de frecuencas (con la marca de clase ncluda) y la frecuenca absoluta de las sguentes alturas, meddas en centímetros,

Más detalles

ANÁLISIS EXPLORATORIO DE DATOS

ANÁLISIS EXPLORATORIO DE DATOS ANÁLISIS EXPLORATORIO DE DATOS 1. INTRODUCCIÓN HISTÓRICA 2 1.1 La Estadístca como cenca 2 1.2 Algunos problemas que resuelve la Estadístca 2 2. INTRODUCCIÓN A LA ESTADÍSTICA 3 2.1. Concepto y Objetvo de

Más detalles

EJERCICIO 1 1. VERDADERO 2. VERDADERO (Esta afirmación no es cierta en el caso del modelo general). 3. En el modelo lineal general

EJERCICIO 1 1. VERDADERO 2. VERDADERO (Esta afirmación no es cierta en el caso del modelo general). 3. En el modelo lineal general PRÁCTICA 6: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN EJERCICIO. VERDADERO. VERDADERO (Esta afrmacón no es certa en el caso del modelo general. 3. En el modelo lneal general Y =X β + ε, explcar la forma que

Más detalles

Regresión y Correlación

Regresión y Correlación Regresón Correlacón 1.- El número de turstas (en mllones) entrados en España mensualmente durante los años 001 00 se epone en la sguente estadístca. Nº Turstas 001,76,6,9 3,8 4,4 4,81 8,93 9,98 5,91 4,34,6

Más detalles

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1 Escuela de Ingenería Comercal Ayudantía # 01, Conceptos Generales, Modelo de Regresón Profesor: Carlos R. Ptta 1 1 cptta@spm.uach.cl Escuela de Ingenería Comercal Ayudantía 01 Parte 01: Comentes Señale

Más detalles

METODOLOGÍA MUESTRAL ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS

METODOLOGÍA MUESTRAL ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS SUBDIRECCIÓN TÉCNICA DEPARTAMENTO DE INVESTIGACIÓN Y DESARROLLO ÁREA DE ANÁLISIS ESTADÍSTICAS ECONÓMICAS METODOLOGÍA MUESTRAL ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS Santago, Enero de 2008. Departamento

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22 DOCENTE: LIC.GUSTO DOLFO JUEZ GUI DE TJO PCTICO Nº 22 CES: POFESODO Y LICENCITU EN IOLOGI PGIN Nº 132 GUIS DE CTIIDDES Y TJO PCTICO Nº 22 OJETIOS: Lograr que el lumno: Interprete la nformacón de un vector.

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA ERMODINÁMICA AANZADA Undad III: ermodnámca del Equlbro Fugacdad Fugacdad para gases, líqudos y sóldos Datos volumétrcos 9/7/ Rafael Gamero Fugacdad ropedades con varables ndependentes y ln f ' Con la dfncón

Más detalles

UNIVERSIDAD DE SONORA

UNIVERSIDAD DE SONORA UNIVERSIDAD DE SONORA Dvsón de Cencas Exactas y Naturales Departamento de Matemátcas Estadístca Aplcada a las Lcencaturas: Admnstracón, Contaduría e Inormátca Admnstratva. Fascículo II: Estadístca Descrptva

Más detalles

MÉTODOS PARA PROBAR NUMEROS

MÉTODOS PARA PROBAR NUMEROS Capítulo 3 ALEATORIOS MÉTODOS PARA PROBAR NUMEROS III.1 Introduccón Exsten algunos métodos dsponbles para verfcar varos aspectos de la caldad de los números pseudoaleatoros. S no exstera un generador partcular

Más detalles

Tema 21: Distribución muestral de un estadístico

Tema 21: Distribución muestral de un estadístico Análss de Datos I Esquema del Tema 21 Tema 21: Dstrbucón muestral de un estadístco 1. INTRODUCCIÓN 2. DISTRIBUCIÓN MUESTRAL DE LA MEDIA 3. DISTRIBUCIÓN MUESTRAL DE LA PROPORCIÓN Bblografía * : Tema 15

Más detalles

Facultad de Ingeniería División de Ciencias Básicas Coordinación de Ciencias Aplicadas Departamento de Probabilidad y Estadística

Facultad de Ingeniería División de Ciencias Básicas Coordinación de Ciencias Aplicadas Departamento de Probabilidad y Estadística Facultad de Ingenería Dvsón de Cencas Báscas Coordnacón de Cencas Aplcadas Departamento de Probabldad y Estadístca Probabldad y Estadístca Prmer Eamen Fnal Tpo A Semestre: 00- Duracón máma:. h. Consderar

Más detalles

Estadística Empresarial I

Estadística Empresarial I Estadístca Empresaral I Tema Concepto de Estadístca EE I - Carlos G. García González - ULL Qué es la Estadístca? Concepto de Estadístca: La Estadístca forma parte de los métodos cuanttatvos que utlza la

Más detalles

CAPITULO CUATRO MEDIDAS DE DISPERSION, ASIMETRIA Y CURTOSIS

CAPITULO CUATRO MEDIDAS DE DISPERSION, ASIMETRIA Y CURTOSIS CAPITULO CUATRO MEDIDAS DE DISPERSION, ASIMETRIA Y CURTOSIS El conocmento de las meddas de centralzacón no es sufcente para caracterzar completamente a una dstrbucón por ejemplo: s las edades medas de

Más detalles

4 E.M. Curso: NOMBRE: 4º. Colegio SSCC Concepción - Depto. de Matemáticas. Guía N. Unidad de Aprendizaje: Estadísticas

4 E.M. Curso: NOMBRE: 4º. Colegio SSCC Concepción - Depto. de Matemáticas. Guía N. Unidad de Aprendizaje: Estadísticas Curso: Colego SSCC Concepcón - Depto. de Matemátcas Undad de Aprendzaje: Estadístcas Capacdades/Destreza/Habldad: Raconamento Matemátco/ Comprensón, Aplcacón/ Valores/ Acttudes: Respeto, Soldardad, Responsabldad

Más detalles

Capítulo 3. SISTEMAS DE PARTÍCULAS

Capítulo 3. SISTEMAS DE PARTÍCULAS Capítulo 3. SISTEMAS DE PARTÍCULAS 3.1. Introduccón En la mayoría de los sstemas partculados esten partículas de dstnto tamaño tal como se observa en la Fgura 3.1. Muchos de los métodos que mden tamaño

Más detalles

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado Análss de la varanza con dos factores. Introduccón Hasta ahora se ha vsto el modelo de análss de la varanza con un factor que es una varable cualtatva cuyas categorías srven para clasfcar las meddas de

Más detalles

Dicha tabla adopta la forma del diagrama de árbol del dibujo. En éste, a cada uno de los sucesos A y A c se les ha asociado los sucesos B y B c.

Dicha tabla adopta la forma del diagrama de árbol del dibujo. En éste, a cada uno de los sucesos A y A c se les ha asociado los sucesos B y B c. Estadístca robablístca 6. Tablas de contngenca y dagramas de árbol. En los problemas de probabldad y en especal en los de probabldad condconada, resulta nteresante y práctco organzar la nformacón en una

Más detalles

T. 9 El modelo de regresión lineal

T. 9 El modelo de regresión lineal 1 T. 9 El modelo de regresón lneal 1. Conceptos báscos sobre el análss de regresón lneal. Ajuste de la recta de regresón 3. Bondad de ajuste del modelo de regresón Modelos predctvos o de regresón: la representacón

Más detalles

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS Edgar Acuña Fernández Departamento de Matemátcas Unversdad de Puerto Rco Recnto Unverstaro de Mayagüez Edgar Acuña Analss de Regreson Regresón con varables

Más detalles

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia Investgacón y Técncas de Mercado Prevsón de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): s de Tendenca Profesor: Ramón Mahía Curso 00-003 I.- Introduccón Hasta el momento,

Más detalles

Es el movimiento periódico de un punto material a un lado y a otro de su posición en equilibrio.

Es el movimiento periódico de un punto material a un lado y a otro de su posición en equilibrio. 1 Movmento Vbratoro Tema 8.- Ondas, Sondo y Luz Movmento Peródco Un móvl posee un movmento peródco cuando en ntervalos de tempo guales pasa por el msmo punto del espaco sempre con las msmas característcas

Más detalles

CESMA BUSINESS SCHOOL

CESMA BUSINESS SCHOOL CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 4 RENTAS y MÉTODOS DE AMORTIZACIÓN Javer Blbao García 1 1.- Introduccón Defncón: Conjunto de captales con vencmentos equdstantes de tempo. Para que exsta

Más detalles

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA Alca Maroto, Rcard Boqué, Jord Ru, F. Xaver Rus Departamento de Químca Analítca y Químca Orgánca Unverstat Rovra Vrgl. Pl. Imperal Tàrraco,

Más detalles

Análisis de error y tratamiento de datos obtenidos en el laboratorio

Análisis de error y tratamiento de datos obtenidos en el laboratorio Análss de error tratamento de datos obtendos en el laboratoro ITRODUCCIÓ Todas las meddas epermentales venen afectadas de una certa mprecsón nevtable debda a las mperfeccones del aparato de medda, o a

Más detalles

T. 5 Estadísticos de forma de la distribución

T. 5 Estadísticos de forma de la distribución T. 5 Estadístcos de forma de la dstrbucón 1 1. Asmetría 2. Apuntamento o curtoss Ya ha sdo abordado en temas precedentes el análss de la forma de la dstrbucón de frecuencas desde una aproxmacón gráfca.

Más detalles

TÉCNICAS AUXILIARES DE LABORATORIO

TÉCNICAS AUXILIARES DE LABORATORIO TÉCNICAS AUXILIARES DE LABORATORIO I.- ERRORES 1.- Introduccón Todas las meddas epermentales venen afectadas de una mprecsón nherente al proceso de medda. Puesto que en éste se trata, báscamente, de comparar

Más detalles

PORTAFOLIO DE TRES ACTIVOS FINANCIEROS

PORTAFOLIO DE TRES ACTIVOS FINANCIEROS PORTAFOLIO DE TRES ACTIVOS FINANCIEROS Contendo:. Introduccón.. Fondos Mutuos. Rendmento y Resgo.. Parámetros estadístcos de un Portafolo de Tres Actvos. a) El Retorno de un Portafolo. b) El Resgo de un

Más detalles

Elaboración de Tablas ó Cuadros. La elaboración de tablas o cuadros, facilita el análisis y la presentación de la información.

Elaboración de Tablas ó Cuadros. La elaboración de tablas o cuadros, facilita el análisis y la presentación de la información. Elaboracón de Tablas ó Cuadros La elaboracón de tablas o cuadros, faclta el análss la presentacón de la nformacón. Para elaborar los cuadros, se debe, antes que todo, dentfcar las varables, característcas

Más detalles

Capacidad de Procesos según ISO 9000 Ing o. Angel Francisco Arvelo

Capacidad de Procesos según ISO 9000 Ing o. Angel Francisco Arvelo EVALUACION DE LA CAPACIDAD DE CALIDAD DE UN PROCESO INDUSTRIAL METODOS ESTADISTICOS SUGERIDOS POR LA NORMA ISO 9000 ANGEL FRANCISCO ARVELO L. Ingenero Industral Master en Estadístca Matemátca CARACAS,

Más detalles

Guía de Electrodinámica

Guía de Electrodinámica INSTITITO NACIONAL Dpto. de Físca 4 plan electvo Marcel López U. 05 Guía de Electrodnámca Objetvo: - econocer la fuerza eléctrca, campo eléctrco y potencal eléctrco generado por cargas puntuales. - Calculan

Más detalles

Cuaderno de actividades 4º ESO

Cuaderno de actividades 4º ESO Estadístca Undmensonal 1 Conceptos báscos. Cuaderno de actvdades º ESO Cualquer elemento o ente que sea portador de nformacón sobre alguna propedad en la cual se está nteresado se denomna ndvduo. El conjunto

Más detalles

TEMA 8: PRÉSTAMOS ÍNDICE

TEMA 8: PRÉSTAMOS ÍNDICE TEM 8: PRÉSTMOS ÍNDICE 1. CONCEPTO DE PRÉSTMO: SISTEMS DE MORTIZCIÓN DE PRÉSTMOS... 1 2. NOMENCLTUR PR PRÉSTMOS DE MORTIZCIÓN FRCCIOND... 3 3. CUDRO DE MORTIZCIÓN GENERL... 3 4. MORTIZCIÓN DE PRÉSTMO MEDINTE

Más detalles

Procesamiento Digital de Imágenes. Pablo Roncagliolo B. Nº 17

Procesamiento Digital de Imágenes. Pablo Roncagliolo B. Nº 17 Procesamento Dgtal de mágenes Pablo Roncaglolo B. Nº 7 Orden de las clases... CAPTURA, DGTALZACON Y ADQUSCON DE MAGENES TRATAMENTO ESPACAL DE MAGENES TRATAMENTO EN FRECUENCA DE MAGENES RESTAURACON DE MAGENES

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

TEMA 4 Variables aleatorias discretas Esperanza y varianza

TEMA 4 Variables aleatorias discretas Esperanza y varianza Métodos Estadístcos para la Ingenería Curso007/08 Felpe Ramírez Ingenería Técnca Químca Industral TEMA 4 Varables aleatoras dscretas Esperanza y varanza La Probabldad es la verdadera guía de la vda. Ccerón

Más detalles