DEPARTAMENTO DE INDUSTRIA Y NEGOCIO UNIVERSIDAD DE ATACAMA COPIAPO - CHILE

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DEPARTAMENTO DE INDUSTRIA Y NEGOCIO UNIVERSIDAD DE ATACAMA COPIAPO - CHILE"

Transcripción

1 DEPATAMENTO DE NDUSTA Y NEGOCO UNESDAD DE ATACAMA COPAPO - CHLE ESSTENCA EN SEE, PAALELO, MXTO Y SUPEPOSCÓN En los sguentes 8 crcutos calcule todas las correntes y ajes presentes, para ello consdere los sguentes valores de resstencas y aje de almentacón. = kω, = MΩ, =. KΩ, = 0Ω, =.7 KΩ, = 0Ω, CC =. Problema CC CC ma. Problema 000 CC CC A Problema

2 A A ma CC //. Problema ma ma A CC CC // // 99.9 // //. Problema

3 ma ma A CC Problema ma ma ma A ma CC CC EQ EQ // // //

4 7. Problema ma ma ma A ma CC CC EQ EQ ) //( // // 8. Problema CC EQ CC EQ EQ )) // // 8 //(

5 ma ma A ma A ma Problema El crcuto de la fgura modela una lnterna. Los cuadros representan las plas y b representa la ampolleta. S b es de. [v]. Calcule el valor de la resstenca utlzando las propedades de los dvsores de aje.

6 Solucón Las resstencas de cada pla se encuentran en sere no mportando que exsta una fuente de tensón contnua. Entonces hacemos una resstenca equvalente por las resstencas de las plas y utlzamos la propedad de dvsor de aje. b b e q b t b. (0. 0. b) v b. (0. 0. b) b b 0.8b. b. ) Encontrar el valor de ab l.c.k () () ab ab 0 eemplazando en

7 ab ( ) ab ( ) 0 ab 0 ab ab 0. Problema Hallar la corrente en cada resstenca del crcuto de la sguente fgura: La corrente resultante sera: eq eq eq // // eq amp Al aplcar la formula del dvsor de corrente se obtenen las correntes por cada una de las ramas.

8 7 + 7 amp amp + amp. Problema ealzar las mallas según la fgura y se toma como ncógnta de la fuente de corrente. Por ley de aje de krchhoff (lvk)

9 Las ecuacones de las mallas son: Malla() : ( 9++) -9 - = Malla() : -9 +(+++9) - - = -0 Malla(): - - +(+++) - = 0 Malla(): - - +(+) = Como sabemos que la fuente de corrente mpone la ntensdad = 7 Amp. Por lo tanto, el sstema de ecuacones queda como se ndca a contnuacón () -9 - = () = () = () = 9 Como resultado tenemos que: = [amp] ; = [amp] ; = 8 [amp] y = 8 []

10 . Problema Analzar a través de la ley de krchhoff el crcuto de la fgura, escrbendo las ecuacones de los nodos y de las mallas Las ncógntas son las ntensdades,,,, y los ajes,,,, en las resstencas, como se ven en la fgura. Prmera ley de krchhoff a los nodos A y B. Nodo A : - = 0 Nodo B : + = 0 Segunda ley de krchoff aplcada a las mallas Tenemos ecuacones para 0 ncogntas, nos faltan ecuacones mas que son las relacones entre aje y corrente (ley de Ohm)

11 Despejo, y en funcon de y 0 De la prmera ley de Krchhoff y de la ley de Ohm Susttuyendo los valores de las resstencas y smplfcando, se llega al sguente sstema Las otras tencones e ntensdades valen,, A, A 9, A, A, A

12 . Problema ) calcular el valor de la fuente de corrente para que el aje sea de [] Por superposcón obtenemos Crcuto Crcuto

13 = x + xx En el prmer crcuto el sera la suma de los ajes en las resstencas y, al estar aberto no crcula corrente. Estas correntes se calculan por dvsor de aje y el aje x Para hallar el oltaje xx del º crcuto, se asocan convenentemente las resstencas en sere y paralelo Asocamos 7 a la asocacón en paralelo de y (E+) Y 8 a la asocacón en paralelo de y, se tene que ( ) 0.(0. 0.) ( ) 0. (0. 0.)

14 Por lo tanto xx ( 7 8) ( ). 8 Luego el teorema de superposcón, se debe cumplr 0..8 A. Problema Encontrar la corrente que pasa por el resstor de [kω] = [kω], = [kω], = [kω], = [kω], = 9 [] Lo desarrollaremos por el método de superposcón Prmero anularemos la fuente de tensón contnua Dvsor de corrente en paralelo

15 ` ( ) 8 Luego anulamos la fuente de corrente ma ma ma Ley de ohm `` T 9 ( ) K 0. ma. ` `` ma 0.mA ma

16 . Problema educr la red a una fuente de corrente únca y calcule la corrente que pasa por el Por lo tanto tenemos T x x T 8 T. L L. 0A

17 . Problema Determnar la corrente que pasa por el resstor = [Ω],= y = [] 8 [] T T T ( // ) ( ) 7 8 T 7 v A ` ``. -. A `` `. T A ( ) ( A A

18 T ( // ) T `` 8 A v A 7. Problema A través de superposcón, encontrar la corrente que pasa por el resstor de [Ω] de la red. = [] ; = [Ω] ; = [Ω] ; = 9 [A] T X paralelo X ` 9 A ( ) T `` T ` `` ( ) A A 8A A

19 8. Problema Convertr la fuente de aje en una fuente de corrente y calcular la corrente que pasa por L para cada fuente. Datos = [] S = [Ω] L = [Ω] Sabemos que = x S Solucón L X L S T T X S L S L L A S L S S L A A A

20 9. Problema Determnar y s s = [A] = [Ω] = [Ω] +0[] ( ) A A T Por la ley de krchhoff s s A 0 0

21 0. Problema Sol: por superposcón Consderando que = [] ` T ( ) A Consderando = [A] ) T `` A x ( ) ( Consderando = [] A ``` T ( ) A = -`+``+`` = (-++)[A] = [A]

22 . Problema Obtener el aje en el crcuto con fuentes ndependentes Denomnaremos a la fuente a = ; b = 8 ; c = A Por superposcón y elmnando la fuente b y c tenemos // 8 = * = / + Luego tenemos la fuente b y elmnamos a y c. // Por emson de aje tenemos // es el aje de la resstencas en paralelo = 8

23 La fuente c // // c Es negatva es por el sentdo en que la tomamos a b c El aje del crcuto es de []. Problema Determne las correntes,, L..K A B 0 B 0 L.C.K 0

24 Ley de los componentes Entonces tenemos B B A B B A B B A

25 . Problema En el crcuto de la fgura, se ndcan la dsposcón y los valores de las resstencas, las baterías (f.e.m y resstencas nternas) y la capacdad del condensador. Hállese en el estado estaconaro la carga, la dferenca de potencal entre las placas del condensador, y la energía que almacena en el msmo.

26 ) ohm ohm q =0 a c c 0, ohm, ohm ac LK () LK () 8 - ac - * = 0 ac = - * ac * = 0 ac = 8 + * 0, ohm ohm = [A] ac = [] ac = c + c =9 ac = q/c = q / *0 q = uc U = q =.8 * 0 J C -

27 . Problema En el crcuto de la fgura. Calcular en el estado estaconaro a) Las ntensdades b) La carga y energía en el condensador c) La potenca sumnstrada por las baterías de 8 y de. d) La energía dspada en la resstenca de [ohm] al cabo de s.

28 ed ohm fe cf dc 0 0 LK - * - * = * + * = 0 ohm ohm ohm LK 8 + * - * = 0 * - * + 0 = 0 8 LCK = = 8 = a) =.8 [A] = -0. [A] =.0 [A] b) q/c = 8 + q = C q =uc - U= q =. * 0 J C

29 c) Potenca en la batería de 8 8 x = 8x 7 W Potenca en la batería de x 0 = 0W YA QUE AL SE UN CCUTO ABETO (NO HAY COENTE) d) Energía dsputada en la resstenca de ( ) ( ) x xt = x x = J

30 . Problema esolver el crcuto de la fgura a partr del estudo de cada uno de sus elementos. a) Determnar la dferenca de potencal entre los puntos a y b del crcuto. b) La potenca sumnstrada por las baterías y la energía por undad de tempo dspada en las resstencas. c) Comprobar la conservacón de la energía.

31 ) En el nudo a: Malla superor 0 ca dc bd fb af 0 ) ( 0) ( Malla nferor 0 fa bf hb gh ag 0 ) 0 ( 8) ( esolvendo el sstema de de ecuacones generado por las ecuacones,,: A A A fb fa ab 7 7 0) ( 7 8 8

32 ohm Potencas en las baterías W P ) ( W P W P ) (

33 En las resstencas se dspa energía P P P 07 ( ) W W ( ) W 9 Total de potenca sumnstrada 99 W 78 Total de potenca dcpada W 78. Problema Un crcuto sere de corrente alterna consta de una resstenca de 00 autonduccón de 0. H y un condensador de 0 electromotrz = 0. sen( 000 t), calcular : a) la mpedanca del crcuto b) la ntensdad nstantánea a) Z 00 L C (00 00) b) 0 90 Z A X L X C XL -XC Z

34 00 cos 0,8; 0, 8 rad Z 0 crcuto nductvo : Tensón adelantada respecto de (ntensdad ETASADA respecto ) t,90 sen000t 0,8 7. Problema En un crcuto sere LC se aplca una tensón alterna de frecuenca 0 Hz, de forma que las tensones entre los bornes de cada elemento son: = 00, L= 80 y c = 7, sendo = 00 a) el valor de L y de C X X C L = C = L = 7, = 90 ; ; X L = ; C = = = 8 Cw wx X C p * 0 C X L X L = Lw ; L = = = 0, 9 H w p * 0 X C F b) la ntensdad que crcula por el crcuto. = = A

Solución: Se denomina malla en un circuito eléctrico a todas las trayectorias cerradas que se pueden seguir dentro del mismo.

Solución: Se denomina malla en un circuito eléctrico a todas las trayectorias cerradas que se pueden seguir dentro del mismo. 1 A qué se denomna malla en un crcuto eléctrco? Solucón: Se denomna malla en un crcuto eléctrco a todas las trayectoras cerradas que se pueden segur dentro del msmo. En un nudo de un crcuto eléctrco concurren

Más detalles

Guía de Electrodinámica

Guía de Electrodinámica INSTITITO NACIONAL Dpto. de Físca 4 plan electvo Marcel López U. 05 Guía de Electrodnámca Objetvo: - econocer la fuerza eléctrca, campo eléctrco y potencal eléctrco generado por cargas puntuales. - Calculan

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUES DE CCESO L UNVERSDD L.O.G.S.E CURSO 004-005 CONVOCTOR SEPTEMRE ELECTROTECN EL LUMNO ELEGRÁ UNO DE LOS DOS MODELOS Crteros de calfcacón.- Expresón clara y precsa dentro del lenguaje técnco y gráfco

Más detalles

RESISTENCIAS EN SERIE Y LEY DE LAS MALLAS V 1 V 2 V 3 A B C

RESISTENCIAS EN SERIE Y LEY DE LAS MALLAS V 1 V 2 V 3 A B C RESISTENCIS EN SERIE Y LEY DE LS MLLS V V 2 V 3 C D Fgura R R 2 R 3 Nomenclatura: Suponemos que el potencal en es mayor que el potencal en, por lo tanto la ntensdad de la corrente se mueve haca la derecha.

Más detalles

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos)

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos) PROBLEMAS DE ELECTRÓNCA ANALÓGCA (Dodos) Escuela Poltécnca Superor Profesor. Darío García Rodríguez . En el crcuto de la fgura los dodos son deales, calcular la ntensdad que crcula por la fuente V en funcón

Más detalles

Continua: Corriente cuyo valor es siempre constante (no varía con el tiempo). Se denota como c.c.

Continua: Corriente cuyo valor es siempre constante (no varía con el tiempo). Se denota como c.c. .. TIPOS DE CORRIENTES Y DE ELEMENTOS DE CIRCUITOS Contnua: Corrente cuyo valor es sempre constante (no varía con el tempo). Se denota como c.c. t Alterna: Corrente que varía snusodalmente en el tempo.

Más detalles

v i CIRCUITOS ELÉCTRICOS (apuntes para el curso de Electrónica)

v i CIRCUITOS ELÉCTRICOS (apuntes para el curso de Electrónica) IUITOS EÉTIOS (apuntes para el curso de Electrónca) os crcutos eléctrcos están compuestos por: fuentes de energía: generadores de tensón y generadores de corrente y elementos pasos: resstores, nductores

Más detalles

http://www.rubenprofe.com.ar biofisica@rubenprofe.com.ar RESISTENCIAS EN PARALELO

http://www.rubenprofe.com.ar biofisica@rubenprofe.com.ar RESISTENCIAS EN PARALELO bofsca@rubenprofe.com.ar El crcuto funcona así: ESISTENCIS EN PLELO.- Las cargas salen del extremo postvo de la fuente y recorren el conductor (línea negra) hasta llegar al punto, allí las cargas se dvden

Más detalles

Respuesta A.C. del FET 1/14

Respuesta A.C. del FET 1/14 espuesta A.C. del FET 1/14 1. Introduccón Una ez que se ubca al transstor dentro de la zona saturada o de corrente de salda constante, se puede utlzar como amplfcador de señales. En base a un FET canal

Más detalles

Tema 3. Teoremas de la Teoría de Circuitos

Tema 3. Teoremas de la Teoría de Circuitos Tema 3. Teoremas de la Teoría de Crcutos 3.1 Introduccón 3. Superposcón 3.3 Transformacón de fuentes 3.4 Teorema de Theenn 3.5 Teorema de Norton V Th Th L 3.6 Máxma transferenca de potenca José. Pereda,

Más detalles

Leyes de tensión y de corriente

Leyes de tensión y de corriente hay6611x_ch03.qxd 1/4/07 5:07 PM Page 35 CAPÍTULO 3 Leyes de tensón y de corrente CONCEPTOS CLAVE INTRODUCCIÓN En el capítulo 2 se presentaron la resstenca así como varos tpos de fuentes. Después de defnr

Más detalles

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID DELTA MATE OMAÓN UNETAA / Gral. Ampuda, 6 8003 MADD EXÁMEN NTODUÓN A LA ELETÓNA UM JUNO 008 El examen consta de ses preguntas. Lea detendamente los enuncados. tene cualquer duda consulte al profesor. Todas

Más detalles

COMPARADOR CON AMPLIFICADOR OPERACIONAL

COMPARADOR CON AMPLIFICADOR OPERACIONAL COMAADO CON AMLIFICADO OEACIONAL COMAADO INESO, COMAADO NO INESO Tenen como msón comparar una tensón arable con otra, normalmente constante, denomnada tensón de referenca, dándonos a la salda una tensón

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

Tema 1. Conceptos Básicos de la Teoría de Circuitos

Tema 1. Conceptos Básicos de la Teoría de Circuitos Tema. Conceptos Báscos de la Teoría de Crcutos. Introduccón. Sstema de undades.3 Carga y corrente.4 Tensón.5 Potenca y energía.6 Ley de Ohm.7 Fuentes ndependentes.8 Leyes de Krchhoff.9 Dsores de tensón

Más detalles

TEMA 6 AMPLIFICADORES OPERACIONALES

TEMA 6 AMPLIFICADORES OPERACIONALES Tema 6 Amplfcadores peraconales ev 4 TEMA 6 AMPLIFICADES PEACINALES Profesores: Germán llalba Madrd Mguel A. Zamora Izquerdo Tema 6 Amplfcadores peraconales ev 4 CNTENID Introduccón El amplfcador dferencal

Más detalles

CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED

CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED Modelo en red para la smulacón de procesos de agua en suelos agrícolas. CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED IV.1 Modelo matemátco 2-D Exsten dos posbldades, no ndependentes, de acuerdo con

Más detalles

Se desea definir redes lineales y estudiar sus propiedades.

Se desea definir redes lineales y estudiar sus propiedades. apítulo 6 1 EES LINELES Se desea defnr redes lneales y estudar sus propedades. Luego se desarrollará el método de análss por superposcón para redes lneales; y dos mportantes casos partculares de este método:

Más detalles

Fugacidad. Mezcla de gases ideales

Fugacidad. Mezcla de gases ideales Termodnámca del equlbro Fugacdad. Mezcla de gases deales rofesor: Alí Gabrel Lara 1. Fugacdad 1.1. Fugacdad para gases Antes de abarcar el caso de mezclas de gases, debemos conocer como podemos relaconar

Más detalles

En el capítulo correspondiente a Inducción Magnética, vimos que un cuadro de hilo

En el capítulo correspondiente a Inducción Magnética, vimos que un cuadro de hilo VII. Corrente Alterna Introduccón: Cas la totaldad de la energía eléctrca utlzada actualmente se produce medante generadores eléctrcos de corrente alterna, la cual tene la gran ventaja sobre la corrente

Más detalles

Guía de ejercicios #1

Guía de ejercicios #1 Unversdad Técnca Federco Santa María Departamento de Electrónca Fundamentos de Electrónca Guía de ejerccos # Ejercco Ω v (t) V 3V Ω v0 v 6 3 t[mseg] 6 Suponendo el modelo deal para los dodos, a) Dbuje

Más detalles

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II PRACTICA 11: Crcutos no lneales elementales con el amplfcador operaconal OBJETIVO: El alumno se famlarzará con

Más detalles

TEMA 4 Amplificadores realimentados

TEMA 4 Amplificadores realimentados TEM 4 mplfcadores realmentados 4.1.- Introduccón La realmentacón (feedback en nglés) negata es amplamente utlzada en el dseño de amplfcadores ya que presenta múltples e mportantes benefcos. Uno de estos

Más detalles

Gráficos de flujo de señal

Gráficos de flujo de señal UNIVRSIDAD AUTÓNOMA D NUVO ÓN FACUTAD D INGNIRÍA MCANICA Y ÉCTRICA Gráfcos de flujo de señal l dagrama de bloques es útl para la representacón gráfca de sstemas de control dnámco y se utlza extensamente

Más detalles

CAPÍTULO 3 - POTENCIA ALTERNA

CAPÍTULO 3 - POTENCIA ALTERNA CAPÍTULO 3 - POTENCA ALTERNA 3-- POTENCA ACTVA (t) Dadas v(t) e (t) la potenca nstantánea en un crcuto genérco es: p(t) = v(t). (t) v(t) Crcuto La potenca p puede ser postva o negatva según el nstante

Más detalles

COMPONENTES ELEMENTALES

COMPONENTES ELEMENTALES Capítulo COMPONENTES ELEMENTALES.. Modelos de Componentes Una componente eléctrca se descrbe por una relacón entre sus arables termnales, la que se denomna relacón de equlbro. El oltaje y la corrente,

Más detalles

Corriente continua: introducción

Corriente continua: introducción nota técnca Corrente contnua: ntroduccón Introduccón os tpos de tensón contnua y alterna, a través de la hstora de la energía eléctrca, han pasado por dversas épocas de relatvas supremacías y de convvenca;

Más detalles

Tema 3: Adaptadores de Señal

Tema 3: Adaptadores de Señal Tema 3: Adaptadores de Señal Sstema GENERAL de nstrumentacón (bloques( funconales): Señal sensor Fltrado, A/D Amplfcacón Rado, nternet bus de datos Medo Sensor prmaro Transductor de entrada Adaptacón de

Más detalles

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo FUNDAMENTOS DE NGENEÍA EÉCTCA José Frncsco Gómez González Benjmín González Díz Mrí de l Peñ Fn Bendcho Ernesto Pered de Plo Tem 1: Generlddes y CC en régmen estconro PUNTOS OBJETO DE ESTUDO 3 Generlddes

Más detalles

FUNDAMENTOS QUIMICOS DE LA INGENIERIA

FUNDAMENTOS QUIMICOS DE LA INGENIERIA FUNDAMENTOS QUIMICOS DE LA INGENIERIA (BLOQUE DE INGENIERIA QUIMICA) GUION DE PRACTICAS DE LABORATORIO ANTONIO DURÁN SEGOVIA JOSÉ MARÍA MONTEAGUDO MARTÍNEZ INDICE PRACTICA PAGINA BALANCE MACROSCÓPICO DE

Más detalles

Fisicoquímica CIBEX Guía de Trabajos Prácticos 2010. Trabajo Práctico N 7. - Medida de la Fuerza Electromotriz por el Método de Oposición-

Fisicoquímica CIBEX Guía de Trabajos Prácticos 2010. Trabajo Práctico N 7. - Medida de la Fuerza Electromotriz por el Método de Oposición- Fscoquímca CIBX Guía de Trabajos Práctcos 2010 Trabajo Práctco N 7 - Medda de la Fuerza lectromotrz por el Método de Oposcón- Objetvo: Medr la fuerza electromotrz (FM) de la pla medante el método de oposcón

Más detalles

Circuito Monoestable

Circuito Monoestable NGENEÍA ELETÓNA ELETONA (A-0 00 rcuto Monoestable rcuto Monoestable ng. María sabel Schaon, ng. aúl Lsandro Martín Este crcuto se caracterza por presentar un únco estado estable en régmen permanente, y

Más detalles

EL AMPLIFICADOR OPERACIONAL.

EL AMPLIFICADOR OPERACIONAL. Tema 6. El mplfcador peraconal. Tema 6 EL MPLIFICD PECINL.. Introduccón... Símbolos y termnales del amplfcador operaconal... El amplfcador operaconal como amplfcador de tensón..3. Conceptos báscos de realmentacón..4.

Más detalles

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas IES Menéndez Tolosa (La Línea) Físca y Químca - 1º Bach - Gráfcas 1 Indca qué tpo de relacón exste entre las magntudes representadas en la sguente gráfca: La gráfca es una línea recta que no pasa por el

Más detalles

AMPLIFICADORES CON BJT.

AMPLIFICADORES CON BJT. Tema 5 MPLIFICDORES CON BJT..- Introduccón...- Prncpo de Superposcón...- Nomenclatura..3.- Recta de Carga Estátca..4.- Recta de Carga Dnámca..- Modelo de pequeña señal del BJT...- El cuadrpolo y el modelo

Más detalles

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos Reconclacón de datos expermentales MI5022 Análss y smulacón de procesos mneralúgcos Balances Balances en una celda de flotacón En torno a una celda de flotacón (o un crcuto) se pueden escrbr los sguentes

Más detalles

TEMA 1 DISPOSITIVOS ELECTRONICOS ANALISIS DE CIRCUITOS

TEMA 1 DISPOSITIVOS ELECTRONICOS ANALISIS DE CIRCUITOS Tema. Dispositivos Electrónicos. Análisis de Circuitos. rev TEMA DSPOSTVOS ELECTONCOS ANALSS DE CCUTOS Profesores: Germán Villalba Madrid Miguel A. Zamora zquierdo Tema. Dispositivos Electrónicos. Análisis

Más detalles

CONCEPTOS GENERALES DEL CAMPO MAGNÉTICO

CONCEPTOS GENERALES DEL CAMPO MAGNÉTICO CONCEPTOS GENERALES DEL CAMPO MAGNÉTICO 1 ÍNDICE 1. INTRODUCCIÓN 2. EL CAMPO MAGNÉTICO 3. PRODUCCIÓN DE UN CAMPO MAGNÉTICO 4. LEY DE FARADAY 5. PRODUCCIÓN DE UNA FUERZA EN UN CONDUCTOR 6. MOVIMIENTO DE

Más detalles

OSCILACIONES 1.- INTRODUCCIÓN

OSCILACIONES 1.- INTRODUCCIÓN OSCILACIONES 1.- INTRODUCCIÓN Una parte relevante de la asgnatura trata del estudo de las perturbacones, entenddas como varacones de alguna magntud mportante de un sstema respecto de su valor de equlbro.

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

TEOREMAS DE CIRCUITOS ELÉCTRICOS. 2.1 Teoremas de THEVENIN Y NORTON y MILLMAN. Pasivado de fuentes

TEOREMAS DE CIRCUITOS ELÉCTRICOS. 2.1 Teoremas de THEVENIN Y NORTON y MILLMAN. Pasivado de fuentes TOMS D IUITOS LTIOS TOMS D IUITOS LÉTIOS. Teoremas de VNIN Y NOTON y MILLMN Pasvado de fentes Una fente qeda pasvada cando el módlo de s magntd eléctrca se hace cero (No tene más capacdad de aportar energía

Más detalles

OP-AMP ideal. Circuito equivalente. R o. i o. R i. v o. i 2 + v 2. A(v 1 v 2 )

OP-AMP ideal. Circuito equivalente. R o. i o. R i. v o. i 2 + v 2. A(v 1 v 2 ) El amplfcador operaconal Símbolos y termnales El amplfcador operaconal op amp es un crcuto ntegrado básco utlzado en crcutos analógcos. Aplcacones: amplfcacón/escalamento de señales de entrada nversón

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA ERMODINÁMICA AANZADA Undad III: ermodnámca del Equlbro Fugacdad Fugacdad para gases, líqudos y sóldos Datos volumétrcos 9/7/ Rafael Gamero Fugacdad ropedades con varables ndependentes y ln f ' Con la dfncón

Más detalles

TEMA 2 Amplificadores con transistores: Modelos de pequeña señal

TEMA 2 Amplificadores con transistores: Modelos de pequeña señal Tema 2 TMA 2 Amplfcadores con transstores: Modelos de pequeña señal 2..- Introduccón La polarzacón de un transstor es la responsable de establecer las correntes y tensones que fjan su punto de trabajo

Más detalles

Consideremos un sólido rígido sometido a un sistema de fuerzas en equilibrío, es decir

Consideremos un sólido rígido sometido a un sistema de fuerzas en equilibrío, es decir 1. PRINIPIO E TRJOS VIRTULES El prncpo de los trabajos rtuales, en su ertente de desplazamentos rtuales, fue ntroducdo por John ernoull en 1717. La obtencón del msmo dera de la formulacón débl (o ntegral)

Más detalles

ELEMENTOS DE ELECTRICIDAD BASICA

ELEMENTOS DE ELECTRICIDAD BASICA MODULO 1 ELEMENTOS DE ELECTRICIDAD BASICA A contnuacón se resumen algunos elementos de Electrcdad Básca que se supone son conocdos por los estudantes al ngresar a la Unversdad DESCUBRIMIENTO DE LA ELECTRICIDAD:

Más detalles

V1 = A1 = V2 = A2 = V3 = L e) Construir el diagrama fasorial de voltajes. V. Nombre: Lecturas amperímetros (en ma) Lecturas voltímetros (en V)

V1 = A1 = V2 = A2 = V3 = L e) Construir el diagrama fasorial de voltajes. V. Nombre: Lecturas amperímetros (en ma) Lecturas voltímetros (en V) FÍSICA APICADA. EXAMEN ODINAIO MAYO 013. MODEO A Nombre: TEOÍA (.5 p) A) Una carga puntual postva que sgue una trayectora rectlínea entra en un campo magnétco perpendcularmente a las líneas del campo.

Más detalles

Amplificador Operacional Opamp

Amplificador Operacional Opamp Amplfcadr Operacnal Opamp Opamp El Opamp es un amplfcadr multetapa cn una entrada dferencal, cuyas característcas se aprxman a las de un amplfcadr deal. Característcas deales de un Opamp Resstenca de entrada

Más detalles

EMILIO SÁEZ-Q. LÓPEZ DEPARTAMENTO DE TECNOLOGÍA IES ISLA VERDE. Sean cuatro resistencias como las de la figura conectadas a una pila de 12 voltios.

EMILIO SÁEZ-Q. LÓPEZ DEPARTAMENTO DE TECNOLOGÍA IES ISLA VERDE. Sean cuatro resistencias como las de la figura conectadas a una pila de 12 voltios. CRCUTO MXTO Veamos este procedimiento de cálculo con un ejemplo numérico: Sean cuatro resistencias como las de la figura conectadas a una pila de 12 voltios. =3 Ω R 4 =2,5 Ω R 2 =4 Ω =2 Ω Para realizar

Más detalles

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

Calcular el equivalente Thevenin y Norton entre los puntos a y b en el circuito de la figura

Calcular el equivalente Thevenin y Norton entre los puntos a y b en el circuito de la figura Ejemplos de cálculo de crcutos equlentes. Aplccón de los teorems de Theenn y Norton Clculr el equlente Theenn y Norton entre los puntos y en el crcuto de l fgur Ω 4Ω 3 6Ω L Ω 5Ω V L Pr clculr el equlente

Más detalles

EBAS Exámenes resueltos

EBAS Exámenes resueltos www.smplyjarod.com EAS Exámenes resueltos -9 pto. de Electrónca Físca Examen de: ELETÓNA ÁSA(Feb/) PÁGNA N o APELLOS NOME N o N ALFAÓN ANTES E EMPEZA lea atentamente estas NSTUONES Mantenga en lugar SLE

Más detalles

2003/2004. Boletín de Problemas MÁQUINAS ELÉCTRICAS: MÁQUINA DE CORRIENTE CONTINUA 3º DE INGENIEROS INDUSTRIALES. Dpto. de Ingeniería Eléctrica

2003/2004. Boletín de Problemas MÁQUINAS ELÉCTRICAS: MÁQUINA DE CORRIENTE CONTINUA 3º DE INGENIEROS INDUSTRIALES. Dpto. de Ingeniería Eléctrica Dpto. de Ingenería Eléctrca E.T.S. de Ingeneros Industrales Unversdad de Valladold 2003/2004 MÁQUINAS ELÉCTRICAS: MÁQUINA DE CORRIENTE CONTINUA 3º DE INGENIEROS INDUSTRIALES Boletín de Problemas MÁQUINA

Más detalles

1.- Objetivo Alcance Metodología...3

1.- Objetivo Alcance Metodología...3 PROCEDIMIENTO DO PARA EL CÁLCULO DEL FACTOR DE DESEMPEÑO DEL CONTROL DE FRECUENCIA (FECF) EN EL SIC DIRECCIÓN DE OPERACIÓN ÍNDICE 1.- Objetvo...3 2.- Alcance...3 3.- Metodología...3 3.1.- Cálculo de la

Más detalles

1 LEY DE OHM. q I lím [Ampere] [1] q = n e, en que e es la carga del electrón y n es un número entero. dq n A dl e [2]

1 LEY DE OHM. q I lím [Ampere] [1] q = n e, en que e es la carga del electrón y n es un número entero. dq n A dl e [2] 1 LEY DE OHM OBJETO Encontrar e modeo matemátco que reacone a ntensdad de corrente eéctrca,, que fuye por una resstenca y a dferenca de potenca,, entre os extremos de a resstenca, y e vaor de a resstenca,.

Más detalles

Ampli cadores Multietapa

Ampli cadores Multietapa Ampl cadores Multetapa. Carrllo, J.. Hurcan Abstract Los ampl cadores multeetapa son crcutos electróncos formados por aros transstores (BJT o FET), que pueden ser acoplados en forma drecta o medante capactores.

Más detalles

TEMA 4. TRABAJO Y ENERGIA.

TEMA 4. TRABAJO Y ENERGIA. TMA 4. TRABAJO Y NRGIA. l problema undamental de la Mecánca es descrbr como se moverán los cuerpos s se conocen las uerzas aplcadas sobre él. La orma de hacerlo es aplcando la segunda Ley de Newton, pero

Más detalles

CURSO 4º ESO CENTRO I.E.S. ALONSO DE COVARRUBIAS MATERIA: TECNOLOGÍA. UNIDAD DIDÁCTICA Nº 0 (Tema 0) REPASO DE ELECTRICIDAD

CURSO 4º ESO CENTRO I.E.S. ALONSO DE COVARRUBIAS MATERIA: TECNOLOGÍA. UNIDAD DIDÁCTICA Nº 0 (Tema 0) REPASO DE ELECTRICIDAD TECNOLOGÍA CUSO 4º ESO CENTO.E.S. ALONSO DE COAUBAS MATEA: TECNOLOGÍA UNDAD DDÁCTCA Nº 0 (Tema 0) EPASO DE ELECTCDAD TECNOLOGÍA CUSO: 4º ESO CENTO:.E.S. ALONSO DE COAUBAS ÁEA DE: TECNOLOGÍA. UNDAD DDÁCTCA:

Más detalles

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1 CAPÍTULO 3 EJERCICIOS RESUELTOS: CONCEPTOS BÁSICOS DE ÁLGEBRA LINEAL Ejerccos resueltos 1 1. La norma p (tambén llamada l p ) en R n se defne como ( ) 1/p x p = x p. Demuestre que cumple los axomas de

Más detalles

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández MEMORIA DE LA ESTANCIA CON EL GRUPO DE VISIÓN Y COLOR DEL INSTITUTO UNIVERSITARIO DE FÍSICA APLICADA A LAS CIENCIAS TECNOLÓGICAS. UNIVERSIDAD DE ALICANTE. 1-16 de Novembre de 01 Francsco Javer Burgos Fernández

Más detalles

3. VARIABLES ALEATORIAS.

3. VARIABLES ALEATORIAS. 3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)

Más detalles

Problemas sobre números complejos -1-

Problemas sobre números complejos -1- Problemas sobre números complejos --.- Representa gráfcamente los sguentes números complejos y d cuáles son reales, cuáles magnaros y, de estos, cuáles magnaros puros: 5-5 + 4-5 7 0 -- -7 4.- Obtén las

Más detalles

C Capacitores e inductores. Circuitos de Primer Orden

C Capacitores e inductores. Circuitos de Primer Orden C Cpctores e nductores. Crcutos de Prmer Orden C El crcuto que se muestr en l fgur c h llegdo ls condcones de estdo estle ( l corrente en el cpctor es cero ) con el nterruptor en l poscón. S el nterruptor

Más detalles

Resumen de los teoremas fundamentales del análisis estructural aplicados a celosías

Resumen de los teoremas fundamentales del análisis estructural aplicados a celosías Resumen de los teoremas fundamentales del análss estructural aplcados a celosías INTRODUCCIÓN Fuerzas aplcadas y deformacones de los nudos (=1,n) ESTICIDD Tensón =Ν/Α. Unforme en cada seccón de la arra.

Más detalles

PROBLEMAS RESUELTOS CIRCUITOS DE CORRIENTE CONTINUA CAPITULO 28 FISICA TOMO 2. Tercera y quinta edición. Raymond A. Serway

PROBLEMAS RESUELTOS CIRCUITOS DE CORRIENTE CONTINUA CAPITULO 28 FISICA TOMO 2. Tercera y quinta edición. Raymond A. Serway PROBLEMAS RESUELTOS CIRCUITOS DE CORRIENTE CONTINUA CAPITULO 8 FISICA TOMO Tercer y qunt edcón Rymond A. Serwy CIRCUITOS DE CORRIENTE CONTINUA 8. Fuerz electromotrz 8. Resstores en sere y en prlelo 8.3

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange Mecánca 2 Resumen TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange. Prncpos de dnámca clásca.. Leyes de ewton a) Ley

Más detalles

CAPÍTULO V ESTRUCTURAS ALGEBRAICAS

CAPÍTULO V ESTRUCTURAS ALGEBRAICAS ESTRUCTURAS ALGEBRAICAS 7 CAPÍTULO V ESTRUCTURAS ALGEBRAICAS Estructura Algebraca es todo conjunto no vacío en el cual se han defndo una o más leyes de composcón nterna, luego de cumplr certas propedades

Más detalles

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA . El Método de Dferencas Fntas El Método consste en una aproxmacón de las dervadas parcales por expresones algebracas con los valores de

Más detalles

Tema 9: SOLICITACIONES COMBINADAS

Tema 9: SOLICITACIONES COMBINADAS Tema 9: SOTONES ONDS V T N V Problemas resueltos Prof.: Jame Santo Domngo Santllana E.P.S.-Zamora (U.S.) - 8 9..-En la vga de la fgura calcular por el Teorema de los Trabajos Vrtuales: ) Flecha en ) Gro

Más detalles

Laboratorio de Electricidad PRACTICA - 8 SHUNTS PARA INSTRUMENTOS DE MEDICIÓN DE CORRIENTE

Laboratorio de Electricidad PRACTICA - 8 SHUNTS PARA INSTRUMENTOS DE MEDICIÓN DE CORRIENTE PRACTCA - 8 HUNT PARA NTRUMNTO D MDCÓN D CORRNT - Fnaldades 1.- Convertr un dspostvo fundamental de medcón (alvanómetro) en un mlamperímetro con márenes de medda más elevados. 2.- Calcular el valor del

Más detalles

CAPACIDAD DE LAS HOJAS DE CÁLCULO EN EL ANÁLISIS Y OPTIMIZACIÓN DE PROCESOS Y SISTEMAS

CAPACIDAD DE LAS HOJAS DE CÁLCULO EN EL ANÁLISIS Y OPTIMIZACIÓN DE PROCESOS Y SISTEMAS CAPACIDAD DE LAS OJAS DE CÁLCULO EN EL ANÁLISIS Y OPIMIZACIÓN DE PROCESOS Y SISEMAS A. Rvas y. Gómez-Acebo Departamento de Ingenería Mecánca-Área de Ingenería érmca y de Fludos ECNUN - Escuela Superor

Más detalles

Electricidad y calor

Electricidad y calor Electrcdad y calor Webpage: http://pagnas.sca.uson.mx/qb 2007 Departamento de Físca Unversdad de Sonora Temas 4. Prmera ley de la Termodnámca.. Concepto de Trabajo aplcado a gases.. Trabajo hecho por un

Más detalles

Electricidad y calor. Un repaso... Temas. 4. Primera ley de la Termodinámica. Webpage: Algunas definiciones

Electricidad y calor. Un repaso... Temas. 4. Primera ley de la Termodinámica. Webpage:  Algunas definiciones Electrcdad y calor Webpage: http://pagnas.sca.uson.mx/qb 2007 Departamento de Físca Unversdad de Sonora Temas 4. Prmera ley de la Termodnámca.. Concepto de Trabajo aplcado a gases.. Trabajo hecho por un

Más detalles

AMPLIFICADOR OPERACIONAL

AMPLIFICADOR OPERACIONAL apítulo MPLFDO OPEONL El mplfcador Operaconal es un amplfcador con realmentacón que se encuentra en el mercado como una pastlla de crcuto ntegrado. Es dfícl enumerar la totaldad de las aplcacones de este

Más detalles

A TEORÍA DE CIRCUITOS I CAPÍTULO 1: CONCEPTOS Y DEFINICIONES. LEYES DE KIRCHHOFF

A TEORÍA DE CIRCUITOS I CAPÍTULO 1: CONCEPTOS Y DEFINICIONES. LEYES DE KIRCHHOFF A.4. TEORÍA DE CIRCUITOS I CAPÍTULO : CONCEPTOS Y DEFINICIONES. LEYES DE KIRCHHOFF Cátedra de Teoría de Crcutos I Edcón 5 Capítulo I: CONCEPTOS Y DEFINICIONES. LEYES DE KIRCHHOFF. Los crcutos eléctrcos

Más detalles

1 Aplicaciones básicas del amplificador operacional

1 Aplicaciones básicas del amplificador operacional 1 Aplcacones báscas del amplfcador operaconal 15 1 Aplcacones báscas del amplfcador operaconal El objeto prncpal de esta práctca es la presentacón y expermentacón del amplfcador operaconal (AO) en confguracones

Más detalles

INTRODUCCION A LOS METODOS ELECTROANALITICOS

INTRODUCCION A LOS METODOS ELECTROANALITICOS Introduccón a los Métodos Electro-analítcos 2 Tema 7 INTRODUCCION A LOS METODOS ELECTROANALITICOS Los métodos electroquímcos de análss, o métodos electro-analítcos, son, en general, menos utlzados que

Más detalles

Electrotecnia. Tema 7. Problemas. R-R -N oro

Electrotecnia. Tema 7. Problemas. R-R -N oro R-R -N oro R 22 0^3 22000 (+-) 00 Ohmios Problema.- Calcular el valor de la resistencia equivalente de un cubo cuyas aristas poseen todas una resistencia de 20 Ω si se conecta a una tensión los dos vértices

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

Tema 5. Análisis Transitorio de Circuitos de Primer y Segundo Orden

Tema 5. Análisis Transitorio de Circuitos de Primer y Segundo Orden Tema 5. Análss Transoro de Crcuos de Prmer y egundo Orden 5.1 Inroduccón 5.2 Crcuos C sn fuenes 5.3 Crcuos C con fuenes 5.4 Crcuos L 5.5 Crcuos LC sn fuenes v() 5.6 Crcuos LC con fuenes () C () C v( )

Más detalles

Mediciones eléctricas X

Mediciones eléctricas X Medcones eléctrcas X Proesor: Gabrel Ordóñez Plata Ampérmetro Sstema Eléctrco Vóltmetro Clase Prncpo de operacón Subclase Campo de aplcacón Electromagnétco Electrodnámco Interaccón entre correntes y campos

Más detalles

1. Lección 7 - Rentas - Valoración (Continuación)

1. Lección 7 - Rentas - Valoración (Continuación) Apuntes: Matemátcas Fnanceras 1. Leccón 7 - Rentas - Valoracón (Contnuacón) 1.1. Valoracón de Rentas: Constantes y Dferdas 1.1.1. Renta Temporal y Pospagable En este caso, el orgen de la renta es un momento

Más detalles

LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION

LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION Unversdad Católca Los Ángeles de Chmbote LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION 1. DEFINICION: Las meddas estadístcas

Más detalles

NOTAS DE CLASE. Amplificador Operacional IDEAL

NOTAS DE CLASE. Amplificador Operacional IDEAL Unversdad Naconal de osaro Facultad de Cencas Exactas, Ingenería y Agrmensura Escuela de Ingenería Electrónca ELECTÓNICA II NOTAS DE CLASE Amplfcador Operaconal IDEAL Autores: Ing. Sergo Eberlen (Profesor

Más detalles

Aplicación de la termodinámica a las reacciones químicas Andrés Cedillo Departamento de Química Universidad Autónoma Metropolitana-Iztapalapa

Aplicación de la termodinámica a las reacciones químicas Andrés Cedillo Departamento de Química Universidad Autónoma Metropolitana-Iztapalapa Aplcacón de la termodnámca a las reaccones químcas Andrés Cedllo Departamento de Químca Unversdad Autónoma Metropoltana-Iztapalapa Introduccón Las leyes de la termodnámca, así como todas las ecuacones

Más detalles

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS TEMA NÚMEROS COMPLEJOS. EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS DEFINICIONES Al resolver ecuacones del tpo : x + = 0 x = ± que no tene solucón en los números reales. Los números complejos nacen del deseo

Más detalles

= x 1º B. 2º- Calcular y simplificar: 3º- Calcular el valor de k para que el cociente

= x 1º B. 2º- Calcular y simplificar: 3º- Calcular el valor de k para que el cociente Departamento de Matemátcas 1º B 7 / OCT / 05 1º- Defnr conjugado, opuesto e nverso de un nº complejo. Escrbr y representar el conjugado, el opuesto, el conjugado del opuesto, el opuesto del conjugado,

Más detalles

Bloque 1 Conceptos fundamentales de los circuitos eléctricos. Teoría de Circuitos

Bloque 1 Conceptos fundamentales de los circuitos eléctricos. Teoría de Circuitos Bloqe Conceptos fndamentales de los crctos eléctrcos Teoría de Crctos .. Magntdes báscas. Crtero de sgnos. Lemas de Krchhoff Introdccón Electromagnetsmo: Estda los campos eléctrcos y magnétcos y s nteraccón

Más detalles

1. Números imaginarios. Números complejos en forma binómica página 115. 2. Representación gráfica de los números complejos página 116

1. Números imaginarios. Números complejos en forma binómica página 115. 2. Representación gráfica de los números complejos página 116 Números complejos E S Q U E M A D E L A U N I D A D. Números magnaros. Números complejos en forma bnómca págna. Representacón gráfca de los números complejos págna 6.. Suma de números complejos págna 8.

Más detalles

Análisis de nodos Objetivo: Calcular los voltajes de los nodos, utilizando LCK, LVK y Ley de Ohm

Análisis de nodos Objetivo: Calcular los voltajes de los nodos, utilizando LCK, LVK y Ley de Ohm TÉCNCAS DE ANÁLSS - Análisis de nodos - Análisis de mallas - Transformación de fuentes - División de voltajes y corrientes ESUMEN TECNCAS DE ANALSS JESÚS BAEZ Análisis de nodos Objetivo: Calcular los voltajes

Más detalles

Convertidores Digital-Analógico y Analógico-Digital

Convertidores Digital-Analógico y Analógico-Digital Convertdores Dgtal-Analógco y Analógco-Dgtal Conversón Dgtal-Analógca y Analógca-Dgtal Con estos crcutos se trata de consegur una relacón bunívoca entre una señal analógca y una dgtal o vceversa. Las magntudes

Más detalles

TEMA 8: PRÉSTAMOS ÍNDICE

TEMA 8: PRÉSTAMOS ÍNDICE TEM 8: PRÉSTMOS ÍNDICE 1. CONCEPTO DE PRÉSTMO: SISTEMS DE MORTIZCIÓN DE PRÉSTMOS... 1 2. NOMENCLTUR PR PRÉSTMOS DE MORTIZCIÓN FRCCIOND... 3 3. CUDRO DE MORTIZCIÓN GENERL... 3 4. MORTIZCIÓN DE PRÉSTMO MEDINTE

Más detalles

REGRESION LINEAL SIMPLE

REGRESION LINEAL SIMPLE REGREION LINEAL IMPLE Jorge Galbat Resco e dspone de una mustra de observacones formadas por pares de varables: (x 1, y 1 ) (x, y ).. (x n, y n ) A través de esta muestra, se desea estudar la relacón exstente

Más detalles

Notas para su utilización en aplicaciones de conmutación

Notas para su utilización en aplicaciones de conmutación Transstres Ntas para su utlzacón en aplcacnes de cnmutacón Autr: Fernand fman Transstres Ntas para su utlzacón en aplcacnes de cnmutacón El transstr es un dspstv semcnductr, que presenta ds mds de funcnament:

Más detalles

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA BOLETÍN DE PROBLEMAS MÁQUINA DE CORRIENTE CONTINUA

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA BOLETÍN DE PROBLEMAS MÁQUINA DE CORRIENTE CONTINUA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA BOLETÍN DE PROBLEMAS MÁQUINA DE CORRIENTE CONTINUA 3º, INGENIERO INDUSTRIAL CURSO 2010/2011 MÁQUINA DE CORRIENTE CONTINUA Problemas propuestos 1. Un motor de exctacón

Más detalles

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA. LA MEDIANA: Es una medda de tendenca central que dvde al total de n observacones debdamente ordenadas

Más detalles

ELECTRICIDAD II - INDICE TEMÁTICO

ELECTRICIDAD II - INDICE TEMÁTICO ELECTRICIDAD II - INDICE TEMÁTICO ELECTRODINÁMICA 1 ELECTRICIDAD II - INDICE TEMÁTICO...1 EFECTOS MAGNÉTICOS DE LA CORRIENTE ELÉCTRICA...2 CAMPO MAGNÉTICO...2 Cómo decrece el campo magnétco con la dstanca?:...2

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22 DOCENTE: LIC.GUSTO DOLFO JUEZ GUI DE TJO PCTICO Nº 22 CES: POFESODO Y LICENCITU EN IOLOGI PGIN Nº 132 GUIS DE CTIIDDES Y TJO PCTICO Nº 22 OJETIOS: Lograr que el lumno: Interprete la nformacón de un vector.

Más detalles

1.1 Sistema de unidades utilizados en la resolución de circuitos eléctricos

1.1 Sistema de unidades utilizados en la resolución de circuitos eléctricos IUITOS LTIOS LMTOS, LYS Y MÉTODOS D SOLUIÓ D IUITOS LÉTIOS. Sstema de ndades tlzados en la resolcón de crctos eléctrcos Las magntdes y ndades qe tlzaremos de acerdo al Sstema Métrco Legal rgentno (SIML),

Más detalles