Práctica 2. Si se quiere indicar el tipo del objeto simbólico se puede escribir:
|
|
- Claudia Martin Méndez
- hace 2 años
- Vistas:
Transcripción
1 PRÁCTICA FUNCIONES DE UNA VARIABLE Prácticas Matlab Práctica Objetivos Dibujar gráficas de funciones definidas a trozos con el comando Plot. Dibujar funciones implícitas con el comando ezplot. Calcular límites de funciones en puntos concretos de su dominio. Representar gráficas de funciones Comandos de Matlab Para construir objetos simbólicos: syms arg1 arg... Es la forma abreviada de escribir: arg1 = sym('arg1'); arg = sym('arg');... Si se quiere indicar el tipo del objeto simbólico se puede escribir: syms arg1 arg... real Es la forma abreviada de escribir: arg1 = sym('arg1','real'); arg = sym('arg','real');... syms arg1 arg... positive Es la forma abreviada de escribir: arg1 = sym('arg1','positive'); arg = sym('arg','positive');... syms arg1 arg... unreal Es la forma abreviada de escribir: arg1 = sym('arg1','unreal'); arg = sym('arg','unreal');... >> y=sin(x)+3^x+8/(x+1) Para hacer una sustitución simbólica simple de var en valor en la expresión f : subs(f,var,valor)
2 PÁGINA MATLAB: FUNCIONES >> y=sin(x)+3^x+8/(x+1) >> subs(y, x, ) Para realizar la gráfica de una función simbólica en un dominio y en la ventana de dibujo indicada en fig: ezplot(f, [a,b], fig) >> y=sin(x)+3^x+8/(x+1) >>%El segundo y el tercer parámetro son opcionales. >> ezplot(y, [-,]) Para resolver de forma simbólica ecuaciones algebraicas: solve('eqn1','eqn',...,'eqnn') solve('eqn1','eqn',...,'eqnn','var1,var,...,varn') solve('eqn1','eqn',...,'eqnn','var1','var',...'varn') >> % Calculamos las raíces de un polinomio genérico de grado 3. a b c d >> v=solve(a*x^3+b*x^+c*x+d) >> r=subexpr(v(1)) >> s=subexpr(v()) >> t=subexpr(v(3)) Para escribir simplificada o de forma más habitual una expresión: pretty(expresion) >> pretty(sin(x)^+(cos(x)+3)/(sin(*x)+5)) simplify(expresion) >> pretty(simplify(cos(x)*cos(x)-sin(x)*sin(x))) Para obtener el límite de una expresión simbólica f cuando la variable n tiende al valor a limit(f,n,a) >> syms n >> limit(1/n,n,inf) Para obtener la derivada de orden n una función simbólica respecto de la variable x. diff(f,x,n)
3 MATLAB: NÚMEROS REALES PÁGINA 3 y >> f=sin(x*y)/x; diff(f,x,3) Las funciones que simplifican la forma de las expresiones simbólicas son: collect(p) horner(p) expand(p) factor(p) simplify(p) simple(p) pretty(p) Reúne los términos iguales Cambia a la representación anidada o de Horner Expande los productos en sumas Factoriza la expresión (a veces) si el argumento es una función simbólica. Si se trata de un número proporciona la factorización en números primos. Simplifica una expresión mediante la aplicación de diversas identidades algebraicas. Utiliza diferentes herramientas de simplificación y selecciona la forma que tiene el menor número de caracteres Visualiza la expresión de una manera similar a la utilizada en la escritura habitual. Ejemplos resueltos 1 Gráfica de una función a trozos. Dibujar la gráfica de la siguiente función: tg( x) si π/4 x π/4 fx ( ) = cos( x π/4) si π/4 < x π/ x e si π/< x 3 Solución: x1=-pi/4:pi/00:pi/4; y1=tan(x1); x=pi/4:pi/00:pi/; y=cos(x-pi/4); x3=linspace(pi/,3); y3=exp(x3); x=[x1,x,x3]; y=[y1,y,y3]; plot(x,y)
4 PÁGINA 4 MATLAB: FUNCIONES Gráfica de una función implícita: Dibujar la gráfica de la función x + 4y 3x+ y 5= 0. Solución: ezplot('x^+4*y^-3*x+y-5',[-5,5]) grid on Calcular los límites de las siguientes funciones racionales en el punto que se indica utilizando tres métodos diferentes: 3 a. Factorizando el numerador. b. Dibujando la gráfica de la función en un entorno del punto. c. Evaluando f para pequeños incrementos de x en torno al punto. d. Utilizando la función limit (1) lim x 13 () lim x 13 (3) lim x 13 3 x x x x x x 13 3 x x x 4 3 x x x x Solución: a. Factorizando syms x P=x^3-9*x^-45*x-91; P1=factor(f1); f=p1/(x-13); x=13; limite=eval(f) b. Dibujando la gráfica %Utilizando la orden ezplot ezplot (f,[-15,15]); grid on %Con vectores de puntos x=10:.1:14; y=x.^+4*x+7 plot(x,y,'r') hold on plot([13 13],[00 40]) c. Incrementando el valor de x syms x f='(x^3-9*x^-45*x-91)/(x-13)' a=13; for k=1:1:10 x=a+(1/)^k; fprintf('%f %f \n', x, eval(f)) end
5 MATLAB: NÚMEROS REALES PÁGINA 5 Así se aproxima el límite por la derecha. Se deja al alumno que genere esta tabla para valores menores de 13. d. Utilizando limit limit((x^3-9*x^-45*x-91)/(x-13),x,13) Probar 'right' y 'left'. 10x+ 5 Se considera la función fx () =. 4 3 x + x + x 4 (a) Utilizar Matlab para factorizar el denominador de esta función. (b) Representar la función gráficamente con Matlab y reproducir la gráfica en los ejes dados: (c) Señalar en el eje OX los valores de x que verifican las condiciones siguientes: (c1) fx ( ) (c) fx ( ) 0 (d) A la vista de la gráfica indica el dominio de f: (e) Con la ayuda de la gráfica indicar si la función fx ( ) está acotada en R. Dar una cota superior y otra inferior, cuando existan, en el intervalo que se indica. 4 x R x 1,0 x ( 1, ) (f) Cota inferior Cota superior A la vista de la gráfica, y haciendo cálculos a mano, indicar el limf x limf x lim f x ; valor de los siguientes límites: ( ); ( ); ( ) x 1 ( ) lim f x x x 0 + x 1 (g) Calcular los límites anteriores, utilizando órdenes Matlab. Hay alguno que no coincida con los resultados anteriores? (h) Calcular la ecuación de la recta tangente a fx ( ) en x= 0. Puedes hacerlo a mano o ayudándote con Matlab. (i) Calcular los valores aproximados de la función en un entorno del origen utilizando la recta tangente anterior. Para ello completar la siguiente tabla, con ayuda de Matlab: x fx ( ) Tx ( ) fx ( ) Tx ( )
6 PÁGINA 6 MATLAB: FUNCIONES (j) A la vista de la gráfica de ( ) fx, dar un intervalo abierto (, ) ab, en el que fx ( ) alcance el máximo y el mínimo absolutos. Calcular estos valores de forma aproximada con ayuda de Matlab. Solución: (a) Utilizar Matlab para factorizar el denominador de esta función. syms x q=x^4+x^3+*x-4 p=factor(q) 4 3 El polinomio factorizado es: x + x + x 4=(x-1)*(x+)*(x^+) (b) Representar la función gráficamente con Matlab y reproducir la gráfica en los ejes dados: hold on grid on f=(10*x+5)/q ezplot(f,[-5,5]) hold off Gráfica : 10 8 (10 x + 5)/(x 4 + x 3 + x -4 ) x (c) Señalar en el eje OX los valores de x que verifican las condiciones siguientes: (c1) fx ( ) (c) fx ( ) 0 solve('(10*x+5)/(x^4+x^3+*x-4)=') double(ans)
7 MATLAB: NÚMEROS REALES PÁGINA 7 solve('(10*x+5)/(x^4+x^3+*x-4)=0') Por lo tanto, la respuesta a este apartado es (d) A la vista de la gráfica indica el dominio de f: (e) Con la ayuda de la gráfica indicar si la función fx ( ) está acotada en R. Dar una cota superior y otra inferior, cuando existan, en el intervalo que se indica. x R x 1,0 x 1, ( ) Cota inferior Cota superior Para rellenar la tabla se debe mirar la gráfica y calcular los valores de la función en los extremos de los intervalos pedidos y mirando en la gráfica. y1=subs(f,x,-1) y=subs(f,x,0) y3=subs(f,x,1) (f) A la vista de la gráfica, y haciendo cálculos a mano, indicar el valor de los siguientes límites: lim fx () lim fx () lim fx () x x 0 + x 1 x 1 lim fx () (g) Calcular los límites anteriores, utilizando órdenes Matlab. Hay alguno que no coincida con los resultados anteriores? limit((10*x+5)/(x^4+x^3+*x-4),x,inf) limit((10*x+5)/(x^4+x^3+*x-4),x,0) limit((10*x+5)/(x^4+x^3+*x-4),x,1,'right') limit((10*x+5)/(x^4+x^3+*x-4),x,1,'left') Los valores obtenidos son los mismos que los del apartado anterior.
8 PÁGINA 8 MATLAB: FUNCIONES (h) Calcular la ecuación de la recta tangente a fx ( ) en x= 0. Puedes hacerlo a mano o ayudándote con Matlab. derivada=diff((10*x+5)/(x^4+x^3+*x-4)) pretty(derivada) subs(derivada,x,0) La ecuación de la recta es: (i) Calcular los valores aproximados de la función en un entorno del origen utilizando la recta tangente anterior. Para ello completar la siguiente tabla, con ayuda de Matlab: x fx ( ) Tx ( ) fx ( ) Tx ( ) x=-0.3:0.1:0.3; yf=(10*x+5)./(x.^4+x.^3+*x-4); yt=-3.15*x-1.5; error=abs(yf-yt); disp(' f(x) T(x) error ') disp([yf' yt' error']) format short Qué significado tienen los valores de la última columna?
9 MATLAB: NÚMEROS REALES PÁGINA 9 Ejemplos propuestos 1 Realizar un estudio de la función f( x) = 3 3x 18x 81x+ 40 x 6x 0 (a) Calcular el dominio, puntos de corte con los ejes, crecimiento, decrecimiento, concavidad y asíntotas. (b) Obtener la función derivada en los puntos en los que la función sea derivable. (c) Calcular la recta tangente en el punto de abscisa 1. (d) Dibujar en una misma gráfica la función y la recta tangente a la derivada en el punto de abscisa 1. Derivación (a) (b) Dibujar la gráfica de la función fx ( ) = x y la recta gx ( ) = x pasando por x=. Qué relación hay entre estas dos gráficas?. Utilizando Matlab verificar la regla de derivación de las potencias de x para la función f(x).
Práctica 2. Si se quiere indicar el tipo del objeto simbólico se puede escribir: arg1 = sym('arg1','unreal'); arg2 = sym('arg2','unreal');...
PRÁCTICA FUNCIONES DE UNA VARIABLE Prácticas Matlab Práctica 2 Objetivos Dibujar gráficas de funciones definidas a trozos con el comando Plot. Dibujar funciones implícitas con el comando ezplot. Calcular
Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) =
T1 Dominios, Límites, Asíntotas, Derivadas y Representación Gráfica. 1.1 Dominios de funciones: Polinómicas: D( = La X puede tomar cualquier valor entre Ejemplos: D( = Función racional: es el cociente
b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula:
1. Dada la función f(x) = : a) Encontrar el dominio, las AH y las AV. b) Intervalos de crecimiento, decrecimiento, máximos y mínimos relativos. c) Primitiva que cumpla que F(0) = 0. a) Para encontrar el
http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17
http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 1 CONCEPTOS BÁSICOS 1.1 DEFINICIONES Una función liga dos variables numéricas a las que, habitualmente, se les llama x e y. x es la
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva
Funciones definidas a trozos
Concepto de función Dominio de una función Características de las funciones Intersecciones con los ejes Crecimiento y decrecimiento Máximos y mínimos Continuidad y discontinuidad Simetrías Periodicidad
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema Representación gráfica de funciones reales de una variable real Elaborado
1. Definición 2. Operaciones con funciones
1. Definición 2. Operaciones con funciones 3. Estudio de una función: Suma y diferencia Producto Cociente Composición de funciones Función reciproca (inversa) Dominio Recorrido Puntos de corte Signo de
Polinomios de Taylor.
Tema 7 Polinomios de Taylor. 7.1 Polinomios de Taylor. Definición 7.1 Recibe el nombre de polinomio de Taylor de grado n para la función f en el punto a, denotado por P n,a, el polinomio: P n,a (x) = f(a)
Matemáticas 1 1 MATLAB: Comandos y ejemplos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria
Matemáticas 1 1 MATLAB: Comandos y ejemplos Elena Álvarez Sáiz Dpto. Matemática Aplicada y C. Computación Universidad de Cantabria Ingeniería de Telecomunicación Matlab: Comandos y ejemplos Para obtener
Unidad 6 Estudio gráfico de funciones
Unidad 6 Estudio gráfico de funciones PÁGINA 96 SOLUCIONES Representar puntos en un eje de coordenadas. 178 Evaluar un polinomio. a) b) c) d) e) Escribir intervalos. a) b) c) 179 PÁGINA 98 SOLUCIONES 1.a)
EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES
EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES. Estudiar el crecimiento, el decrecimiento y los etremos relativos de las siguientes funciones: a) f( ) 7 + + b) ln f( ) c) 5 si < f(
Tema 2 Límites de Funciones
Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos
Para la oblicua hacemos lo mismo, calculamos el límite en el menos infinito : = lim. 1 ( ) = = lim
) Sea la función: f(x) = ln( x ): a) Dar su Dominio y encontrar sus asíntotas verticales, horizontales y oblicuas. b) Determinar los intervalos de crecimiento y decrecimiento, los máximos y mínimos, los
CÁLCULO GRADO EN INGEN. INFORM. DEL SOFTWARE PRÁCTICA 2. CALCULO SIMBÓLICO I. Comandos de uso frecuente con expresiones simbólicas.
CÁLCULO GRADO EN INGEN. INFORM. DEL SOFTWARE. -3 PRÁCTICA. CALCULO SIMBÓLICO I Comandos de uso frecuente con expresiones simbólicas. syms x : declara a x como variable simbólica. factor(f) : factoriza
Límite de una función
Límite de una función Idea intuitiva de límite El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es
PROBLEMA 1. 1. [1.5 puntos] Obtener la ecuación de la recta tangente en el punto ( 2, 1) a la curva dada implícitamente por y 3 +3y 2 = x 4 3x 2.
PROBLEMA. ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA Ingeniería Técnica en Diseño Industrial Fundamentos Matemáticos de la Ingeniería Soluciones correspondientes a los problemas del Primer Parcial 7/8.
1. Encontrar el dominio de la función racional. 2. Encontrar los interceptos con x y y de la función racional.
1. Encontrar el dominio de la función racional. h(x) x 2 3x 1 (x 2 4)(x 2 + 11x + 24) Para encontrar el dominio de una función racional debemos encontrar los valores de la variable que hacen cero el denominador.
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
Opción A Ejercicio 1.- [2 5 puntos] Una ventana normanda consiste en un rectángulo coronado con un semicírculo. De entre todas las ventanas normandas de perímetro 10 m, halla las dimensiones del marco
1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones:
F. EJERCICIOS PROPUESTOS. 1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones: (a) f(x) =x 3 /3+3x 2 /2 10x. Resp.: Crece en (, 5) y en (2, ); decrece en ( 5, 2). (b) f(x) =x 3
CAPÍTULO III. FUNCIONES
CAPÍTULO III LÍMITES DE FUNCIONES SECCIONES A Definición de límite y propiedades básicas B Infinitésimos Infinitésimos equivalentes C Límites infinitos Asíntotas D Ejercicios propuestos 85 A DEFINICIÓN
Ejercicios de Análisis propuestos en Selectividad
Ejercicios de Análisis propuestos en Selectividad.- Dada la parábola y 4, se considera el triángulo rectángulo T( r ) formado por los ejes coordenados y la tangente a la parábola en el punto de abscisa
Representación gráfica de funciones
Gráfica de una fución Representación gráfica de funciones La gráfica de una función está formada por el conjunto de puntos (x, y) para todos los valores de x pertenecientes al Dominio de la función gráfica
INTEGRALES DEFINIDAS Y CÁLCULOS DE ÁREAS
INTEGRALES DEFINIDAS Y CÁLCULOS DE ÁREAS CÁLCULO AUTOMÁTICO DE INTEGRALES DEFINIDAS La integral de una función definida puede obtenerse en DERIVE tecleando el icono Cálculo integral,, También puede obtenerse
Opción A Ejercicio 1 opción A, modelo Junio 2013 x cos(x) + b sen(x) [2 5 puntos] Sabiendo que lim
IES Fco Ayala de Granada Junio de 013 (Modelo ) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 013 x cos(x) + b sen(x) [ 5 puntos] Sabiendo que lim es finito, calcula b
PRÁCTICAS CON DERIVE 1 DERIVE 6
DERIVE 6 PRÁCTICAS CON DERIVE 1 Las ventanas principales de Derive 6, al igual que otras aplicaciones bajo Windows, consta de una barra de herramientas con iconos que facilitan el uso de distintas funciones
Tipos de funciones. Clasificación de funciones
Tipos de funciones Clasificación de funciones Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación,
ANÁLISIS DE FUNCIONES RACIONALES
ANÁLISIS DE FUNCIONES RACIONALES ( x 9) Dada la función f( x) = x 4 DETERMINE: Dominio, asíntotas, intervalos de crecimiento, intervalos de concavidad, extremos relativos y puntos de inflexión, representar
TALLER DE MATEMÁTICAS NOTAS. Toda expresión algebraica del tipo. a n x n + a n 1 x n 1 +... + a 1 x + a 0. es un polinomio de grado n, si a n 0.
NOTAS Toda expresión algebraica del tipo es un polinomio de grado n, si a n 0. a n x n + a n 1 x n 1 +... + a 1 x + a 0 RELACIONES DE DIVISIBILIDAD 1) x n a n = (x a)(x n 1 + ax n 2 + a 2 x n 3 +... +
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva
1. Ecuaciones no lineales
1. Ecuaciones no lineales 1.1 Ejercicios resueltos Ejercicio 1.1 Dada la ecuación xe x 1 = 0, se pide: a) Estudiar gráficamente sus raíces reales y acotarlas. b) Aplicar el método de la bisección y acotar
Unidad 5 Estudio gráfico de funciones
Unidad 5 Estudio gráfico de funciones PÁGINA 84 SOLUCIONES Representar puntos en un eje de coordenadas. 43 Evaluar un polinomio. a) P(-1) = 1 + + 1 1 = 3 b) P(0) = -1 c) P(-) = 8 + 8 + 1 = 17 d) P(1) =
5 Demostrar cada una de las siguientes afirmaciones empleando la definición de
Hallar el dominio de las siguientes funciones: x 3 a) x +ln(x ) b) ln x + 6 x + c) x x d) ln x x + e) cos x + ln(x 5π) + 8π x Graficar la función sen(x π ). Hallar para que valores de x es 3 Hallar las
EJERCICIOS RESUELTOS
FUNDAMENTOS MATEMÁTICOS DE LA INGENIERÍA Ingeriería Técnica Industrial. Especialidad en Mecánica. Boletin 6. Funciones de Varias Variables EJERCICIOS RESUELTOS Curso 003-004 1. En cada apartado, calcular
1. Dominio, simetría, puntos de corte y periodicidad
Estudio y representación de funciones 1. Dominio, simetría, puntos de corte y periodicidad 1.1. Dominio Al conjunto de valores de x para los cuales está definida la función se le denomina dominio. Se suele
Primeras Nueve Semanas Extienda el dominio de funciones trigonométricas usando la unidad circulo F-TF.3 F-TF.4
Primeras Nueve Semanas Extienda el dominio de funciones trigonométricas usando la unidad circulo F-TF.3 (+) Use triángulos especiales para determinar geométricamente los valores de seno, coseno, tangente
FUNCIONES DE VARIABLE REAL
CAPÍTULO II. FUNCIONES DE VARIABLE REAL SECCIONES A. Dominio e imagen de una función. B. Representación gráfica de funciones. C. Operaciones con funciones. D. Ejercicios propuestos. 47 A. DOMINIO E IMAGEN
Introducción al Cálculo Simbólico a través de Maple
1 inn-edu.com ricardo.villafana@gmail.com Introducción al Cálculo Simbólico a través de Maple A manera de introducción, podemos decir que los lenguajes computacionales de cálculo simbólico son aquellos
Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada
FUNCIONES CONTINUAS. La mayor parte de las funciones que manejamos, a nivel elemental, presentan en sus gráficas una propiedad característica que es la continuidad. La continuidad de una función definida
Tema 2 Límites de Funciones
Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos
1. Hallar los extremos de las funciones siguientes en las regiones especificadas:
1 1. DERIVACIÓN 1. Hallar los extremos de las funciones siguientes en las regiones especificadas: b) f(x) x (x 1) en el intervalo [, ] y en su dominio. DOMINIO. D R. CORTES CON LOS EJES. Cortes con el
DOMINIO Y RANGO DE UNA FUNCIÓN I N D I C E. martilloatomico@gmail.com. Página. Titulo:
Titulo: DOMINIO Y RANGO I N D I C E Página DE UNA FUNCIÓN Año escolar: 4to. Año de Bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela
CALCULO 11-M-1 Primera Parte
CALCULO 11-M-1 Primera Parte Duración 1h 4m Ejercicio 1 (1. puntos) Una isla A se encuentra a 3 kilómetros del punto más próximo B de una costa rectilínea. En la misma costa, a 1 kilómetros de B se encuentra
Colegio Las Tablas Tarea de verano Matemáticas 3º ESO
Colegio Las Tablas Tarea de verano Matemáticas º ESO Nombre: C o l e g i o L a s T a b l a s Tarea de verano Matemáticas º ESO Resolver la siguiente ecuación: 5 5 6 Multiplicando por el mcm(,,6) = 6 y
Bloque II. Actividades de síntesis: Análisis. Solucionario OPCIÓN A
Bloque II Actividades de síntes: Anális Solucionario OPCIÓN A A.. a) Escribe la función f(x) x 4 x como una función a trozos y dibuja su gráfica. b) Para cuántos valores de x es f(x) 0? c) Para qué números
UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERIA DEPARTAMENTO DE MATEMATICA CLAVE DE EXAMEN. CURSO: Matemática básica 1
UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERIA DEPARTAMENTO DE MATEMATICA CLAVE DE EXAMEN CURSO: Matemática básica 1 SEMESTRE: Primero CODIGO DE CURSO: 101 TIPO DE EXAMEN: Segundo parcial
4.2 CÓMO SE NOS PRESENTAN LAS FUNCIONES
Tema 4 Funciones. Características - Matemáticas B 4º E.S.O. 1 TEMA 4 FUNCIONES. CARACTERÍSTICAS 4.1 CONCEPTOS BÁSICOS 3º 4.1.1 DEFINICIONES 3º Una función liga dos variables numéricas a las que, habitualmente,
CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática
CAPITULO Aplicaciones de la Derivada Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Créditos Primera edición impresa: Rosario Álvarez, 1988. Edición Latex: Marieth
Ejercicios de representación de funciones
Ejercicios de representación de funciones 1.- Representar las siguientes funciones, estudiando su: Dominio. Simetría. Puntos de corte con los ejes. Asíntotas y ramas parabólicas. Crecimiento y decrecimiento.
Se introduce en la Ventana de Álgebra la expresión cuya primitiva queremos calcular. Con la expresión seleccionada
Integrales Definidas e Indefinidas Cómo calcular una integral indefinida (primitiva) o una integral definida? Se introduce en la Ventana de Álgebra la expresión cuya primitiva queremos calcular Con la
DIRECTRICES Y ORIENTACIONES GENERALES PARA LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD
Curso Asignatura 2014/2015 MATEMÁTICAS II 1º Comentarios acerca del programa del segundo curso del Bachillerato, en relación con la Prueba de Acceso a la Universidad La siguiente relación de objetivos,
TEMA 3: CONTINUIDAD DE FUNCIONES
TEMA 3: CONTINUIDAD DE FUNCIONES. Valor Absoluto Trabajaremos en el campo de los números reales, R. Para el estudio de las propiedades de las funciones necesitamos el concepto de valor absoluto de un número
(A) Primer parcial. si 1 x 1; x 3 si x>1. (B) Segundo parcial
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E700 1) x 5 > 1. A) Primer parcial ) Sean las funciones ft) t +,gy) y 4&hw) w. Encontrar f/h, g f, f g y sus dominios. ) Graficar la función x + six
Introducción bloques intro Control+Intro mayúsculas y minúsculas
Wiris Wiris... 1 Introducción... 2 Aritmética... 3 Álgebra... 4 Ecuaciones y Sistemas... 4 Análisis... 5 Objetos matemáticos, definición de identificadores y funciones... 7 Funciones predefinidas:... 10
Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1
Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1 TEMA 4 - FUNCIONES ELEMENTALES 4.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : Una función real de variable real es una aplicación de un subconjunto
TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1
TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1 TEMA 10 - FUNCIONES ELEMENTALES 10.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder
Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f)
MATEMÁTICAS EJERCICIOS RESUELTOS DE FUNCIONES FUNCIONES A. Introducción teórica A.1. Definición de función A.. Dominio y recorrido de una función, f() A.. Crecimiento y decrecimiento de una función en
Concepto de función. El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D.
Concepto de función Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B en la cual todos los elementos de A tienen a lo sumo una imagen en B, es decir una imagen o ninguna. Función
TEMA 5. REPRESENTACIÓN DE FUNCIONES
94 TEMA 5. REPRESENTACIÓN DE FUNCIONES 1. Representación de funciones 1.1. Dominio 1.. Puntos de corte con los ejes 1..1. Con el eje 1... Con el eje y 1.. Signo de la función 1.4. Periodicidad y simetría
Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2
SISTEMA DE ACCESO COMÚN A LAS CARRERAS DE INGENIERÍA DE LA UNaM III. UNIDAD : FUNCIONES POLINÓMICAS III..1 POLINOMIOS La expresión 5x + 7 x + 4x 1 recibe el nombre de polinomio en la variable x. Es de
DERIVADAS. * Definición de derivada. Se llama derivada de la función f en el punto x=a al siguiente límite, si es que existe: lim
DERIVADAS. CONTENIDOS. Recta tangente a una curva en un punto. Idea intuitiva del concepto de derivada de una función en un punto. Función derivada. sucesivas. Reglas de derivación Aplicación de la derivada
FUNCIONES ELEMENTALES
DERIVE FUNCIONES ELEMENTALES REPRESENTACIÓN GRÁFICA DE FUNCIONES Cómo introducir la expresión analítica de una función Para introducir una función pulsa el icono y escribe su expresión. Una función se
Complemento Microsoft Mathematics
Complemento Microsoft Mathematics El complemento Microsoft Mathematics es un conjunto de herramientas que se pueden usar para realizar operaciones matemáticas y trazado de gráficas con expresiones o ecuaciones
http://www.ib.cnea.gov.ar/~instyctl/tutorial_matlab_esp/plot.html Gráficos en Matlab
1 de 6 04/11/2010 0:58 La Estética de los Gráficos Más de un Gráfico en una ventana (Subplot) Cambiando los ejes Agregar Texto Gráficos en Matlab Una de las funciones más importantes en Matlab es la función
FUNCIÓN POLINÓMICA DE GRADO TRES. FUNCIÓN CÚBICA.
FUNCIÓN POLINÓMICA DE GRADO TRES. FUNCIÓN CÚBICA. La ecuación de dichas funciones es de la forma f(x) = y = ax 3 +bx 2 +cx +d, donde a,b,c y d PRIMERAS CARACTERÍSTICAS: 1.- DOMINIO: por ser polinómicas
MATEMÁTICAS 3 PERIODOS. FECHA: 8 de junio
BACHILLERATO EUROPEO 2009 MATEMÁTICAS 3 PERIODOS FECHA: 8 de junio DURACIÓN DEL EXAMEN : 3 horas (180 minutos) MATERIAL AUTORIZADO: Formulario europeo Calculadora no gráfica y no programable OBSERVACIONES:
Desarrollar y aplicar estrategias para resolver problemas Determinar si un gráfico es lineal dibujando puntos en una situación dada
MANEJO DE DATOS Analizar gráficos o diagramas de situaciones dadas para identificar información específica Recoger datos, dibujar los datos usando escalas apropiadas y demostrar una comprensión de las
1. Graficando con Maple
1. Graficando con Maple Maple es un programa de computación simbólica que permite, entre otras cosas, calcular derivadas, límites, integrales de funciones de una o varias variables; graficar funciones
1. Una función de X en Y es una regla de correspondencia que asocia a cada elemento de X con un único elemento de Y
UNIDAD I. FUNCIONES POLINOMIALES Conceptos clave: Sean X y Y dos conjuntos no vacíos. 1. Una función de X en Y es una regla de correspondencia que asocia a cada elemento de X con un único elemento de Y
Colegio Las Tablas Tarea de verano Matemáticas 3º ESO
Colegio Las Tablas Tarea de verano Matemáticas º ESO Nombre: C o l e g i o L a s T a b l a s Tarea de verano Matemáticas º ESO Resolver la siguiente ecuación: 4 5 5 6 Resolver las siguientes ecuaciones
DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES
UNIDAD 6 DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES Página 5 Problema y f () 5 5 9 Halla, mirando la gráfica y las rectas trazadas, f'(), f'(9) y f'(). f'() 0; f'(9) ; f'() Di otros tres puntos en
10 Cálculo. de derivadas. 1. La derivada. Piensa y calcula. Aplica la teoría
0 Cálculo de derivadas. La derivada Piensa y calcula Calcula mentalmente sobre la primera gráfica del margen: a) la pendiente de la recta secante, r, que pasa por A y B b) la pendiente de la recta tangente,
CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES
CAPÍTULO II. CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES SECCIONES 1. Dominios y curvas de nivel. 2. Cálculo de ites. 3. Continuidad. 55 1. DOMINIOS Y CURVAS DE NIVEL. Muchos problemas geométricos y físicos
FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS.
FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS. FUNCIÓN. Es toda aplicación entre dos conjuntos A y B formados ambos por números. f A --------> B Al conjunto A se le llama campo de existencia de la función
Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones
Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA Funciones José R. Jiménez F. Temas de pre-cálculo I ciclo 007 Funciones 1 Índice 1. Funciones 3 1.1. Introducción...................................
IES Fco Ayala de Granada Junio de 2012 (Específico Modelo 1) Solución Germán-Jesús Rubio Luna
IES Fco Ayala de Granada Junio de 01 (Específico Modelo 1) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 específico Sea la función f: (0,+) R definida por f(x) 1/x + ln(x) donde
b1ct Propuesta Actividades Recuperación Matemáticas
b1ct Propuesta Actividades Recuperación Matemáticas Bloque Números 1 Resuelve: a. Si tomas como valor de 11. 1 la aproximación. 1, qué errores absoluto y relativo has cometido?. Solución: 0. 000; 0. 0%
Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor
Tema 5 Aproximación funcional local: Polinomio de Taylor Teoría Los polinomios son las funciones reales más fáciles de evaluar; por esta razón, cuando una función resulta difícil de evaluar con exactitud,
EJERCICIOS Y PROBLEMAS PROPUESTOS (ANÁLISIS) x +
EJERCICIOS Y PROBLEMAS PROPUESTOS (ANÁLISIS).- La temperatura T, en grados centígrados, que adquiere una pieza sometida a un proceso viene dada en función del tiempo t, en horas, por la epresión: Tt t
DESIGUALDADES E INECUACIONES
DESIGUALDAD DESIGUALDADES E INECUACIONES Para hablar de la NO IGUALDAD podemos utilizar varios términos o palabras. Como son: distinto y desigual. El término "DISTINTO" (signo ), no tiene apenas importancia
Modelo1_2009_Enunciados. Opción A
a) Duración: hora y 30 minutos. b) Tienes que elegir entre realizar únicamente los cuatro ejercicios de la o realizar únicamente los cuatro ejercicios de la. e) Se permitirá el uso de calculadoras que
Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada
FUNCIONES CONOCIDAS. FUNCIONES LINEALES. Se llaman funciones lineales a aquellas que se representan mediante rectas. Su epresión en forma eplícita es y f ( ) a b. En sentido más estricto, se llaman funciones
Álgebra y Trigonometría CNM-108
Álgebra y Trigonometría CNM-108 Clase 2 Ecuaciones, desigualdades y funciones Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción
4.3 Función Logarítmica. Copyright Cengage Learning. All rights reserved.
4.3 Función Logarítmica Copyright Cengage Learning. All rights reserved. Función Logarítmica La función que es inversa de la exponencial f (x) = b x es la función logarítmica. Introducimos el vocabulario
LA FUNCIÓN EXPONENCIAL Y LA FUNCIÓN LOGARÍTMICA. FUNCIONES DEFINIDAS A TROZOS. Función exponencial
LA FUNCIÓN EXPONENCIAL Y LA FUNCIÓN LOGARÍTMICA. FUNCIONES DEFINIDAS A TROZOS. Función eponencial La función eponencial es de la forma f () = a, tal que a > 0, a El valor a se llama base de la función
FUNCIONES 1. DEFINICION DOMINIO Y RANGO
1. DEFINICION DOMINIO Y RANGO FUNCIONES Antes de definir función, uno de los conceptos fundamentales y de mayor importancia de todas las matemáticas, plantearemos algunos ejercicios que nos eran de utilidad
3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función
TEMA 3 FUNCIONES 3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función Una función es una relación establecida entre dos variables que asocia a cada valor de la primera variable
Una introducción a MATLAB
Universidad de Castilla-La Mancha ETSI Industriales Una introducción a MATLAB Curso 04/05 1. Introducción. MATLAB es un programa de cálculo científico de gran versatilidad y facilidad de uso con un gran
DERIVABILIDAD DE FUNCIONES
CAPÍTULO V. DERIVABILIDAD DE FUNCIONES SECCIONES A. Definición de derivada. B. Reglas de derivación. C. Derivadas sucesivas. D. Funciones implícitas. Derivación logarítmica. E. Ecuaciones paramétricas.
3FUNCIONES LOGARÍTMICAS
3FUNCIONES LOGARÍTMICAS Problema 1 Si un cierto día, la temperatura es de 28, y hay mucha humedad, es frecuente escuchar que la sensación térmica es de, por ejemplo, 32. La sensación térmica depende de
Bloque 4. Cálculo Tema 4 Aplicaciones de la derivada Ejercicios resueltos
Bloque 4. Cálculo Tema 4 Aplicaciones de la derivada Ejercicios resueltos 4.4- Resolver los siguientes límites aplicando la regla de L Hôpital: ; a) sen e e lim ; b) lim ; c) lim e d) lim 0 0 sen 0 e)
UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Matemáticas.
UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Matemáticas. PROBLEMAS DE CÁLCULO INFORMÁTICA DE SISTEMAS . Cálculo diferencial. Probar que a si y sólo si a a, siendo a >. Utilizar estas desigualdades
2.1.5 Teoremas sobre derivadas
si x < 0. f(x) = x si x 0 x o = 0 Teoremas sobre derivadas 9 2. f(x) = x 3, x o = 3 a. Determine si f es continua en x o. b. Halle f +(x o ) y f (x o ). c. Determine si f es derivable en x o. d. Haga la
f(x)=a n x n +a n-1 x n-1 +a n-2 x n-2 +...a 2 x 2 +a 1 x 1 +a 0
FUNCIÓN POLINOMIAL. DEFINICIÓN. Las funciones polinomiales su representación gráfica, tienen gran importancia en la matemática. Estas funciones son modelos que describen relaciones entre dos variables
PROPUESTA DE ACTIVIDADES PARA LA PRUEBA EXTRAORDINARIA DE SEPTIEMBRE MATEMÁTICAS CUARTO CURSO EDUCACIÓN SECUNDARIA OBLIGATORIA
PROPUESTA DE ACTIVIDADES PARA LA PRUEBA EXTRAORDINARIA DE SEPTIEMBRE MATEMÁTICAS CUARTO CURSO EDUCACIÓN SECUNDARIA OBLIGATORIA CURSO 2012/2013 NOMBRE: GRUPO: 1 Refuerzo de Matemáticas 4º ESO Rosario Nieto
8LÍMITES Y DERIVADAS. Problema 1. Problema 2. Problema 3
CONTENIDOS Límite y asíntotas Cálculo de límites Continuidad Derivadas Estudio de funciones Problemas de optimización Varias de las características de diferentes tipos de funciones ya han sido estudiadas
Calculadora ClassPad
Calculadora ClassPad Tema: Ejercicios varios sobre Análisis de funciones y optimización. Nivel: 1º y º de Bachiller Comentario: La siguiente actividad que propongo es para la evaluación de los conceptos
FUNCIONES CUADRÁTICAS Y RACIONALES
www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro
1. Estudia la derivabilidad de la función )En qué punto del intervalo (0,ð) la recta tangente a y=tg(x) tiene pendiente 2?.
ejerciciosyeamenes.com EXAMEN DERIVADAS. Estudia la derivabilidad de la función si f ()= si > 3. )En qué punto del intervalo (0,ð) la recta tangente a y=tg() tiene pendiente?. 4. Ecuación de la recta tangente
(Apuntes en revisión para orientar el aprendizaje)
(Apuntes en revisión para orientar el aprendizaje) LÍMITES DE FUNCIONES TRIGONOMÉTRICAS Para resolver límites que involucran funciones circulares directas, resulta conveniente conocer los límites de las