LA MINERÍA DE DATOS EN LA EXTRACCIÓN DE CONOCIMIENTOS APLICADOS A PROBLEMAS RELACIONADOS CON LA EDUCACIÓN

Tamaño: px
Comenzar la demostración a partir de la página:

Download "LA MINERÍA DE DATOS EN LA EXTRACCIÓN DE CONOCIMIENTOS APLICADOS A PROBLEMAS RELACIONADOS CON LA EDUCACIÓN"

Transcripción

1 LA MINERÍA DE DATOS EN LA EXTRACCIÓN DE CONOCIMIENTOS APLICADOS A PROBLEMAS RELACIONADOS CON LA EDUCACIÓN Blanca Maricela Ibarra Murrieta, Ricardo Blanco Vega y María Angélica García Fierro Departamento de Sistemas y Computación Instituto Tecnológico de Chihuahua II Ave. de las Industrias # Chihuahua, Chihuahua, México, C.P Abstracto: Los avances tecnológicos actuales permiten la rápida obtención de conocimiento a partir de grandes cantidades de datos tomadas de diversas fuentes. La información contenida en las bases de datos es muy valiosa, misma que no puede detectarse con métodos tradicionales de análisis de datos. La minería de datos es una técnica para realizar exploraciones más profundas con el objetivo de extraer conocimiento nuevo y útil. Es aplicable a cualquier área, donde se necesite, incluso en el sector Educativo, como es el caso de esta investigación que se enfoca a determinar si el alto porcentaje de reprobación de Matemáticas I en el Instituto Tecnológico es una causa de deserción. Se afirma que con una probabilidad del 84% los alumnos que no pasan la materia de Matemáticas I desertan del Instituto Tecnológico de Chihuahua II. Palabras llave: Minería de Datos, Extracción de Conocimiento, Deserción Escolar, Matemáticas I. 1.INTRODUCCIÓN Los ALTOS índices de reprobación, que presentan los alumnos de la materia de Matemáticas I donde se imparte Cálculo en el Instituto Tecnológico de Chihuahua II (ITCHII), se deben principalmente a deficiencias de conocimientos y habilidades que traen consigo en Álgebra [7]. Los problemas de aprendizajes de Matemáticas I, se presentan año con año. En agosto-diciembre del año 2005, los porcentajes de reprobación de Matemáticas I, para dos grupos Ingeniería en Sistemas Computacionales (ISC), fueron 52.08% y 62%, en tanto que para dos grupos de Ingeniería Industrial (II) fueron del 47% y 75%; además, un grupo de estudiantes que repitieron la materia, de Ingeniería en Sistemas, obtuvo 47.02% (Carpetas gestión de curso del ITCHII, 2005). Para ISC en el año 2006 fue 45.83% y para otro grupo de ISC del año 2007 fue de 46% (Control Escolar del ITCHII, 2008). Las cifras presentadas son alarmantes, por lo que es necesario conocer que impacto tienen en el índice de deserción del Instituto Tecnológico de Chihuahua II, para tomar una medida adecuada para solucionar la problemática. Existe un vasto campo de aplicación de la Minería de Datos, para una referencia más especifica ver [5]. En nuestro caso deseamos explorar el campo de aplicación sobre problemas en la educación. A continuación describimos diferentes aplicaciones de la minería de Datos en el área de la educación. En [1] se describen las aportaciones de la minería de datos para realizar análisis predictivos en instituciones de Educación Superior orientadas al uso óptimo de los recursos humanos y materiales. A partir de la aplicación de un grupo de técnicas de Minería de Datos como el clustering, los árboles de decisión y algoritmos de aprendizaje inductivo, en [8] se pretende clasificar a los estudiantes de acuerdo a su rendimiento académico, para posteriormente encontrar patrones ocultos y reglas que los caractericen; basado en las relaciones que se establecen entre el centro de procedencia de los estudiantes, nivel de escolaridad de los padres y provincia de origen con sus resultados académicos en el primer curso en la universidad. Estos resultados pueden mejorar el proceso de formación académica y elevar la calidad de la educación en las universidades.

2 En la conferencia a cargo del doctor Cristóbal Romero Morales denominada Los conceptos básicos de la minería de datos, examinados en la E.S. de Informática (marzo de 2008) ha dado a conocer los conceptos básicos de la minería de datos así como los modelos, métodos y herramientas básicas para su aplicación en el ámbito de los sistemas de enseñanza y aprendizaje basados en la web. No en vano, el desarrollo de sistemas de enseñanza basada en la web se ha incrementado exponencialmente en los últimos años debido sobre todo a la utilización de plataformas como Moodle, Elías, WebCT, Autor. Estos sistemas almacenan mucha información sobre las interacciones con los estudiantes que no se suelen utilizar. Sobre estos mismos datos se pueden utilizar herramientas informáticas que faciliten el descubrimiento de información relevante y no sólo utilizarlos para el seguimiento y la evaluación de los alumnos. Es más, estás técnicas de Minería de Datos se están comenzando a utilizar en sistemas de e-learning, para maximizar y mejorar el aprendizaje de los estudiantes. 2. OBJETIVO Identificar si la materia de matemáticas I, influye en el porcentaje de deserción escolar. 3. METODOLOGIA EMPLEADA La metodología utilizada es la siguiente, para una descripción visual ver la Figura 1: Figura 1. Pasos en la extracción del conocimiento en base de datos

3 Definir el problema. Realizar una descripción clara del problema que se pretende resolver. Preparar los datos. Se seleccionan, limpiar y transforman los datos para obtener la vista minable la cual contendrá los datos materia prima para la Minería de Datos. Explorar los datos. Se obtiene la estadística de los atributos de la vista minable observando su distribución. Generar Modelos. Se selecciona un buen método de Minería de Datos para el tipo de problema a resolver y utilizando la vista minable se obtienen modelos. Los diferentes modelos se generan teniendo transformaciones en los datos de entrada o modificando los parámetros del método elegido. Validar modelos. Se realizarán validaciones cruzadas de 10 repeticiones con 10 divisiones para obtener el porcentaje de instancias correctamente clasificadas. Esto permitirá conocer cual modelo es mejor. Interpretación. Describir el mejor modelo para obtener conclusiones sobre el problema planteado. Existen algunas herramientas diseñadas para extraer conocimientos desde bases de datos que contienen grandes cantidades de información. Las más populares de estas herramientas son SPSS Clementine, Oracle Data Miner y Weka [6]. Esta última herramienta es la más asequible y popular ya que se desarrolla en Java y bajo licencia GPL. Por tales motivos la elegimos para utilizarla en el proceso de Minería de Datos. 4. RESULTADOS EXPERIMENTALES A continuación aplicaremos los pasos de la metodología. 4.1 Definición del problema En el Instituto Tecnológico de Chihuahua II se desea Determinar el impacto que tiene en el alumno el reprobar la materia de matemáticas I en su deserción? 4.2 Preparar los datos La información con la que se trabajó, está capturada en Excel y muestra los datos generales del alumno, tomados de la base de datos que utilizan en el departamento de Control Escolar del plantel. La muestra fue de 750 alumnos que cursaron la materia de Matemáticas I en los semestres del año 2006, Los atributos correlacionados, llaves primarias, o con demasiados valores vacíos fueron eliminados. Finalmente los campos de la vista minable son: CALIFICACION (su última calificación en Matemáticas I), ESTADO (estado actual del alumno), CARRERA (nombre corto de la carrera). Se generó un nuevo atributo APROBADO para discretizar la calificación en sí o no. 4.3 Explorar los datos Después de tener los datos pre procesados en Excel se exportaron con un formato CSV para poder leerlos en WEKA. Seguidamente se realizó una exploración de los mismos con los siguientes resultados. El atributo de CALIFICACION tiene como valor mínimo 0 y como máximo 100, una media aritmética de y desviación estándar de El atributo ESTADO es del tipo nominal con los siguientes valores y sus frecuencias (el divisor): Vigente (VI/615), Baja Temporal (BT/45), Baja Definitiva (BD/88) y Egresado (BE/2). El atributo CARRERA también de tipo nominal tiene los siguientes valores: Arquitectura (ARQ/210), Ingeniería Industrial (II/146), Ingeniería en Sistemas Computacionales (ISC/170), Licenciatura en administración (LA/170) y Licenciatura en Informática (LI/94). El campo calculado de APROBADO es de tipo nominal y tiene los valores de Si/175 y No/575.

4 4.4 Generar los modelos Se generaron múltiples modelos, tanto de clasificación como de regresión. El mejor modelo que describe la solución a nuestra interrogante se muestra en el árbol de decisión de la Figura 2. El algoritmo utilizado fue el J48 con sus parámetros predeterminados. Figura. 2. Modelo que explica la deserción del alumno. 4.5 Validar los modelos El modelo fue validado con la técnica de validación cruzada de 10X10 resultando un certeza de 84.3%. 4.6 Interpretación El modelo se considera bueno y define que el estado de los alumnos está íntimamente relacionado con el resultado obtenido en la materia de Matemáticas I. 5 CONCLUSIONES Y TRABAJOS FUTUROS DE INVESTIGACIÓN La Minería de Datos es una ciencia que puede ser aplicada en el ámbito de la educación. Se ejemplificó su uso buscando una respuesta a la pregunta de si la deserción de los alumnos del ITCHII es debida a la reprobación de la materia de Matemáticas I. La aportación de esta investigación es que se afirma con una probabilidad de aproximadamente un 84% que la deserción de los alumnos en el Instituto Tecnológico de Chihuahua II es debido a que han reprobado la materia de Matemáticas I. El grupo de investigación está interesado en incrementar la investigación relacionada con e-educación. En específico nos interesa diagnosticar a los alumnos de Matemáticas I a través de un perfil que le permita al maestro detectar las habilidades algebraicas deficientes que poseen los alumnos.

5 6. REFERENCIAS [1] Álvarez González, Susel, Ernesto Pérez, Zady and Espinosa, Ivet (2007). Obtención de patrones y reglas en el proceso académico de la Universidad de las Ciencias Informáticas utilizando técnicas de minería de datos. consultado en: [2] Avilés, Karina (2007). No puede la RES abatir altos índices de reprobación. Periódico La Jornada. México, D.F. consultado en n3soc [3] Barrera García, Francisco (2003). Altos Índices de Reprobación en las Asignaturas de Matemáticas del Primer Semestre de la Facultad de Ingeniería de la UNAM. Consultado en [4] de Castro, Carlos, Romero Morales, Cristóbal, Ventura Soto, Sebastián. (2003).Aplicación de algoritmos evolutivos como técnica de minería de datos para la mejora de cursos hipermedia adaptativos basados en web. RIED: revista iberoamericana de educación a distancia, ISSN , Vol. 6, Nº 2, pags [5] Hernández Orallo, J., Ramírez Quintana, M., Ferri Ramírez, C. (2004). Introducción a la Minería de Datos. adrid: Editorial Pearson Educación SA. [6] Ian H. Witten and Eibe Frank (2005) "Data Mining: Practical machine learning tools and techniques", 2nd Edition, Morgan Kaufmann, San Francisco, [7] Ibarra Murrieta, Blanca M. (2008) Obtención de Perfiles Algebraicos en Alumnos de Nuevo Ingreso. Tesis. [8] Luan, Jing. (2004). Data Mining Applications in Higher Education. SPSS Inc. [9] Martínez, Marcelo. (2008). Factores Asociados a la Prolongación de los Estudios de la Carrera de Ingeniería en Sistemas Sede La Rioja - Capital. [10] Romero, C.; Ventura, S. (2007). Educational data mining: A survey from 1995 to Expert Syst. Appl. 33, 1 (Jul. 2007),

Guía docente de la asignatura

Guía docente de la asignatura Guía docente de la asignatura Asignatura Materia Minería de Datos Complementos de Computación Módulo Titulación Grado en Ingeniería Informática Plan 463 45220 Periodo de impartición 1 er Cuatrimestre Tipo/Carácter

Más detalles

DES: Programa(s) Educativo(s): Tipo de materia: Clave de la materia: Semestre:

DES: Programa(s) Educativo(s): Tipo de materia: Clave de la materia: Semestre: : : lemas propios de la. lemas propios de la. lemas propios de la. lemas propios de la. lemas propios de la. lemas propios de la. lemas propios de la. 12 6 lemas propios de la. 12 6 lemas propios de la.

Más detalles

OPTATIVA I: MINERIA DE DATOS

OPTATIVA I: MINERIA DE DATOS UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA Clave: 08MSU007H Clave: 08USU4053W FACULTAD DE INGENIERÍA PROGRAMA DEL CURSO: OPTATIVA I: MINERIA DE DATOS DES: Programa(s) Educativo(s): Tipo de materia: Clave de la

Más detalles

TÓPICOS AVANZADOS DE BASES DE DATOS

TÓPICOS AVANZADOS DE BASES DE DATOS TÓPICOS AVANZADOS DE BASES DE DATOS 1. DATOS DE LA ASIGNATURA. Nombre de la asignatura: TÓPICOS AVANZADOS DE BASES DE DATOS Carrera: Ingeniería en Sistemas Computacionales Clave de la asignatura: Modulo

Más detalles

Minería de datos: predicción de la deserción escolar mediante el algoritmo de árboles de decisión y el algoritmo de los k vecinos más cercanos

Minería de datos: predicción de la deserción escolar mediante el algoritmo de árboles de decisión y el algoritmo de los k vecinos más cercanos Minería de datos: predicción de la deserción escolar mediante el algoritmo de árboles de decisión y el algoritmo de los k vecinos más cercanos Sergio Valero Orea 1, Alejandro Salvador Vargas 1, Marcela

Más detalles

Análisis de Incidentes Informáticos usando Modelos de Asociación y Métodos del Análisis de Datos Multivariante.

Análisis de Incidentes Informáticos usando Modelos de Asociación y Métodos del Análisis de Datos Multivariante. Análisis de Incidentes Informáticos usando Modelos de Asociación y Métodos del Análisis de Datos Multivariante. García, Alejandro (1), Corso, Cynthia Lorena (2), Gibellini, Fabián (3), Rapallini, Marcos

Más detalles

MODELO PREDICTIVO DE DESERCIÓN ESTUDIANTIL

MODELO PREDICTIVO DE DESERCIÓN ESTUDIANTIL MODELO PREDICTIVO DE DESERCIÓN ESTUDIANTIL APLICACIÓN DE TÉCNICAS DE MINERÍA DE DATOS Yegny Amaya, Edwin Barrientos, Universidad Francisco de Paula Santander, Colombia Diana Heredia Vizcaíno, Universidad

Más detalles

Secretaría de Docencia Dirección de Estudios Profesionales

Secretaría de Docencia Dirección de Estudios Profesionales I. IDENTIFICACIÓN DEL CURSO PROGRAMA DE ESTUDIO POR COMPETENCIAS Minería de Datos ORGANISMO ACADÉMICO: FACULTAD DE INGENIERÍA Programa Educativo: Ingeniería en Computación Área de docencia: Tratamiento

Más detalles

Aplicación de técnicas de minería de datos para la evaluación del rendimiento académico y la deserción estudiantil

Aplicación de técnicas de minería de datos para la evaluación del rendimiento académico y la deserción estudiantil Aplicación de técnicas de minería de datos para la evaluación del rendimiento académico y la deserción estudiantil Osvaldo M. Spositto spositto@unlam.edu.ar Martín E. Etcheverry metcheverry@unlam.edu.ar

Más detalles

Weka como herramienta de data mining

Weka como herramienta de data mining Weka como herramienta de data mining Lic. Aldave Rojas Isaac Alberto Instituto Tecnológico Superior de Ciudad Serdán Abstract El presente trabajo muestra un ejemplo introductorio a la herramienta de Data

Más detalles

INSTITUTO MATEMÁTICO Y ACTUARIAL MEXICANO DIPLOMADO EN MINERÍA DE DATOS

INSTITUTO MATEMÁTICO Y ACTUARIAL MEXICANO DIPLOMADO EN MINERÍA DE DATOS INSTITUTO MATEMÁTICO Y ACTUARIAL MEXICANO DIPLOMADO EN MINERÍA DE DATOS Por qué es importante la Minería de Datos? 2 La Minería de Datos es un proceso que permite obtener conocimiento a partir de los datos

Más detalles

WICC 2014 XVI Workshop de Investigadores en Ciencias de la Computación

WICC 2014 XVI Workshop de Investigadores en Ciencias de la Computación ESTUDIO DE TECNICAS DE DATA MINING APLICADAS AL ANALISIS DE DATOS GENERADOS CON LA METODOLOGIA BLENDED LEARNING Marcelo Omar Sosa, Sosa Bruchmann Eugenia Cecilia Departamento Computación/Facultad de Ciencias

Más detalles

PROGRAMA DE ASIGNATURA

PROGRAMA DE ASIGNATURA PROGRAMA DE ASIGNATURA 01. Carrera Lic. En Administración de Negocios Internacionales Lic. En Dirección del Factor Humano Lic. En Comercialización x Lic. En Tecnología Informática Lic. En Administración

Más detalles

OBTENCIÓN DE PATRONES Y REGLAS EN EL PROCESO ACADÉMICO DE LA UNIVERSIDAD DE LAS CIENCIAS INFORMÁTICAS UTILIZANDO TÉCNICAS DE MINERÍA DE DATOS

OBTENCIÓN DE PATRONES Y REGLAS EN EL PROCESO ACADÉMICO DE LA UNIVERSIDAD DE LAS CIENCIAS INFORMÁTICAS UTILIZANDO TÉCNICAS DE MINERÍA DE DATOS OBTENCIÓN DE PATRONES Y REGLAS EN EL PROCESO ACADÉMICO DE LA UNIVERSIDAD DE LAS CIENCIAS INFORMÁTICAS UTILIZANDO TÉCNICAS DE MINERÍA DE DATOS Ernesto González Díaz 1, Zady Pérez Hernández 2, Ivet Espinosa

Más detalles

Minería de datos (Presentación del curso)

Minería de datos (Presentación del curso) Minería de datos (Presentación del curso) M. en C. Sergio Luis Pérez Pérez UAM CUAJIMALPA, MÉXICO, D. F. Trimestre 14-O. Sergio Luis Pérez (UAM CUAJIMALPA) Curso de minería de datos 1 / 10 Forma de evaluar

Más detalles

Análisis del rendimiento académico en los estudios de informática de la Universidad Politécnica de Valencia aplicando técnicas de minería de datos

Análisis del rendimiento académico en los estudios de informática de la Universidad Politécnica de Valencia aplicando técnicas de minería de datos Análisis del rendimiento académico en los estudios de informática de la Universidad Politécnica de Valencia aplicando técnicas de minería de datos R. Alcover 1, J. Benlloch 2, P. Blesa 3, M. A. Calduch

Más detalles

Guía docente de la asignatura

Guía docente de la asignatura Guía docente de la asignatura Asignatura Materia Módulo Titulación TÉCNICAS DE APRENDIZAJE AUTOMÁTICO COMPUTACIÓN TECNOLOGÍAS ESPECÍFICAS GRADO EN INGENIERÍA INFORMÁTICA Plan 545 Código 46932 Periodo de

Más detalles

Un modelo predictivo para reducir la tasa de ausentismo en atenciones médicas programadas

Un modelo predictivo para reducir la tasa de ausentismo en atenciones médicas programadas Un modelo predictivo para reducir la tasa de ausentismo en atenciones médicas programadas Ing. Juan Miguel Moine Ing. Cristian Germán Bigatti Ing. Guillermo Leale Est. Graciela Carnevali Est. Esther Francheli

Más detalles

MINERIA DE DATOS Y Descubrimiento del Conocimiento

MINERIA DE DATOS Y Descubrimiento del Conocimiento MINERIA DE DATOS Y Descubrimiento del Conocimiento UNA APLICACIÓN EN DATOS AGROPECUARIOS INTA EEA Corrientes Maximiliano Silva La información Herramienta estratégica para el desarrollo de: Sociedad de

Más detalles

Detección de Patrones de Bajo Rendimiento Académico y Deserción Estudiantil con Técnicas de Minería de Datos

Detección de Patrones de Bajo Rendimiento Académico y Deserción Estudiantil con Técnicas de Minería de Datos Detección de Patrones de Bajo Rendimiento Académico y Deserción Estudiantil con Técnicas de Minería de Datos Ricardo Timarán Pereira, Ph.D. Departamento de Sistemas, Facultad de Ingeniería, Universidad

Más detalles

Aplicación de herramientas de inteligencia de negocios en modelamiento geometalúrgico

Aplicación de herramientas de inteligencia de negocios en modelamiento geometalúrgico Aplicación de herramientas de inteligencia de negocios en modelamiento geometalúrgico Verónica Escobar González, Claudio Barrientos Ochoa, Sergio Barrientos Ochoa, Dirección de Modelamiento Geometalúrgico

Más detalles

PREPROCESADO DE DATOS PARA MINERIA DE DATOS

PREPROCESADO DE DATOS PARA MINERIA DE DATOS Ó 10.1007/978-3-319-02738-8-2. PREPROCESADO DE DATOS PARA MINERIA DE DATOS Miguel Cárdenas-Montes Frecuentemente las actividades de minería de datos suelen prestar poca atención a las actividades de procesado

Más detalles

Grado en Ingeniería Informática

Grado en Ingeniería Informática Primer Curso Primer semestre ESCUELA SUPERIOR DE INGENIERÍA Chile, 1 11002-CÁDIZ Teléfono: 95 015100 Fax: 95 015101 Más información: www.uca.es/ingenieria Itinerario curricular recomendado ENSEÑANZAS Cálculo

Más detalles

Área Académica: Sistemas Computacionales. Profesor: Felipe de Jesús Núñez Cárdenas

Área Académica: Sistemas Computacionales. Profesor: Felipe de Jesús Núñez Cárdenas Área Académica: Sistemas Computacionales Tema: Sistemas ROLAP y MOLAP Profesor: Felipe de Jesús Núñez Cárdenas Periodo: Agosto Noviembre 2011 Keywords: ROLAP, MOLAP,HOLAP Tema: Sistemas ROLAP y MOLAP Abstract

Más detalles

Productividad en Empresas de Construcción: Conocimiento adquirido de las bases de datos

Productividad en Empresas de Construcción: Conocimiento adquirido de las bases de datos Productividad en Empresas de Construcción: Conocimiento adquirido de las bases de datos Productivity in Construction Companies: Knowledge acquired from the databases Hernando Camargo Mila, Rogelio Flórez

Más detalles

Área Académica: Sistemas Computacionales. Tema: Introducción a almacén de datos. Profesor: Mtro Felipe de Jesús Núñez Cárdenas

Área Académica: Sistemas Computacionales. Tema: Introducción a almacén de datos. Profesor: Mtro Felipe de Jesús Núñez Cárdenas Área Académica: Sistemas Computacionales Tema: Introducción a almacén de datos Profesor: Mtro Felipe de Jesús Núñez Cárdenas Periodo: Agosto Noviembre 2011 Keywords Almacén de Datos, Datawarehouse, Arquitectura

Más detalles

Grado en Ingeniería Informática

Grado en Ingeniería Informática Grado en Ingeniería Informática ESCUELA SUPERIOR DE INGENIERÍA Chile, 1 11002-CÁDIZ Teléfono: 95 015100 Fax: 95 015101 Más información: www.uca.es/ingenieria Itinerario curricular recomendado ENSEÑANZAS

Más detalles

Introducción a selección de. Blanca A. Vargas Govea blanca.vargas@cenidet.edu.mx Reconocimiento de patrones cenidet Octubre 1, 2012

Introducción a selección de. Blanca A. Vargas Govea blanca.vargas@cenidet.edu.mx Reconocimiento de patrones cenidet Octubre 1, 2012 Introducción a selección de atributos usando WEKA Blanca A. Vargas Govea blanca.vargas@cenidet.edu.mx Reconocimiento de patrones cenidet Octubre 1, 2012 Contenido 1 Introducción a WEKA El origen Interfaces

Más detalles

Aprendizaje Computacional. Eduardo Morales y Jesús González

Aprendizaje Computacional. Eduardo Morales y Jesús González Aprendizaje Computacional Eduardo Morales y Jesús González Objetivo General La capacidad de aprender se considera como una de los atributos distintivos del ser humano y ha sido una de las principales áreas

Más detalles

Text Mining. Laura Alonso i Alemany. Facultad de Matemática, Astronomía y Física UNC, Córdoba (Argentina) http://www.cs.famaf.unc.edu.

Text Mining. Laura Alonso i Alemany. Facultad de Matemática, Astronomía y Física UNC, Córdoba (Argentina) http://www.cs.famaf.unc.edu. Facultad de Matemática, Astronomía y Física UNC, Córdoba (Argentina) http://www.cs.famaf.unc.edu.ar/ laura SADIO 12, 13 y 14 de Marzo de 2008 grupo de PLN en FaMAF http://www.cs.famaf.unc.edu.ar/ pln/

Más detalles

2. CLASIFICACIÓN DE LA ACTIVIDAD CURRICULAR, FORMACIÓN PRÁCTICA Y CARGA HORARIA

2. CLASIFICACIÓN DE LA ACTIVIDAD CURRICULAR, FORMACIÓN PRÁCTICA Y CARGA HORARIA CÓDIGO ASIGNATURA 1131-3 DEPARTAMENTO: Ingeniería e Investigaciones Tecnológicas ASIGNATURA: DATA MINING y DATA WAREHOUSE Plan 2009 Ingeniería en Informática Año: 5 (Electiva - Ingeniería de Software)

Más detalles

Dirección de Planificación Universitaria Dirección de Planificación Universitaria 0819-07289 Panamá, Rep. de Panamá 0819-07289 Panamá, Rep.

Dirección de Planificación Universitaria Dirección de Planificación Universitaria 0819-07289 Panamá, Rep. de Panamá 0819-07289 Panamá, Rep. Comparación de las tasas de aprobación, reprobación, abandono y costo estudiante de dos cohortes en carreras de Licenciatura en Ingeniería en la Universidad Tecnológica de Panamá Luzmelia Bernal Caballero

Más detalles

CENTRO UNIVERSITARIO DE LOS ALTOS PROGRAMA DE ESTUDIOS POR OBJETIVOS FORMATO BASE MTRO. HÉCTOR DELGADO MARTÍNEZ VALOR EN CRÉDITOS FM 102 30 10 40 5

CENTRO UNIVERSITARIO DE LOS ALTOS PROGRAMA DE ESTUDIOS POR OBJETIVOS FORMATO BASE MTRO. HÉCTOR DELGADO MARTÍNEZ VALOR EN CRÉDITOS FM 102 30 10 40 5 CENTRO UNIVERSITARIO DE LOS ALTOS PROGRAMA DE ESTUDIOS POR OBJETIVOS FORMATO BASE 1.- DATOS DE IDENTIFICACIÓN CENTRO UNIVERSITARIO: DEPARTAMENTO: ACADEMIA: ÁREA DE FORMACIÓN: NOMBRE DE LA UNIDAD DE APRENDIZAJE:

Más detalles

UNIVERSIDAD DEL VALLE DE MÉXICO PROGRAMA DE ESTUDIO DE LICENCIATURA PRAXIS MES XXI

UNIVERSIDAD DEL VALLE DE MÉXICO PROGRAMA DE ESTUDIO DE LICENCIATURA PRAXIS MES XXI UNIVERSIDAD DEL VALLE DE MÉXICO PROGRAMA DE ESTUDIO DE LICENCIATURA PRAXIS MES XXI NOMBRE DE LA ASIGNATURA: ADMINISTRACIÓN DE BASES DE DATOS FECHA DE ELABORACIÓN: ENERO 2005 ÁREA DEL PLAN DE ESTUDIOS:

Más detalles

PLAN DE TRABAJO DOCENTE 2013

PLAN DE TRABAJO DOCENTE 2013 PLAN DE TRABAJO DOCENTE 2013 1. DATOS DE LA ASIGNATURA Nombre: Procesamiento Analítico de Datos Código: Nivel: Grado Carácter: Optativo Área curricular a la que pertenece: Administración Carrera: Contador

Más detalles

Vanesa Berlanga Silvente, María José Rubio Hurtado, Ruth Vilà Baños, Cómo aplicar árboles de decisión en SPSS

Vanesa Berlanga Silvente, María José Rubio Hurtado, Ruth Vilà Baños, Cómo aplicar árboles de decisión en SPSS Universitat de de Barcelona. Institut de de Ciències de de l Educació Cómo aplicar árboles de decisión en SPSS. Vanesa Berlanga Silvente, María José Rubio Hurtado, Ruth Vilà Baños Fecha de presentación:

Más detalles

Un prototipo de sistema administrador de aprendizaje en línea

Un prototipo de sistema administrador de aprendizaje en línea Un prototipo de sistema administrador de aprendizaje en línea Área de Conocimiento: Educación a Distancia Alma Rosa García Gaona 1 y Patricia de la Luz Carrión Méndez 2 1 y 2 Universidad Veracruzana -

Más detalles

Sistema de Predicción de la Demanda de Papel Fotográfico para Ecuacolor. Egresada de Licenciada en Sistemas de Información 2005. 2

Sistema de Predicción de la Demanda de Papel Fotográfico para Ecuacolor. Egresada de Licenciada en Sistemas de Información 2005. 2 Sistema de Predicción de la Demanda de Papel Fotográfico para Ecuacolor AUTORES: Teodora Sofía Argoti Doylet 1, Soraya Freire Oliveros 2, Carmen Orozco Roggiero 3, Juan Alvarado O. 4 1 Egresada de Licenciada

Más detalles

Grupo de investigación en Minería de Datos http://mida.usal.es

Grupo de investigación en Minería de Datos http://mida.usal.es Departamento de Informática y Automática Postgrado en Informática y Automática MÁSTER EN SISTEMAS INTELIGENTES ASIGNATURAS Introducción a la Minería de Datos Minería Web María N. Moreno García http://avellano.usal.es/~mmoreno

Más detalles

Máster Universitario en Modelización e Investigación Matemática, Estadística y Computación

Máster Universitario en Modelización e Investigación Matemática, Estadística y Computación 5.5.1. Denominación: Introducción a la Minería de Datos 5.5.2. Breve Descripción del Contenido: Introducción a la minería de datos. Aprendizaje supervisado, modelos no paramétricos y modelos generalizados

Más detalles

XIVCONGRESO INTERNACIONAL SOBRE INNOVACIONES EN DOCENCIA E INVESTIGACIÓN EN CIENCIAS ECONÓMICO ADMINISTRATIVAS. León, Guanajuato

XIVCONGRESO INTERNACIONAL SOBRE INNOVACIONES EN DOCENCIA E INVESTIGACIÓN EN CIENCIAS ECONÓMICO ADMINISTRATIVAS. León, Guanajuato XIVCONGRESO INTERNACIONAL SOBRE INNOVACIONES EN DOCENCIA E INVESTIGACIÓN EN CIENCIAS ECONÓMICO ADMINISTRATIVAS León, Guanajuato Septiembre: 7, 8 y 9 de 2011 UNIVERSIDAD DE SONORA DIVISIÓN DE CIENCIAS ECONÓMICAS

Más detalles

Visión global del KDD

Visión global del KDD Visión global del KDD Series Temporales Máster en Computación Universitat Politècnica de Catalunya Dra. Alicia Troncoso Lora 1 Introducción Desarrollo tecnológico Almacenamiento masivo de información Aprovechamiento

Más detalles

código Java Solicitudes Reportes AJI resultados API

código Java Solicitudes Reportes AJI resultados API Analizador Java Inteligente Agüero Martin Jorge, miembro IT-Lab de la Universidad de Palermo, agüero.marin@gmail.com López De Luise María Daniela, miembro IT-Lab de la Universidad de Palermo, mlopez74@palermo.edu

Más detalles

MEDICION DEL IMPACTO DE LAS REDES SOCIALES EN LOS ESTUDIANTES DE LICENCIATURA DE LA FACULTAD DE INGENIERIA DE LA UACH Y SU EFICIENCIA ACADEMICA

MEDICION DEL IMPACTO DE LAS REDES SOCIALES EN LOS ESTUDIANTES DE LICENCIATURA DE LA FACULTAD DE INGENIERIA DE LA UACH Y SU EFICIENCIA ACADEMICA MEDICION DEL IMPACTO DE LAS REDES SOCIALES EN LOS ESTUDIANTES DE LICENCIATURA DE LA FACULTAD DE INGENIERIA DE LA UACH Y SU EFICIENCIA ACADEMICA José Roberto Espinoza Prieto jespinoza@uach.mx Rey Manuel

Más detalles

Área Académica: Sistemas Computacionales. Tema: Arquitectura de un sistema de almacén de datos. Profesor: Mtro Felipe de Jesús Núñez Cárdenas

Área Académica: Sistemas Computacionales. Tema: Arquitectura de un sistema de almacén de datos. Profesor: Mtro Felipe de Jesús Núñez Cárdenas Área Académica: Sistemas Computacionales Tema: Arquitectura de un sistema de almacén de datos Profesor: Mtro Felipe de Jesús Núñez Cárdenas Periodo: Agosto Noviembre 2011 Keywords Almacen de Datos, Datawarehouse,

Más detalles

Inteligencia en Redes de Comunicaciones. Tema 7 Minería de Datos. Julio Villena Román, Raquel M. Crespo García, José Jesús García Rueda

Inteligencia en Redes de Comunicaciones. Tema 7 Minería de Datos. Julio Villena Román, Raquel M. Crespo García, José Jesús García Rueda Inteligencia en Redes de Comunicaciones Tema 7 Minería de Datos Julio Villena Román, Raquel M. Crespo García, José Jesús García Rueda {jvillena, rcrespo, rueda}@it.uc3m.es Índice Definición y conceptos

Más detalles

SVM: Máquinas de Vectores Soporte. Carlos Alonso González Grupo de Sistemas Inteligentes Departamento de Informática Universidad de Valladolid

SVM: Máquinas de Vectores Soporte. Carlos Alonso González Grupo de Sistemas Inteligentes Departamento de Informática Universidad de Valladolid SVM: Máquinas de Vectores Soporte Carlos Alonso González Grupo de Sistemas Inteligentes Departamento de Informática Universidad de Valladolid Contenido 1. Clasificación lineal con modelos lineales 2. Regresión

Más detalles

TIC como soporte de la capacidad institucional para reducir la deserción estudiantil

TIC como soporte de la capacidad institucional para reducir la deserción estudiantil TIC como soporte de la capacidad institucional para reducir la deserción estudiantil Estrategias de diagnóstico, acompañamiento y cultura de la información para fomentar la permanencia estudiantil Universidad

Más detalles

código Java Solicitudes Reportes AJI resultados API

código Java Solicitudes Reportes AJI resultados API Analizador Java Inteligente López De Luise María Daniela, miembro IT-Lab de la Universidad de Palermo, mlopez74@palermo.edu Agüero Martín Jorge, miembro IT-Lab de la Universidad de Palermo, agüero.martin@gmail.com

Más detalles

TRANSFORMANDO DATOS EN CONOCIMIENTO: NUEVAS PRÁCTICAS Msc. Raúl Oscar Klenzi

TRANSFORMANDO DATOS EN CONOCIMIENTO: NUEVAS PRÁCTICAS Msc. Raúl Oscar Klenzi TRANSFORMANDO DATOS EN CONOCIMIENTO: NUEVAS PRÁCTICAS Msc. Raúl Oscar Klenzi Meglioli (5400). rauloscarklenzi@gmail.com Msc. María Alejandra Malberti Meglioli (5400). amalberti@gmail.com Msc. Graciela

Más detalles

Darío Álvarez Néstor Lemo www.autonomo.edu.uy

Darío Álvarez Néstor Lemo www.autonomo.edu.uy Data Mining para Optimización de Distribución de Combustibles Darío Álvarez Néstor Lemo Agenda Qué es DODC? Definición de Data Mining El ciclo virtuoso de Data Mining Metodología de Data Mining Tareas

Más detalles

ESCUELA POLITÉCNICA SUPERIOR

ESCUELA POLITÉCNICA SUPERIOR UNIVERSIDAD DE CÓRDOBA ESCUELA POLITÉCNICA SUPERIOR INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN PETICIÓN DE TEMA PARA PROYECTO FIN DE CARRERA: TÍTULO Herramienta para la preparación de conjuntos de aprendizaje

Más detalles

opinoweb el poder de sus datos Descubra LA NECESIDAD DE PREDECIR

opinoweb el poder de sus datos Descubra LA NECESIDAD DE PREDECIR opinoweb SOFTWARE FOR MARKET RESEARCH LA NECESIDAD DE PREDECIR Actualmente las empresas no sólo necesitan saber con exactitud qué aconteció en el pasado para comprender mejor el presente, sino también

Más detalles

Identificación de Estilos de Aprendizaje en Alumnos Universitarios de Computación de la Huasteca Hidalguense mediante Técnicas de Minería de Datos

Identificación de Estilos de Aprendizaje en Alumnos Universitarios de Computación de la Huasteca Hidalguense mediante Técnicas de Minería de Datos Identificación de Estilos de Aprendizaje en Alumnos Universitarios de Computación de la Huasteca Hidalguense mediante Técnicas de Minería de Datos Felipe de Jesús Núñez Cardenas 1, Raúl Hernández Palacios

Más detalles

Portal de Cursos en Línea para la Carrera de TIC-SI

Portal de Cursos en Línea para la Carrera de TIC-SI Portal de Cursos en Línea para la Carrera de TIC-SI Juan Mexica Rivera, Esmeralda Contreras Trejo Universidad Tecnológica de Nezahualcóyotl Cd. Nezahualcóyotl, Estado de México, C.P. 57000. Tel 55 5169700

Más detalles

Diseño del Sistema de información de apoyo al docente para la evaluación del estudiante

Diseño del Sistema de información de apoyo al docente para la evaluación del estudiante Diseño del Sistema de información de apoyo al docente para la evaluación del estudiante Ing. José Alejandro Pineda Aguillón Tecnológico de Estudios Superiores de Coacalco. Coacalco. Edo. De Méx. México

Más detalles

Denominación: Negocios Inteligentes

Denominación: Negocios Inteligentes Denominación: Negocios Inteligentes Clave: Semestre: 7º 8º Carácter: Optativa de Elección Profesionalizante Tipo: Teórica Modalidad: Curso UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CONTADURÍA

Más detalles

UNIVERSIDAD DE GUADALAJARA

UNIVERSIDAD DE GUADALAJARA UNIVERSIDAD DE GUADALAJARA CENTRO UNIVERSITARIO DE LOS ALTOS DIVISIÓN DE ESTUDIOS EN FORMACIONES SOCIALES LICENCIATURA: INGENIERÍA EN COMPUTACIÓN UNIDAD DE APRENDIZAJE POR OBJETIVOS TALLER INTRODUCCIÓN

Más detalles

PROGRAMA DE CURSO. Personal 6 10 3.0 0 7. Electivo para ICC FI2002 Electromagnetismo. Competencia a la que Tributa el Curso. Propósito del Curso

PROGRAMA DE CURSO. Personal 6 10 3.0 0 7. Electivo para ICC FI2002 Electromagnetismo. Competencia a la que Tributa el Curso. Propósito del Curso PROGRAMA DE CURSO Código Nombre CC5206 Introducción a la Minería de Datos Nombre en Inglés Introduction to Data Mining SCT es Horas de Horas Docencia Horas de Trabajo Docentes Cátedra Auxiliar Personal

Más detalles

MINERÍA DE DATOS: ÁREA DE OPORTUNIDADES

MINERÍA DE DATOS: ÁREA DE OPORTUNIDADES MINERÍA DE DATOS: ÁREA DE OPORTUNIDADES Actualmente se vive una época donde se tiene una enorme cantidad de datos que se generan diariamente (del orden de Terabytes, Petabytes 1 (Han, Kamber, & Pei, 2012))

Más detalles

ESTUDIO DE FALLOS EN EL MANTENIMIENTO RELACIONANDO BASE DE DATOS Y FIABILIDAD. FASE I

ESTUDIO DE FALLOS EN EL MANTENIMIENTO RELACIONANDO BASE DE DATOS Y FIABILIDAD. FASE I WICC 2012 207 ESTUDIO DE FALLOS EN EL MANTENIMIENTO RELACIONANDO BASE DE DATOS Y FIABILIDAD. FASE I Abet Jorge Eduardo (1), Carrizo, Blanca Rosa (2), Corso, Cynthia Lorena (3), González, Gustavo (4) GICAPP

Más detalles

Text Mining. Laura Alonso i Alemany. Facultad de Matemática, Astronomía y Física UNC, Córdoba (Argentina) http://www.cs.famaf.unc.edu.

Text Mining. Laura Alonso i Alemany. Facultad de Matemática, Astronomía y Física UNC, Córdoba (Argentina) http://www.cs.famaf.unc.edu. Facultad de Matemática, Astronomía y Física UNC, Córdoba (Argentina) http://www.cs.famaf.unc.edu.ar/~laura SADIO 26 de Marzo, 9 y 23 de Abril y 7 de mayo de 2010 grupo de PLN en FaMAF http://www.cs.famaf.unc.edu.ar/~pln/

Más detalles

Benemérita Universidad Autónoma de Puebla Vicerrectoría de Docencia Dirección General de Educación Superior Facultad de Ciencias de la Computación

Benemérita Universidad Autónoma de Puebla Vicerrectoría de Docencia Dirección General de Educación Superior Facultad de Ciencias de la Computación PLAN DE ESTUDIOS (PE): Licenciatura en Ingeniería en Tecnologías de la Información. AREA: Integración disciplinar ASIGNATURA: Inteligencia de negocios CÓDIGO: IDTI-202 CRÉDITOS: 5 FECHA: Julio de 2013

Más detalles

Alternativas didácticas para enseñar probabilidad

Alternativas didácticas para enseñar probabilidad Alternativas didácticas para enseñar probabilidad Luis Ceferino Góngora Vega Escuela Preparatoria Oxkutzcab Oxkutzcab, Yucatán, México luiscef@yahoo.com.mx Resumen El presente trabajo se derivó de los

Más detalles

MoDaWeEd: un framework que integra Moodle, Data Mining y Web Usage Mining en el ámbito de la Educación

MoDaWeEd: un framework que integra Moodle, Data Mining y Web Usage Mining en el ámbito de la Educación MoDaWeEd: un framework que integra Moodle, Data Mining y Web Usage Mining en el ámbito de la Educación Esther Hochsztain (*), Andrómaca Tasistro (**) esther@ccee.edu.uy, andromaca.tasistro@agesic.gub.uy

Más detalles

La definición del software a utilizar para la ejecución de Data Mining, permitirá desarrollar la herramienta informática de forma automatizada.

La definición del software a utilizar para la ejecución de Data Mining, permitirá desarrollar la herramienta informática de forma automatizada. 3.1 Sistema de Hipótesis 3.1.1 Hipótesis General El diseño del manual empleando Data Mining (Minería de Datos) predecirá el potencial de desarrollo de las empresas en la zona oriental asociadas a la Comisión

Más detalles

GUÍA DOCENTE DE LA ASIGNATURA

GUÍA DOCENTE DE LA ASIGNATURA GUÍA DOCENTE DE LA ASIGNATURA G655 - Introducción a los Sistemas Inteligentes Grado en Ingeniería Informática Obligatoria. Curso Grado en Matemáticas Optativa. Curso Curso Académico 2014-2015 1 1. DATOS

Más detalles

UNIVERSIDAD AUTONOMA DE ZACATECAS UNIDAD ACADÉMICA DE CONTADURIA Y ADMINISTRACION LICENCIATURA EN CONTADURIA INFORMATICA I

UNIVERSIDAD AUTONOMA DE ZACATECAS UNIDAD ACADÉMICA DE CONTADURIA Y ADMINISTRACION LICENCIATURA EN CONTADURIA INFORMATICA I UNIVERSIDAD AUTONOMA DE ZACATECAS UNIDAD ACADÉMICA DE CONTADURIA Y ADMINISTRACION LICENCIATURA EN CONTADURIA INFORMATICA I 1. GENERALIDADES Clave: I14 H S C: 6 Semestre: 1o. Créditos: 12 Área: Informática

Más detalles

Diseño de un tutor virtual para la carrera de Ingeniería en Computación de la Universidad Autónoma Metropolitana

Diseño de un tutor virtual para la carrera de Ingeniería en Computación de la Universidad Autónoma Metropolitana Diseño de un tutor virtual para la carrera de Ingeniería en Computación de la Universidad Autónoma Metropolitana Silvia B. GONZÁLEZ BRAMBILA Departamento de Sistemas, Universidad Autónoma Metropolitana-Azcapotzalco

Más detalles

Un simulador empresarial como herramienta práctica para la asignatura de Aprendizaje Automático

Un simulador empresarial como herramienta práctica para la asignatura de Aprendizaje Automático Un simulador empresarial como herramienta práctica para la asignatura de Aprendizaje Automático Raquel Fuentetaja, Silvia de Castro, Javier García, Fernando Borrajo Fernando Fernández, Daniel Borrajo Departamento

Más detalles

Semestre: Agosto-Diciembre 2010 Línea curricular Administración Industrial Clave: 5927 Carácter: Teórico/Práctico

Semestre: Agosto-Diciembre 2010 Línea curricular Administración Industrial Clave: 5927 Carácter: Teórico/Práctico ANEXO 3: GUÍA BASE PARA LOS PROGRAMAS ANALÍTICOS Nota importante: Esta guía debe llenarse con base en los lineamientos descritos con amplitud en el Manual para la Formulación de las Propuestas Curriculares

Más detalles

Trabajo Practico N 12

Trabajo Practico N 12 Trabajo Practico N 12 Minería de Datos CATEDRA: Actualidad Informática Ingeniería del Software III Titular: Mgter. Horacio Kuna JTP: Lic. Sergio Caballero Auxiliar: Yachesen Facundo CARRERAS: Analista

Más detalles

ASIGNATURA FECHA HORA AULA. Matemática Discreta 25-ene 16,00-19,00 LAB. 7. Álgebra Lineal 06-feb 09,00-12,00 LAB. 7

ASIGNATURA FECHA HORA AULA. Matemática Discreta 25-ene 16,00-19,00 LAB. 7. Álgebra Lineal 06-feb 09,00-12,00 LAB. 7 EXÁMENES FEBRERO - CURSO 2015-2016 PRIMER CURSO - GRUPO B Matemática Discreta 25-ene 16,00-19,00 LAB. 7 Álgebra Lineal 06-feb 09,00-12,00 LAB. 7 EXÁMENES JUNIO - CURSO 2015-2016 PRIMER CURSO - GRUPO B

Más detalles

(3300) Posadas. Argentina 1 gpautsch@fceqyn.unam.edu.ar, 2 hdkuna@unam.edu.ar,

(3300) Posadas. Argentina 1 gpautsch@fceqyn.unam.edu.ar, 2 hdkuna@unam.edu.ar, Resultados Preliminares del Proceso de Minería de Datos Aplicado al Análisis de la Deserción en Carreras de Informática Utilizando Herramientas Open Source J. Germán A. Pautsch 1, Horacio D. Kuna 2, Antonia

Más detalles

INTELIGENCIA DE NEGOCIO (MASTER UNIVERSITARIO EN INGENIERÍA INFORMÁTICA)

INTELIGENCIA DE NEGOCIO (MASTER UNIVERSITARIO EN INGENIERÍA INFORMÁTICA) INTELIGENCIA DE NEGOCIO (MASTER UNIVERSITARIO EN INGENIERÍA INFORMÁTICA) 1.- Datos de la Asignatura Código 302436 Plan 2014 ECTS 3 Carácter OPCIONAL Curso 1º Periodicidad 2er SEMESTRE Área Departamento

Más detalles

TÉCNICAS DE MINERÍA DE DATOS Y TEXTO APLICADAS A LA SEGURIDAD AEROPORTUARIA

TÉCNICAS DE MINERÍA DE DATOS Y TEXTO APLICADAS A LA SEGURIDAD AEROPORTUARIA TÉCNICAS DE MINERÍA DE DATOS Y TEXTO APLICADAS A LA SEGURIDAD AEROPORTUARIA MSC ZOILA RUIZ VERA Empresa Cubana de Aeropuertos y Servicios Aeronáuticos Abril 2010 ANTECEDENTES El proyecto Seguridad es una

Más detalles

Curso de Minería de Datos Instructor: Dr. Luis Carlos Molina Félix

Curso de Minería de Datos Instructor: Dr. Luis Carlos Molina Félix Curso de Minería de Datos Instructor: Dr. Luis Carlos Molina Félix Presentación Las bases de datos y los sistemas de administración de datos han jugado un papel primordial en el crecimiento y éxito de

Más detalles

(Procesos de Minería de Datos)

(Procesos de Minería de Datos) (rocesos de Minería de Datos) Guía de Aprendizaje Información al estudiante 1. Datos Descriptivos Titulación MASTER UNIVERSITARIO EN INGENIERÍA INFORMÁTICA Módulo Materia Asignatura Carácter SISTEMAS Y

Más detalles

JUAN RAMÓN OLAGUE SÁNCHEZ / SÓCRATES TORRES OVALLE

JUAN RAMÓN OLAGUE SÁNCHEZ / SÓCRATES TORRES OVALLE APLICACIÓN DE TÉCNICAS DE MINERÍA DE DATOS Y SISTEMAS DE GESTIÓN DE CONTENIDOS DE APRENDIZAJE PARA EL DESARROLLO DE UN SISTEMA INFORMÁTICO DE APRENDIZAJE DE PROGRAMACIÓN DE COMPUTADORAS JUAN RAMÓN OLAGUE

Más detalles

Aprendizaje Automático y Data Mining. Bloque IV DATA MINING

Aprendizaje Automático y Data Mining. Bloque IV DATA MINING Aprendizaje Automático y Data Mining Bloque IV DATA MINING 1 Índice Definición y aplicaciones. Grupos de técnicas: Visualización. Verificación. Descubrimiento. Eficiencia computacional. Búsqueda de patrones

Más detalles

Al final del curso el estudiante:

Al final del curso el estudiante: UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA Clave: 08MSU0017H FACULTAD INGENIERÍA Clave: PROGRAMA DEL CURSO: Evolución y Calidad del Software DES: Programa(s) Educativo(s): Tipo de materia: Clave de la materia:

Más detalles

Denominación: Desarrollo de Aplicaciones en Manejadores de Bases de Datos Relacionales Área o campo de conocimiento: Clave: Semestre: 5

Denominación: Desarrollo de Aplicaciones en Manejadores de Bases de Datos Relacionales Área o campo de conocimiento: Clave: Semestre: 5 UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN DIVISIÓN SISTEMA UNIVERSIDAD ABIERTA Y EDUCACIÓN A DISTANCIA PLAN DE ESTUDIOS DE LA LICENCIATURA EN INFORMÁTICA Programa

Más detalles

GUÍA DOCENTE TITULACIONES DE GRADO

GUÍA DOCENTE TITULACIONES DE GRADO GUÍA DOCENTE TITULACIONES DE GRADO TITULACIÓN: GRADO EN INGENIERIA INFORMATICA DE SISTEMAS DE INFORMACIÓN CURSO 2015/2016 ASIGNATURA: MINERÏA DE DATOS Nombre del Módulo o Materia al que pertenece la asignatura.

Más detalles

Estándares y Métricas de Software

Estándares y Métricas de Software PROGRAMA DE ESTUDIO Programa Educativo: Área de Formación : Licenciatura en Tecnología de Información Estándares y Métricas de Software Horas teóricas: 2 Horas prácticas: 4 Total de Horas: 8 Total de créditos:

Más detalles

Carlos Araujo Herrera 1, Vicente Jama Lozano 2. Litoral, Profesor de ESPOL desde 2001.

Carlos Araujo Herrera 1, Vicente Jama Lozano 2. Litoral, Profesor de ESPOL desde 2001. DESARROLLO E IMPLANTACIÓN DE UN SISTEMA DE INFORMACIÓN ORIENTADO HACIA EL CONTROL DE CALIDAD DE PROVEEDORES PARA PLANTAS INDUSTRIALES EN LA CIUDAD DE GUAYAQUIL Carlos Araujo Herrera 1, Vicente Jama Lozano

Más detalles

Trabajo final de Ingeniería

Trabajo final de Ingeniería UNIVERSIDAD ABIERTA INTERAMERICANA Trabajo final de Ingeniería Weka Data Mining Jofré Nicolás 12/10/2011 WEKA (Data Mining) Concepto de Data Mining La minería de datos (Data Mining) consiste en la extracción

Más detalles

FACTORES DE ELECCIÓN DE LICENCIATURAS QUE OFRECE LA DIVISIÓN ACADÉMICA DE INFORMÁTICA Y SISTEMAS USANDO MINERÍA DE DATOS

FACTORES DE ELECCIÓN DE LICENCIATURAS QUE OFRECE LA DIVISIÓN ACADÉMICA DE INFORMÁTICA Y SISTEMAS USANDO MINERÍA DE DATOS FACTORES DE ELECCIÓN DE LICENCIATURAS QUE OFRECE LA DIVISIÓN ACADÉMICA DE INFORMÁTICA Y SISTEMAS USANDO MINERÍA DE DATOS. CASO: ÁRBOL DE DECISIÓN, TÉCNICA AD-TREE López Ramírez Cristina 1 Morcillo Presenda

Más detalles

Acerca de este curso:

Acerca de este curso: Acerca de este curso: El Álgebra Lineal es una herramienta útil para resolver problemas formulados en las ciencias, ingenierías y administración. El diseño de este curso, está orientado a proporcionarte

Más detalles

Carrera Plan de Estudios Contacto

Carrera Plan de Estudios Contacto Carrera Plan de Estudios Contacto La Ingeniería en es una licenciatura de reciente creación que responde a las necesidades tecnológicas de la sociedad y la comunicación. Cada teléfono móvil, tableta electrónica

Más detalles

Sistema de Preregistro Orientado al Postulante

Sistema de Preregistro Orientado al Postulante Sistema de Preregistro Orientado al Postulante Universidad Pedagógica Nacional La Universidad Pedagógica Nacional es una institución pública de educación superior, con carácter de Órgano Desconcentrado

Más detalles

UN PRIMER ACERCAMIENTO A LOS FACTORES QUE AFECTAN EL DESEMPEÑO DE LOS ALUMNOS QUE INGRESAN A UNA ESCUELA DE CIENCIAS

UN PRIMER ACERCAMIENTO A LOS FACTORES QUE AFECTAN EL DESEMPEÑO DE LOS ALUMNOS QUE INGRESAN A UNA ESCUELA DE CIENCIAS UN PRIMER ACERCAMIENTO A LOS FACTORES QUE AFECTAN EL DESEMPEÑO DE LOS ALUMNOS QUE INGRESAN A UNA ESCUELA DE CIENCIAS GUADALUPE YOANNA ARENAS; HORTENSIA REYES; MANUEL IBARRA; HUGO CRUZ; FLAVIANO GODÍNEZ,

Más detalles

1 10. Carga horaria. DEPARTAMENTO DE SISTEMAS DE INFORMACI~N Academia de Software Especializado PROGRAMA DE ESTUDIOS. asignatura 9. Tipo de Asignatura

1 10. Carga horaria. DEPARTAMENTO DE SISTEMAS DE INFORMACI~N Academia de Software Especializado PROGRAMA DE ESTUDIOS. asignatura 9. Tipo de Asignatura DEPARTAMENTO DE SISTEMAS DE INFORMACI~N Academia de Software Especializado PROGRAMA DE ESTUDIOS asignatura 9. Tipo de Asignatura 1 10. Carga horaria Laboratorio Horas teoria 20 Horas practica 40 14. Perfil

Más detalles

Inteligencia de Negocio

Inteligencia de Negocio UNIVERSIDAD DE GRANADA E.T.S. de Ingenierías Informática y de Telecomunicación Departamento de Ciencias de la Computación e Inteligencia Artificial Inteligencia de Negocio Guión de Prácticas Práctica 1:

Más detalles

Juan C Jiménez UPSI-Universidad Técnica Particular de Loja Loja Ecuador. tener en el aprendizaje y por ende maximizar la calidad de la enseñanza.

Juan C Jiménez UPSI-Universidad Técnica Particular de Loja Loja Ecuador. tener en el aprendizaje y por ende maximizar la calidad de la enseñanza. Recolección de datos de interacción de alumnos en una plataforma E-learning para obtener indicadores de interés de su actividad aplicando técnicas de aprendizaje automático Greyson P Alberca UPSI-Universidad

Más detalles

Dr. Guillermo de León Adams

Dr. Guillermo de León Adams 1 Datos personales Apellidos y nombre: de León Adams, Guillermo Fecha de nacimiento: 16 de Junio de 1949 e-mail gdeleon@uv.mx 2 Títulos académicos Licenciatura: Actuario (1967-1970), Facultad de Ciencias

Más detalles

APLICACIÓN DEL ALGORITMO GSP_M PARA LA IDENTIFICACIÓN DE PATRONES DE USUARIOS SOBRE AMBIENTES EDUCATIVOS

APLICACIÓN DEL ALGORITMO GSP_M PARA LA IDENTIFICACIÓN DE PATRONES DE USUARIOS SOBRE AMBIENTES EDUCATIVOS APLICACIÓN DEL ALGORITMO GSP_M PARA LA IDENTIFICACIÓN DE PATRONES DE USUARIOS SOBRE AMBIENTES EDUCATIVOS Héctor F Gómez A *, Susana A Arias T **, Yuliana C Jiménez *** Universidad Técnica Particular de

Más detalles

Anexo 11. Manual de Administración

Anexo 11. Manual de Administración PONTIFICIA UNIVERSIDAD JAVERIANA Anexo 11. Manual de Administración Para mantenimiento a los modelos y código fuente Alex Arias 28/05/2014 El presente documento muestra los requerimientos necesarios para

Más detalles

GUÍA DOCENTE. Curso Académico 2015/16. Técnicas de Análisis Estadístico basado en Inteligencia

GUÍA DOCENTE. Curso Académico 2015/16. Técnicas de Análisis Estadístico basado en Inteligencia GUÍA DOCENTE Curso Académico 2015/16 1. Técnicas de Análisis Estadístico basado en Inteligencia Artificial 1.1. Datos de la asignatura Tipo de estudios Titulación Nombre de la asignatura Carácter de la

Más detalles

Diseño de almacén de datos para el análisis eficiente de la información de incidentes informáticos y mantenimientos.

Diseño de almacén de datos para el análisis eficiente de la información de incidentes informáticos y mantenimientos. Diseño de almacén de datos para el análisis eficiente de la información de incidentes informáticos y mantenimientos. Ing. Corso Cynthia, Ing. Luque Claudio, Ing. Ciceri Leonardo, Sr Donnet Matías Grupo

Más detalles

SÍLABO. : Electivo : Ingeniería de Sistemas : IS0806. : VIII Ciclo : 2 de Teoría y 2 de Práctica : 03 : Ninguno

SÍLABO. : Electivo : Ingeniería de Sistemas : IS0806. : VIII Ciclo : 2 de Teoría y 2 de Práctica : 03 : Ninguno SÍLABO I. DATOS GENERALES 1.1. Nombre de la Asignatura 1.2. Carácter 1.3. Carrera Profesional 1.4. Código 1.5. Semestre Académico : 2014-I 1.6. Ciclo Académico 1.7. Horas de Clase 1.8. Créditos 1.9. Pre

Más detalles