7. EXPONENCIALES Y LOGARITMOS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "7. EXPONENCIALES Y LOGARITMOS"

Transcripción

1 7. EXPONENCIALES Y LOGARITMOS En esta Unidad estudiaremos y analizaremos las funciones y ecuaciones eponenciales y logarítmicas. Comenzaremos con las funciones eponenciales para luego continuar con ecuaciones eponenciales. La necesidad de resolver ecuaciones eponenciales trae consigo hallar la función inversa de la función eponencial y es donde toma sentido la función logaritmo. Repasaremos algunas propiedades de los logaritmos para centrarnos en resolver ecuaciones logarítmicas y situaciones problemáticas donde se encuentren involucradas ecuaciones tanto eponenciales como logarítmicas. Comencemos con la siguiente situación. La esperanza de vida, aún en los países poco desarrollados, creció después de la Segunda Guerra Mundial aunque a distinto ritmo. Este crecimiento, si bien al principio trajo mayor actividad y progreso, a la larga ha producido graves problemas: falta de viviendas, escuelas, puestos de trabajo... El aumento de la población por la prolongación de la vida se ha visto compensado en parte por el descenso de la natalidad en los países industrializados. De todos modos, ha aparecido el problema del envejecimiento de la población (es decir el aumento de la edad promedio). Analizaremos ahora algún modelo matemático que trata de describir la evolución de una población. En Europa occidental, durante los siglos XVII y XVIII, comenzó a descender el índice de mortalidad, y el incremento poblacional en muchos países se situó entre 0.5 y % anual. Para evitar complicaciones con los cálculos consideraremos que el crecimiento poblacional fue del % anual durante los primeros 0 años de este siglo. Supongamos que la cantidad de población europea al comienzo del siglo XVII (año.600 ) sea 0 (en cientos de millones). La función P(t) medirá la cantidad de población en el tiempo t. Como comenzaremos nuestro estudio a partir del año.600 este será el tiempo inicial, es decir, t = 0. Año Tiempo t (años) Población ( en cientos de millones ) 600 t = 0 P (0) = 0 60 t = P () = 0 + % de 0 = t = = 0, P () = 0, + % de 0, = 0, + 0,0. 0, = 0,0 60 t = P () = Podemos hallar una fórmula que nos permita calcular la población para cualquier valor de t? Para ello analizaremos lo que hemos hecho hasta el momento en cada paso: Página 97

2 Curso de Apoyo en Matemática en t = 0, P (0) = 0 en t =, P () = 0 + 0,0.0 = 0 ( + 0,0) = 0.,0 = P (0).,0 en t =, P () = P () + 0,0. P () = 0.,0 + 0,0. 0.,0 = 0.,0 ( + 0,0) = 0.,0.,0 = 0 (.0) Podrás realizar el caso t =? (Ten en cuenta los pasos hechos en los casos t = y t = ) En general, la población después de t períodos será: P (t ) = 0 (.0) t donde 0 es la población inicial P (0). Verifiquemos que la fórmula obtenida nos da, por ejemplo para t =, P () = 0.,0 = 0,0 que coincide con el valor de la tabla. Si queremos estimar la población en el año 60, será P (0) = 0.,0 0 = 046. Observemos que en la fórmula P (t ) = 0 (,0) t, el factor 0 es la población inicial y la variable t figura en el eponente. A este tipo de funciones se las llama eponenciales. 7. FUNCIÓN EXPONENCIAL Desde ejemplos hasta la aparición de la definición, lo pondría como teto habitual, dado que son comentarios no vinculados a la enunciación de definiciones, leyes, etc. Esto, a los efectos de ver la coherencia gráfica. Ejemplos: 4 - = 4 5 = 5 Hasta ahora hemos estudiado potencias pertenecientes a distintos campos numéricos: potencias de eponente natural a n = 4 a. a. a4... a n N, n veces potencias de eponente nulo a 0 = ( a 0 ), potencias de eponente entero negativo a -n = n N, ( a 0 ), n a potencias de eponente fraccionario a m/n = n m a m Z, n N =5 6 ( ) = 6 y conocemos sus propiedades básicas: a n. a m = a n + m a n : a m = a n-m (a n ) m = a n.m n, m Q. Las propiedades antes mencionadas se etienden para el caso en que n y m son números reales cualesquiera También es posible dar sentido a epresiones tales como π, y estimar su valor a partir de una aproimación del eponente irracional. Página 98

3 Eponenciales y Logarítmos Con estos elementos, podemos definir la función eponencial. Función eponencial Dado a > 0, llamamos función eponencial de base a a la función f : R R definida por f () = a. El comportamiento de la función eponencial es muy distinto según sea a >, a <, a =. Ejemplo: Analicemos la gráfica de la función eponencial de acuerdo al valor de a. a) Si a >, por ejemplo a =, la función y = es creciente. Observemos que... cualquiera sea el valor de a > 0, la gráfica de la función eponencial debe pasar por el punto (0,), ya que es el valor de la ordenada al origen; es decir el valor que toma la función para = 0. Por otro lado es claro que a medida que el valor de aumenta, el valor de a también, y si el valor de decrece (con valores negativos) entonces el valor de a tiende a 0. Observemos que... nuevamente cualquiera sea el valor de 0< a <, la gráfica de la función pasa por el punto (0,). Por otro lado, a medida que el valor de aumenta, el valor de a decrece. b) Si 0 < a <, por ejemplo y = la función es decreciente. La siguiente tabla de valores nos permite hacer un estudio comparativo de las funciones y = e y =. Página 99

4 Curso de Apoyo en Matemática = = La gráfica de la función pasa por el punto (0,). Si los valores de son positivos, entonces es negativo. Si > 0, entonces 5 es decreciente. Si < 0, se tiene positivo y a medida que los valores de - aumentan, 5 decrece. c) y = 5 - Cuál es la gráfica de esta función? Para pensar... Qué pasa cuando a =? La función eponencial aparece con frecuencia en modelos matemáticos de diferentes procesos evolutivos. Por ejemplo, las amebas son seres unicelulares que se reproducen dividiéndose en dos. Supongamos que las condiciones de un cultivo son tales que las amebas se duplican aproimadamente cada hora, y que inicialmente solo hay una ameba. Proponemos calcular el número de amebas que habrá según pasan las horas: Tiempo (hs) Nro. de amebas Página 00

5 Eponenciales y Logarítmos Observemos que... si en el momento inicial hay k amebas, y en la primer hora se duplican, entonces ahora hay k. En la segunda hora se vuelven a duplicar, es decir, (k) = k, en la tercer hora se repite la situación y tenemos ( k) = k, etc. Luego en general se tiene k. El número total al cabo de horas será y = Si al comienzo del proceso había k amebas, el número total sería: y = k Observemos que en esta última igualdad, la variable independiente aparece como eponente. Qué pasa si ahora queremos hallar el tiempo en el cual el número de amebas eistente y es conocida? En la sección siguiente estudiaremos este tipo de ecuaciones resultante. 7.. ECUACIONES EXPONENCIALES Ecuación eponencial A una ecuación en la que la incógnita aparece en un eponente se la llama ecuación eponencial. a) 5 - = 5 Observemos que... estamos teniendo en cuenta que si las bases son las mismas en una igualdad, entonces los eponentes deben ser iguales. Observemos que 5 - = 5, entonces - =, luego = 0 b) = 7 Recordemos que a -n = n a = = - - = - = 4 Aquí utilizamos la definición de valor absoluto. = 4 = entonces =, = - Página 0

6 Curso de Apoyo en Matemática Actividades de Aprendizaje ) Graficar: a) y = b) y = 4 c) y =. d) y = e) y = - f) y = -. ) Las sustancias radiactivas se desintegran emitiendo radiaciones y transformándose en otras sustancias. Sustancia radiactiva radiaciones + otra sustancia. Este proceso se realiza con el paso del tiempo y a un ritmo que varía según el tipo de sustancia. La rapidez con que se desintegra una sustancia radiactiva se mide mediante su "período de desintegración", que es el tiempo que tarda en desintegrarse la mitad de la masa inicial; algunos ejemplos son: uranio: 500 millones de años radio: 60 años actinio: 8 años talio: minutos Si tenemos una masa inicial de un gramo y el período de desintegración es un año, averiguar qué cantidad de sustancia radiactiva queda al cabo de: Tiempo (años) grs. de sustancia... Cuál es la función que representa este proceso?. Graficar. ) Encontrar el valor de que verifica: + 4 a) + = 8 b) = 0,5 + 4) La población de una ciudad se triplica cada 50 años. En el tiempo t = 0, esta población es de habitantes. Dar una fórmula para la población P(t) como función del tiempo t. Cuál es la población después de a) 00 años? b) 50 años? c) 00 años? 5) Las bacterias en una solución se duplican cada minutos. Si hay 0 4 bacterias al comienzo, dar una fórmula para el número de bacterias en el tiempo t. Cuántas bacterias hay después de a) minutos? b) 7 minutos? c) hora? Página 0

7 Eponenciales y Logarítmos 6) Un elemento radiactivo que decae en su crecimiento f (t) después de un tiempo t satisface la fórmula f (t) = ,0 t. a) Cuál es la cantidad de este elemento al inicio del proceso? b) Qué cantidad queda después de 500 años? c) Qué cantidad queda después de 000 años? d) Qué cantidad queda después de 000 años?. 7. FUNCIÓN LOGARÍTMICA - LOGARITMOS Supongamos que un determinado bien material que hoy cuesta $50 se devalúa con el uso, cada año, un 4% de su valor durante el año anterior. Por ejemplo: En t = 0 (inicio) el valor en 0 V(0) = 50 En t = ( año después ) V() = 50 4% de 50 = 44 En t = ( años después) V() = 44 4% de 44 = 8,4 En t =... En general, una fórmula que representa esta situación, puede obtenerse como en el ejemplo inicial de la unidad: V(t) = 50. (096) t Supongamos ahora, que queremos saber luego de cuántos años de uso el valor del bien se redujo aproimadamente a $9. Para esto necesitamos resolver la siguiente ecuación 9 = 50 (0,96) t Cómo despejar t de esta fórmula? Observemos que el valor de t que estamos buscando es tal que elevando el número 0,96 a ese valor 9 da por resultado. 50 Ahora queremos resolver otros tipos de ecuaciones. Por ejemplo, resolvamos la ecuación 0 - = 0. Veamos qué secuencia de pasos desarrollamos: Descomponemos el número 0 en sus factores primos. 0 - =.. 5 Observemos que no podemos epresar al segundo miembro como potencia de 0, lo que nos permitiría resolver la ecuación de manera similar a la sección anterior. Nuestra pregunta es: cómo podemos resolver ecuaciones del tipo 0 = k?, ó en general a = k?. Podemos hacerlo si conocemos la función inversa de y = 0 Página 0

8 Curso de Apoyo en Matemática Función logarítmica 0 = 00 entonces = log 0 00 = pues 0 = 00 Si = log entonces 0 = = /00 entonces = log = - pues 0 - = A esta nueva función se la llama función logarítmica en base 0 y se denota y = log 0 ó también, y = log. Ahora, podemos decir que, si 0 = k entonces = log 0 k es decir, el logaritmo de un número en base 0 es el eponente al que hay que elevar la base 0 para obtener dicho número. Generalizando: Logaritmo en base a Sea a > 0 y a, e y > 0, llamaremos logaritmo en base a de y al único número que verifica a = y. Es decir, log a y = a = y. Ejemplo: Interpretemos la definición de logaritmo: a) 7 = 8 7 = 8 log 8 = 7 b) 8 / = 8 / = log 8 = Ejemplo: Calculemos a) log 6 log 6 = y y = 6 = 4 y = 4 b) log log = y y = = 5 y = 5 Ejemplo: El símbolo significa aproimadamente. Consulta el manual de tu calculadora para verificar que log 0 0 es aproimadamente,477. Ahora estamos en condiciones de resolver la siguiente ecuación. 0 - = = 0 - = log 0 0,477 luego - 0,477 Página 04

9 Eponenciales y Logarítmos 7.. PROPIEDADES DE LOS LOGARITMOS Recordemos algunas propiedades de los logaritmos: log (4.8) = log = 5 y log 4 + log 8 = + = 5 log 4 = log 64 = 6 pues 6 = 64 y log 4 =. = 6.- El logaritmo de un producto es igual a la suma de los logaritmos de los factores log a (. y) = log a + log a y.- El logaritmo de una potencia es igual al eponente por el logaritmo de la base log a ( y ) = y. log a A partir de estas dos propiedades se pueden deducir las siguientes: log 8/9 = log 9 = y por otro lado log 8 - log 9 = 4 =..- El logaritmo de un cociente es igual al logaritmo del numerador menos el logaritmo del denominador. log a = log a - log a y y Observar que log a = log a. = log + log y a a y y = log log y a a log 4 = log = pues 8 - = /. Por otro lado tenemos log =.( 4) = El logaritmo de una raíz es igual al logaritmo del radicando dividido por el índice de la raíz. log a y = loga = y log a Observar que log a y = log a ( /y ) = y loga y Para pensar... El logaritmo de la base es siempre log a a = por qué? El logaritmo de es 0 en cualquier base log a = 0 por qué? Página 05

10 Curso de Apoyo en Matemática 7. CAMBIO DE BASE Las calculadoras científicas permiten solamente obtener logaritmos decimales y neperianos. Logaritmo decimal Los logaritmos decimales son los logaritmos de base 0, y se acostumbra denotar log 0 = log omitiendo la base. Logaritmo neperiano El logaritmo neperiano o natural es el logaritmo cuya base es el número e,78 y se denota log e = ln. Si queremos calcular logaritmos en otra base, es conveniente realizar cambios de base. Si, por ejemplo, tuviéramos que calcular log : Llamamos al logaritmo que queremos calcular. Luego, aplicamos logaritmo decimal a amb os miembros y obtenemos = log log = log, finalmente, = log log,5849. El procedimiento general es: y = log a a y = y log b a = log b y = log log b b a Actividades de Aprendizaje 8) Calcular a) log 4 8 b) log ) Mostrar con un ejemplo que en general, a) log a ( + y) log a + log a y b) log a ( - y) log a - log a y. 0) Resolver aplicando la definición de logaritmo. a) log log 4 b) log log/ Página 06

11 Eponenciales y Logarítmos c) log log 6 d) log + log 4 - log 0,00 e) log 7 + log / 4 - log / 9 ) Sabiendo que log 5, calcular, aplicando las propiedades del logaritmo. a) log 0 b) log,5 c) log 5 d) log 5. ) Calcular realizando cambio de base a) log 0 b) log 5 c) log / 0 d) log 4 0,. 7.4 Ecuaciones Eponenciales y Logarítmicas Ya hemos resuelto ecuaciones eponenciales del tipo 5 - = 5 y del tipo 0 - = 0 utilizando logaritmos. Ahora resolveremos ecuaciones más complejas utilizando las propiedades del logaritmo. Ejemplo: calcular el valor de en las siguientes ecuaciones eponenciales... Aplicamos las propiedades de logaritmo y resolvemos la ecuación resultante en forma habitual Recordemos que a m+n = a m. a n a - = /a Etraemos factor común, resolvemos y aplicamos a la epresión = 79, logaritmo para luego resolver mediante propiedades. a). 5 = 4 log (. 5 ) = log 4 log + log 5 = log 4. log + log 5 = log 4. 0, ,699 0,60. 0,477 +.,98 0,60. (0,477 +,98) 0,60 b) = 4.,875 0,60 0, = = 4 + = 4 0. = 4 = 79, log = log 79, Página 07

12 Curso de Apoyo en Matemática log 79, = log 6,000 c) = -7 Consideremos z =, reemplazando en la ecuación, obtenemos una ecuación de segundo grado y encontramos las raíces como se mostró en la unidad 5. ( ) = 0 z - z + 7 = 0 las raíces de esta ecuación son z = 9, z =. Por lo tanto = 9 = y = = Si reemplazamos z = 5 obtenemos una ecuación de segundo grado. d) = = 0 (5 ) + 5 = 0 z + z - 0 = 0 Raíces de la ecuación cuadrática: z = 4, z = -5. Atención!! Una vez obtenidas las soluciones no olvides verificar si las mismas satisfacen la ecuación. Luego 5 = 4 log 5 = log 4 0,86 Si consideramos 5 = -5, vemos que no hay valores de que cumpla la ecuación, pues ninguna potencia de 5 puede ser negativa. Por ejemplo, calculemos el valor de en las siguientes ecuaciones logarítmicas: Aplicando la definición de logaritmo. a) log 5 4 = log 5 4 = 4 = 5 5 = 4 Página 08

13 Eponenciales y Logarítmos b) log 9 ( + ) + log 9 9 ( + ) = log 9 ( + ) + log 9 9 ( + ) = log 9 9 ( + ) = 9 ( + ) = 9 ( + ) = 9 Observemos que... con la solución = -4 obtenemos log 9 (- ) = 9 = - igualdad que no se verifica para ningún valor de. + = + = = + = - = - 4 Hemos considerado z = log. c) log - 0 log + 8 = 0 z - 0 z + 8 = 0 Atención!! No olvides verificar las soluciones y descartar alguna si en necesario. cuyas soluciones son z = 4, z = log = 4 = 4 = 6 log = = = d) log - log 4 = Necesitamos que todos los logaritmos involucrados en esta ecuación estén epresados en la misma base para poder utilizar las propiedades. Epresamos todos los logaritmos en base. log 4 = y = 4 y log = y log 4 log = y. y = log Reemplazando en la ecuación obtenemos: log - log = log = log = = Página 09

14 Curso de Apoyo en Matemática ACTIVIDADES DE APRENDIZAJE ) Resolver las siguientes ecuaciones logarítmicas a) log = log c) 5 log - log = log e) log 0 = 5 - log - g) log + 0 = i) ln - ln = 8 Ejercicios Complementarios b) log - log = d) log = log - 5 f) 0 log 5-5 log = 0 h) log + log - 6 = 0 j) log - 5 log = 0 4) Resolver las siguientes ecuaciones eponenciales Ejercicios complementarios a) = 0 b) b) = 0 f) + 4 = 7 c) c) e - e - 6 = d) = 0 g) = 0. - e) + 9 = 6 h) = 6 i) e - 5 (e - e) - e + = 0 j) = 0 5) Una sustancia radiactiva se desintegra de acuerdo a la fórmula r(t) = c e -7 t donde c es una constante. En cuánto tiempo habrá eactamente un tercio de la cantidad inicial?. 6) Una población de bacterias crece de acuerdo a la fórmula B(t) = c e kt donde c y k son constantes y B(t) representa el número de bacterias en función del tiempo. En el instante t = 0 hay 0 6 bacterias. En cuánto tiempo habrá 0 7 bacterias, si en minutos hay. 0 6 bacterias?. 7) En 900 la población de una ciudad era de habitantes. En 950 había habitantes. Asumamos que el número de habitantes en función del tiempo se ajusta a la fórmula P(t) = c e kt donde c y k son constantes. Cuál fue la población en 984?. En qué año la población es de habitantes?. 8) La presión atmosférica como función de la altura está dada por la fórmula P(h) = c e kh donde c y k son constantes, h es la altura y P(h) es la presión en función de la altura. Si en el barómetro se lee 0 al nivel del mar y 4 a los 6000 pies, hallar la lectura barométrica a los 0000 pies. Página 0

15 Eponenciales y Logarítmos 9) El azúcar se descompone en el agua según la fórmula A(t) = c e -kt donde c y k son constantes. Si 0 kilos de azúcar se reducen a 0 kilos en 4 horas, cuánto tardará en descomponerse el 95% del azúcar?. 0) Una partícula se mueve con velocidad S(t) = c e -kt donde c y k son constantes. Si la velocidad inicial en t = 0 es de 6 unidades por minuto, y en minutos se reduce a la mitad, hallar el valor de t cuando la velocidad es de 0 unidades/minuto. ) Qué relación debe eistir entre a y b para que se verifique que log a + log b = 0?. Principal - Unidad VI - Unidad VIII Página

Hasta ahora hemos estudiado potencias pertenecientes a distintos campos numéricos. n N, ( a 0 ) m a. m Z, n N

Hasta ahora hemos estudiado potencias pertenecientes a distintos campos numéricos. n N, ( a 0 ) m a. m Z, n N EXPONENCIALES Y LOGARITMOS FUNCIÓN EXPONENCIAL Hasta ahora hemos estudiado potencias pertenecientes a distintos campos numéricos. Potencias de eponente natural: a n = a. a. a... a n N n veces Potencias

Más detalles

FUNCIONES EXPONENCIALES y LOGARITMICAS FUNCIONES EXPONENCIALES

FUNCIONES EXPONENCIALES y LOGARITMICAS FUNCIONES EXPONENCIALES Ingeniería en Sistemas de Información 01 FUNCIONES EXPONENCIALES LOGARITMICAS La función eponencial FUNCIONES EXPONENCIALES La función eponencial es de la forma, siendo a un número real positivo. El dominio

Más detalles

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA La matemática es la ciencia del orden y la medida, de bellas cadenas de razonamientos, todos sencillos y fáciles. René Descartes

Más detalles

FUNCIONES TRIGONOMÉTRICAS, EXPONENCIALES Y LOGARÍTMICAS

FUNCIONES TRIGONOMÉTRICAS, EXPONENCIALES Y LOGARÍTMICAS FUNCIONES TRIGONOMÉTRICAS, EPONENCIALES LOGARÍTMICAS Página 0 PARA EMPEZAR, REFLEIONA RESUELVE Problema Modificando la escala, representa la función: : tiempo transcurrido y: distancia al suelo correspondiente

Más detalles

matemáticas 4º ESO exponenciales y logaritmos

matemáticas 4º ESO exponenciales y logaritmos coleio martín códa departamento de matemáticas matemáticas º ESO eponenciales logaritmos eponenciales una eponencial es cualquier epresión de la forma: a donde a (que se denomina base) es un número distinto

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio A-09 - Incorporado a la Enseñanza Oficial COLEGIO SAN PATRICIO - 0 - Prof. Celia R. Sánchez MATEMÁTICA - TRABAJO PRÁCTICO Nº 8 AÑO FUNCIÓN EXPONENCIAL Y LOGARÍTMICA - ECUACIONES POTENCIACIÓN: Ejercicio

Más detalles

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA PÁGINA: 1 de 8 Nombres y Apellidos del Estudiante: Docente: Área: Matemáticas Grado:9º Periodo: 3º GUIA # 2 Duración: 10 HORAS Asignatura: Matemáticas ESTÁNDAR: Identifico y utilizo la potenciación, la

Más detalles

GUIAS DE ACTIVIDADES Y DE TRABAJO PRACTICO N 15

GUIAS DE ACTIVIDADES Y DE TRABAJO PRACTICO N 15 GUIA DE TRABAJO PRACTICO Nº 5 PAGINA Nº 86 GUIAS DE ACTIVIDADES Y DE TRABAJO PRACTICO N 5 OBJETIVOS: Lograr que el Alumno: Interprete las Funciones Eponenciales Distinga Modelos Matemáticos epresados mediante

Más detalles

GESTIÓN ACADÉMICA PLAN DE ASIGNATURA GUÍA DIDÁCTICA

GESTIÓN ACADÉMICA PLAN DE ASIGNATURA GUÍA DIDÁCTICA PÁGINA: 1 de 7 Nombres y Apellidos del Estudiante: Grado:9º Periodo: 3º Docente: Esp. Blanca Rozo Duración: 10 HORAS GUIA Área: Matemáticas Asignatura: Matemáticas ESTÁNDAR: Identifico y utilizo la potenciación,

Más detalles

Erika Riveros Morán. Funciones Exponenciales y Logarítmicas. Si, y se llama FUNCION EXPONENCIAL DE BASE a, a la función

Erika Riveros Morán. Funciones Exponenciales y Logarítmicas. Si, y se llama FUNCION EXPONENCIAL DE BASE a, a la función Definición: Funciones Exponenciales y Logarítmicas Si, y se llama FUNCION EXPONENCIAL DE BASE a, a la función Su gráfica queda determinada por los valores de la base a Por ejemplo: Si ( ) 1 Del gráfico

Más detalles

Análisis Matemático I (Lic. en Cs. Biológicas)

Análisis Matemático I (Lic. en Cs. Biológicas) Análisis Matemático I (Lic. en Cs. Biológicas) Verano 016 Práctica : Función logarítmica y función eponencial Notación: Para a > 0 indicaremos al logaritmo en base a de por log a. Usaremos log para logaritmo

Más detalles

Análisis Matemático I (Lic. en Cs. Biológicas) Práctica 2: Función logarítmica y función exponencial. Verano 2008

Análisis Matemático I (Lic. en Cs. Biológicas) Práctica 2: Función logarítmica y función exponencial. Verano 2008 Análisis Matemático I (Lic. en Cs. Biológicas) Verano 2008 Práctica 2: Función logarítmica y función eponencial Notación: Indicaremos con log al logaritmo de en base 10, y con ln al logaritmo de en base

Más detalles

ECUACIONES LOGARÍTMICAS Y EXPONENCIALES

ECUACIONES LOGARÍTMICAS Y EXPONENCIALES www.matesronda.net José A. Jiménez Nieto ECUACIONES LOGARÍTMICAS Y EXPONENCIALES. ECUACIONES LOGARÍTMICAS Ecuaciones logarítmicas son aquellas en las que la incógnita figura en un logaritmo. Para resolver

Más detalles

Análisis Matemático I (Lic. en Cs. Biológicas)

Análisis Matemático I (Lic. en Cs. Biológicas) Análisis Matemático I (Lic. en Cs. Biológicas) Primer cuatrimestre de 015 Práctica : Función logarítmica y función eponencial Notación: Para a > 0 indicaremos al logaritmo en base a de por log a. Usaremos

Más detalles

ECUACIONES LOGARÍTMICAS Y EXPONENCIALES

ECUACIONES LOGARÍTMICAS Y EXPONENCIALES www.matesronda.net José A. Jiménez Nieto ECUACIONES LOGARÍTMICAS Y EXPONENCIALES 1. ECUACIONES LOGARÍTMICAS Ecuaciones logarítmicas son aquellas en las que la incógnita figura en un logaritmo. Para resolver

Más detalles

SISTEMAS DE ECUACIONES. Un sistema de ecuaciones no lineal es aquel en el que al menos una de las dos ecuaciones no es de primer grado.

SISTEMAS DE ECUACIONES. Un sistema de ecuaciones no lineal es aquel en el que al menos una de las dos ecuaciones no es de primer grado. 1. SISTEMAS NO LINEALES Un sistema de ecuaciones no lineal es aquel en el que al menos una de las dos ecuaciones no es de primer grado. 3 + = 5 = 3 = + 1 = 3 = 1 + = 5 Resolución: Para resolver un sistema

Más detalles

k. 100 y la ecuación que se tiene que resolver ahora es: t

k. 100 y la ecuación que se tiene que resolver ahora es: t Ejemplo 1) Un esqueleto contiene la centésima parte de su cantidad original de carbono 14 ( 4 C). Calcula la antigüedad del esqueleto, con precisión de1000años. (La vida media del 14 C es de aproximadamente

Más detalles

Ofimega - Logaritmos 1

Ofimega - Logaritmos 1 Ofimega - Logaritmos Logaritmos Definición: Si: Importante aprender (abre el grifo desde la base El logaritmo se convierte en una función eponencial. Ejemplo de multiplicación en forma eponencial: a b

Más detalles

La función exponencial se define con una base constante cuyo exponente es el valor variable, es decir:

La función exponencial se define con una base constante cuyo exponente es el valor variable, es decir: Función Exponencial La función exponencial se define con una base constante cuyo exponente es el valor variable, es decir: Con Gráfica función exponencial a) Si la función es creciente en. b) Si la función

Más detalles

Tabla III ln

Tabla III ln Crecimiento y decrecimiento exponencial Existe una gran variedad de problemas de aplicación relacionados con las funciones exponenciales y logarítmicas. ntes de tomar en consideración estas aplicaciones,

Más detalles

Ecuaciones de primer grado y de segundo grado

Ecuaciones de primer grado y de segundo grado Ecuaciones de primer grado y de segundo grado La forma reducida de una ecuación de primer grado con una incógnita es una igualdad del tipo a b 0, donde a y b son números reales con a 0. Para resolverla

Más detalles

1. FUNCIÓN REAL DE VARIABLE REAL

1. FUNCIÓN REAL DE VARIABLE REAL 1. FUNCIÓN REAL DE VARIABLE REAL Una función real de variable real es una aplicación de un subconjunto de los nº reales ( R ) en otro subconjunto de R f : D R R Se representa de la siguiente forma: Una

Más detalles

Tutorial MT-a2. Matemática Tutorial Nivel Avanzado. Función exponencial y logarítmica II

Tutorial MT-a2. Matemática Tutorial Nivel Avanzado. Función exponencial y logarítmica II 467890467890 M ate m ática Tutorial MT-a Matemática 006 Tutorial Nivel Avanzado Función eponencial y logarítmica II Matemática 006 Tutorial Función eponencial y logarítmica Marco Teórico. Función eponencial..

Más detalles

Solución: Para calcular la pendiente, despejamos la y: La ordenada en el origen es n. 3 Puntos de corte con los ejes: 1 Eje Y 0, 3

Solución: Para calcular la pendiente, despejamos la y: La ordenada en el origen es n. 3 Puntos de corte con los ejes: 1 Eje Y 0, 3 EJERCICIO. Halla la pendiente, la ordenada en el origen y los puntos de corte con los ejes de coordenadas de la recta 6y 0. Represéntala gráficamente. Para calcular la pendiente, despejamos la y: 6y 0

Más detalles

FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

FUNCIONES EXPONENCIALES Y LOGARÍTMICAS www.matesronda.net José A. Jiménez Nieto FUNCIONES EXPONENCIALES Y LOGARÍTMICAS 1. FUNCIONES EXPONENCIALES. Una función se llama eponencial si es de la forma y = a, donde la base a es un número real cualquiera

Más detalles

Lección 5: Porcentajes

Lección 5: Porcentajes Lección 5: Porcentajes En las lecciones anteriores estudiamos relaciones de proporcionalidad directa e inversa. En esta lección estudiaremos una relación de proporcionalidad directa especial: los porcentajes.

Más detalles

Soluciones de las actividades. d) 2x 2 3x + 1 = 0 Δ = 9 8 = 1 > 0 Dos soluciones distintas. 6. Las soluciones son: a) z = b) z = c) z = d) z = e) z =

Soluciones de las actividades. d) 2x 2 3x + 1 = 0 Δ = 9 8 = 1 > 0 Dos soluciones distintas. 6. Las soluciones son: a) z = b) z = c) z = d) z = e) z = Soluciones de las actividades Página 7. Si a 0 y b 0, no tiene solución. Si a 0 y b 0, tiene infinitas soluciones. Si a 0, tiene una única solución, -b / a.. Las soluciones son a) 0 + 8; ; / b) + 8 ; ;

Más detalles

Potencias, radicales y logaritmos

Potencias, radicales y logaritmos Potencias, radicales y logaritmos 1. Potencias de exponente natural y entero Calcula mentalmente las siguientes potencias: a) b) ( ) c) d) ( ) P I E N S A Y C A L C U L A a) 8 b) 8 c) 8 d) 8 1 Calcula

Más detalles

Las soluciones son los valores que deben tomar las letras para que la igualdad sea cierta.

Las soluciones son los valores que deben tomar las letras para que la igualdad sea cierta. TEMA ECUACIONES, INECUACIONES Y SISTEMAS- 1. ECUACIONES Una ecuación es una igualdad matemática entre dos epresiones algebraicas, denominadas miembros, en las que aparecen valores conocidos o datos, desconocidos

Más detalles

Ecuaciones diferenciales de primer orden

Ecuaciones diferenciales de primer orden Tema 8 Ecuaciones diferenciales de primer orden Las ecuaciones diferenciales tuvieron un origen de carácter puramente matemático, pues nacieron con el cálculo infinitesimal. El destino inmediato de esta

Más detalles

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f.

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f. TEMA 5: FUNCIONES ELEMENTALES. 5. Función real de variable real. 5. Operaciones con funciones: composición e inversa. 5.3 Construcción de gráficas de funciones elementales y sus transformaciones. 5.4 Interpolación

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio Función Cuadrática: Es toda función de la forma: f() = a ² + b + c con a, b, c números Reales Puede suceder que b ó c sean nulos, por ej: f() = ½ ² + 5 f() = 5 ² ¾ Pero a no puede ser = 0, de los contrario

Más detalles

UNIDAD 2: ANALICEMOS LA FUNCIÓN EXPONENCIAL Y LOGARÍTMICA

UNIDAD 2: ANALICEMOS LA FUNCIÓN EXPONENCIAL Y LOGARÍTMICA UNIDAD 2: ANALICEMOS LA FUNCIÓN EXPONENCIAL Y LOGARÍTMICA FUNCIÓN EXPONENCIAL. Se llama función exponencial a la función de la forma y = a x en donde a R +, a y x es una variable. Existen muchos fenómenos

Más detalles

L O G A R I T M O S, E C U A C I O N E S E I N E C U A C I O N E S

L O G A R I T M O S, E C U A C I O N E S E I N E C U A C I O N E S L O G A R I T M O S, E C U A C I O N E S E I N E C U A C I O N E S. L O G A R I T M O S En los cálculos con potencias se pueden dar situaciones en las que se conozcan la base de la potencia y el resultado,

Más detalles

CURSO DE MATEMÁTICA. Repartido Teórico 4

CURSO DE MATEMÁTICA. Repartido Teórico 4 CURSO DE MATEMÁTICA. Repartido Teórico 4 Mariana Pereira Noviembre, 2007 1. Ecuaciones Diferenciales Una ecuación diferencial es una ecuación donde la incógnita es una fución de una variable, y la ecuación

Más detalles

Análisis Matemático I (Biólogos)

Análisis Matemático I (Biólogos) Análisis Matemático I (Biólogos) Primer cuatrimestre 006 Práctica : Función logarítmica y función exponencial Notación: Indicaremos con log x al logaritmo de x en base 10, y con ln x al logaritmo de x

Más detalles

Prof. Sergio SIGNORELLI

Prof. Sergio SIGNORELLI I LOGARITMOS Otra de las funciones importantes de la matemática es la función logarítmica, la cual se expresa de la siguiente forma: y = log b a En principio definiremos a logaritmo de un número: LOGARITMO

Más detalles

Tema 1.- Los números reales

Tema 1.- Los números reales Tema 1.- Los números reales Los números irracionales Un número es irracional si posee infinitas cifras decimales no periódicas, por tanto no se puede expresar en forma de fracción. El número irracional

Más detalles

= x x x. v p Este cociente indica cómo desciende las ventas al aumentar el precio en una unidad.

= x x x. v p Este cociente indica cómo desciende las ventas al aumentar el precio en una unidad. TASA DE VARIACIÓN MEDIA La tasa de variación media de una función nos da una idea de la rapidez con que crece o decrece en un intervalo. Sea y f() una función que relaciona la variable dependiente (y)

Más detalles

Funciones y Función lineal

Funciones y Función lineal Profesorado de Nivel Medio Superior en Biología Funciones Función lineal Analicemos los siguientes ejemplos: 1) El gráfico que figura más abajo muestra la evolución de la presión arterial de un paciente

Más detalles

$$$%%&%%$$$!!!""#""!!!

$$$%%&%%$$$!!!#!!! .! 1 Resuelve tú ( Pág ""#) Halla k sabiendo que 5 k-4 =15 Como 15 = 5, queda 5 k-4 = 5 k 4 = k = 7 k = 7/ Resuelve tú ( Pág ""') Un país tiene una población de 110 millones de habitantes y se espera que

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES LOGARITMOS FUNCIÓN LOGARÍTMICA

UNIDAD: ÁLGEBRA Y FUNCIONES LOGARITMOS FUNCIÓN LOGARÍTMICA C u r s o : Matemática Material N 8 GUÍA TEÓRICO PRÁCTICA Nº UNIDAD: ÁLGEBRA Y FUNCIONES LOGARITMOS FUNCIÓN LOGARÍTMICA DEFINICIÓN El logaritmo de un número real positivo b en base a, positiva y distinta

Más detalles

P O L I N O M I O S Y E C U A C I O N E S. A P L I C A C I O N E S

P O L I N O M I O S Y E C U A C I O N E S. A P L I C A C I O N E S P O L I N O M I O S Y E C U A C I O N E S. A P L I C A C I O N E S. R E P A S O D E P O L I N O M I O S Un polinomio en la variable es una epresión del tipo P()=a n n +a n- n- + +a +a 0, donde n es un

Más detalles

TEMA 9- LÍMITES Y CONTINUIDAD MATEMÁTICAS I 1º BACHILLERATO 1 TEMA 9 LÍMITES DE FUNCIONES, CONTINUIDAD Y RAMAS INFINITAS

TEMA 9- LÍMITES Y CONTINUIDAD MATEMÁTICAS I 1º BACHILLERATO 1 TEMA 9 LÍMITES DE FUNCIONES, CONTINUIDAD Y RAMAS INFINITAS TEMA 9- LÍMITES Y CONTINUIDAD MATEMÁTICAS I 1º BACHILLERATO 1 TEMA 9 LÍMITES DE FUNCIONES, CONTINUIDAD Y RAMAS INFINITAS TEMA 9- LÍMITES Y CONTINUIDAD MATEMÁTICAS I 1º BACHILLERATO 9.1. LÍMITE DE UNA FUNCIÓN

Más detalles

De acuerdo a la definición de logaritmo, las expresiones:

De acuerdo a la definición de logaritmo, las expresiones: 3.3 FUNCIÓN LOGARÍTMICA. Las funciones inversas a las funciones eponenciales se denominan logarítmicas. El término logaritmo proviene de las raíces griegas logos y arithmos, que significa números para

Más detalles

FUNCIONES REALES DE UNA VARIABLE CONCEPTOS FUNDAMENTALES

FUNCIONES REALES DE UNA VARIABLE CONCEPTOS FUNDAMENTALES FUNCIONES REALES DE UNA VARIABLE Índice Presentación... 3 Conjunto de los números reales... 4 Los intervalos... 6 Las potencias... 7 Los polinomios... 8 La factorización de polinomios (I)... 9 La factorización

Más detalles

1. PRIMITIVA DE UNA FUNCIÓN 2. PROPIEDADES DE LA INTEGRAL INDEFINIDA 3. INTEGRALES INMEDIATAS Ejemplos de integrales inmediatas tipo potencia

1. PRIMITIVA DE UNA FUNCIÓN 2. PROPIEDADES DE LA INTEGRAL INDEFINIDA 3. INTEGRALES INMEDIATAS Ejemplos de integrales inmediatas tipo potencia Cálculo de primitivas MATEMÁTICAS II. PRIMITIVA DE UNA FUNCIÓN. PROPIEDADES DE LA INTEGRAL INDEFINIDA. INTEGRALES INMEDIATAS.. Ejemplos de integrales inmediatas tipo potencia.. Ejemplos de integrales inmediatas

Más detalles

FUNCIONES TRIGONOMÉTRICAS, EXPONENCIALES Y LOGARÍTMICAS

FUNCIONES TRIGONOMÉTRICAS, EXPONENCIALES Y LOGARÍTMICAS UNIDAD 5 FUNCIONES TRIGONOMÉTRICAS, EPONENCIALES Y LOGARÍTMICAS Página. La distancia al suelo de una barquilla de la noria varía conforme ésta gira. Representamos gráficamente la función que da la altura

Más detalles

el blog de mate de aida 4º ESO: apuntes de funciones elementales pág. 1

el blog de mate de aida 4º ESO: apuntes de funciones elementales pág. 1 el blog de mate de aida 4º ESO: apuntes de funciones elementales pág. 1 FUNCIONES LINEALES 1.- FUNCIÓN CONSTANTE Una función constante es aquella en la cual el valor de la variable dependiente siempre

Más detalles

Actividades compensatorias 5ºA. = + d) = + h) = + l)

Actividades compensatorias 5ºA. = + d) = + h) = + l) Actividades compensatorias 5ºA ) A partir de los puntos característicos de la función cuadrática graficar las siguientes funciones: a) f() b) f() + + c)f() 9 + 9 d) f() 4 + 4 e) f() ( + ) f)f() ( ) g)

Más detalles

Tutorial MT-m4. Matemática Tutorial Nivel Medio. Función exponencial y logarítmica I

Tutorial MT-m4. Matemática Tutorial Nivel Medio. Función exponencial y logarítmica I 12345678901234567890 M ate m ática Tutorial MT-m4 Matemática 2006 Tutorial Nivel Medio Función exponencial y logarítmica I Matemática 2006 Tutorial Función exponencial y logarítmica Marco Teórico 1. Función

Más detalles

Un i d a d 2. Co n t i n U i da d. Objetivos. Al inalizar la unidad, el alumno:

Un i d a d 2. Co n t i n U i da d. Objetivos. Al inalizar la unidad, el alumno: Un i d a d Co n t i n U i da d Objetivos Al inalizar la unidad, el alumno: Identificará cuándo una función es continua en un punto y en un intervalo. Aplicará las operaciones de las funciones continuas

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.2. LÍMITES Y CONTINUIDAD

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.2. LÍMITES Y CONTINUIDAD TEMA. FUNCIONES REALES DE VARIABLE REAL.. LÍMITES Y CONTINUIDAD . FUNCIONES REALES DE VARIABLE REAL.. LÍMITES Y CONTINUIDAD... LÍMITE DE UNA FUNCIÓN EN UN PUNTO... LÍMITES INFINITOS... LÍMITES EN EL INFINITO..4.

Más detalles

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y).

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y). TEMA 8: FUNCIONES. 8. Función real de variable real. 8. Dominio de una función. 8.3 Características de una función: signo, monotonía, acotación, simetría y periodicidad. 8.4 Operaciones con funciones:

Más detalles

Taller de Matemáticas IV

Taller de Matemáticas IV Taller de Matemáticas IV Universidad CNCI de Méico Temario. Funciones polinomiales factorizables.. Teorema del residuo.. Teorema del factor... Raíces (ceros) racionales de funciones polinomiales.. Teorema

Más detalles

Propiedades más importantes de los logaritmos: El logaritmo de una multiplicación es igual el logaritmo de la suma. log =log +log

Propiedades más importantes de los logaritmos: El logaritmo de una multiplicación es igual el logaritmo de la suma. log =log +log Para empezar a tratar el tema de los logaritmos tenemos que tener en muy en cuenta, la definición de logaritmo, así como las tres propiedades más importantes de los logaritmos. Definición de logaritmo:

Más detalles

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. en un intervalo al siguiente cociente:

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. en un intervalo al siguiente cociente: INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES Crecimiento de una Función en un Intervalo Tasa de Variación Media (T.V.M.) Se llama tasa de variación media (T.V.M.) de una función y f() en un intervalo

Más detalles

UNIDAD 6: PROPIEDADES GLOBALES DE LAS FUNCIONES

UNIDAD 6: PROPIEDADES GLOBALES DE LAS FUNCIONES UNIDAD 6: PROPIEDADES GLOBALES DE LAS FUNCIONES 1. EXPRESIÓN DE UNA FUNCIÓN - Epresión mediante una tabla de valores La tabla de valores de una unción está ormada por dos ilas o columnas. En la primera

Más detalles

Derivada de una función MATEMÁTICAS II 1

Derivada de una función MATEMÁTICAS II 1 Derivada de una función MATEMÁTICAS II TASA DE VARIACIÓN MEDIA La tasa de variación media de una función nos da una idea de la rapidez con que crece o decrece en un intervalo. Sea y = f() una función que

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD 5 Pág. Página 5 PRACTICA Funciones cuadráticas Representa las siguientes funciones haciendo, en cada caso, una tabla de valores como esta, y di cuál es el vértice de cada parábola: y a) y = + b) y = c)

Más detalles

14 Funciones exponenciales y logarítmicas

14 Funciones exponenciales y logarítmicas ACTIVIDADES DE AMPLIACIÓN Funciones eponenciales y logarítmicas. Se considera la función eponencial f() k ; k 0. Averigua, en cada uno de los siguientes casos, cómo es la base de la función con respecto

Más detalles

Lenguaje Algebraico y Ecuaciones

Lenguaje Algebraico y Ecuaciones CAPÍTULO Lenguaje Algebraico Ecuaciones Se puede pensar que el álgebra comienza cuando se empiezan a utilizar letras para representar números, pero en realidad comienza cuando los matemáticos empiezan

Más detalles

Inecuaciones. Inecuaciones polinómicas de 1º grado, con una incógnita. Estas inecuaciones, se pueden llegar a escribir de la forma:

Inecuaciones. Inecuaciones polinómicas de 1º grado, con una incógnita. Estas inecuaciones, se pueden llegar a escribir de la forma: Inecuaciones Una inecuación es una desigualdad matemática que presenta al menos una variable en alguno de sus miembros, por eso también se le conoce como desigualdad algebraica. Los signos de desigualdad

Más detalles

6. ECUACIONES POLINOMICAS Y RACIONALES

6. ECUACIONES POLINOMICAS Y RACIONALES 6. ECUACIONES POLINOMICAS Y RACIONALES En las unidades anteriores hemos estudiado las ecuaciones de primer y segundo grado. a b 0 a 0 a b c 0 a 0 Estas son casos particulares de ecuaciones de carácter

Más detalles

Documento 6 : Modelos exponenciales

Documento 6 : Modelos exponenciales Unidad 4: Funciones reales de una variable real Tema: Modelos cuadráticos. Capacidades. C..: Manejar conceptos y propiedades de las funciones exponenciales y logarítmicas y resolver situaciones problemáticas

Más detalles

Funciones racionales, exponenciales y logarítmicas

Funciones racionales, exponenciales y logarítmicas Funciones racionales, eponenciales y logarítmicas Contenidos 1. Funciones racionales Función de proporcionalidad inversa Las asíntotas Otras funciones racionales 2. Funciones eponenciales Características

Más detalles

a) log3 81 = b) log = c) loga 27 = 3 d) log2 P = 4 e) El logaritmo de un número en cierta base, puede ser un número negativo?

a) log3 81 = b) log = c) loga 27 = 3 d) log2 P = 4 e) El logaritmo de un número en cierta base, puede ser un número negativo? Durante el siglo XVII fue mu popular el invento del escocés John Néper (550-67) para multiplicar, conocido con el nombre de "rodillos de Néper". Pero mucho más importante para las matemáticas fue lo que

Más detalles

Una función de la forma donde a 1 siendo "a" la base y "X" el exponente

Una función de la forma donde a 1 siendo a la base y X el exponente Materia: Matemáticas de 4to año Tema: Propiedades de las Funciones Exponenciales Marco Teórico En esta lección aprenderá sobre las funciones exponenciales, una familia de funciones distintas a las otras

Más detalles

open green road Guía Matemática ECUACIONES NO ALGEBRAICAS profesor: Nicolás Melgarejo .cl

open green road Guía Matemática ECUACIONES NO ALGEBRAICAS profesor: Nicolás Melgarejo .cl Guía Matemática ECUACIONES NO ALGEBRAICAS profesor: Nicolás Melgarejo.cl 1. Ecuaciones no algebraicas Se le denomina a aquellas igualdades con incógnitas que no están descritas mediante polinomios. Por

Más detalles

Solución Fácilmente encontrarás que el denominador se anula para x = 2 y x = 3 luego pondremos que: D(y) = R - { 2, 3

Solución Fácilmente encontrarás que el denominador se anula para x = 2 y x = 3 luego pondremos que: D(y) = R - { 2, 3 Dominio de una función Funciones elementales Funciones lineales Interpolación lineal Funciones cuadráticas (tratadas en tema anterior ) Funciones de proporcionalidad inversa Funciones definidas a trozos

Más detalles

Considerar la ecuación 3 x 31. Para resolverla podemos aplicar logaritmos (vulgares o naturales) a ambos miembros de la ecuación

Considerar la ecuación 3 x 31. Para resolverla podemos aplicar logaritmos (vulgares o naturales) a ambos miembros de la ecuación Aplicaciones de los logaritmos Sugerencias para quien imparte el curso Consideramos muy conveniente resolver, junto con los alumnos, ejemplos como los que se muestran enseguida Considerar la ecuación 3

Más detalles

Funciones exponencial y logarítmica

Funciones exponencial y logarítmica Objetivo: Usar las propiedades de la función exponencial y logarítmica en la solución de situaciones reales. Saber: Identificar y utilizar adecuadamente las funciones, sus operaciones y propiedades básicas

Más detalles

UNIDAD 6.- Funciones reales. Propiedades globales (temas 6 del libro)

UNIDAD 6.- Funciones reales. Propiedades globales (temas 6 del libro) (temas 6 del libro). EXPRESIÓN DE UNA FUNCIÓN - Epresión mediante una tabla de valores La tabla de valores de una unción está ormada por dos ilas o columnas. En la primera ila o columna iguran los valores

Más detalles

Cálculo Diferencial. Prof. Enrique Mateus N.

Cálculo Diferencial. Prof. Enrique Mateus N. Determinar el rango de las siguientes funciones. f ( ). f ( ). 4. 5. 6. 7. f ( ) f ( ) f ( ) f ( ) 4 f ( ) 5 f ( ) ( ) 8.. f ( ). f ( ). f ( ) ( ) 4 4. f ( ) 9 5. f ( ) 6. f ( ) ( ) 7. f ( ) 5 8. f ( )

Más detalles

TEMA 3. Funciones. Cálculo diferencial

TEMA 3. Funciones. Cálculo diferencial TEMA 3. Funciones. Cálculo diferencial En este tema vamos a hacer un estudio preliminar de las funciones de una variable real y el importante concepto de derivada. Comenzaremos recordando las funciones

Más detalles

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales.

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales. Tema 1: Números Reales 1.1 Conjunto de los números Naturales (N): 0, 1, 2, 3. Números positivos sin decimales. Sirven para contar. Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos

Más detalles

Aplicará la regla de la cadena para calcular derivadas. Calculará la derivada de las funciones exponencial y logarítmica.

Aplicará la regla de la cadena para calcular derivadas. Calculará la derivada de las funciones exponencial y logarítmica. UNIDAD 4 Derivadas II Objetivos Al terminar la unidad, el alumno: Aplicará la regla de la cadena para calcular derivadas. Calculará la derivada de las funciones eponencial logarítmica. derivadas de ciertas

Más detalles

COL LECCIÓ DE PROBLEMES RESOLTS

COL LECCIÓ DE PROBLEMES RESOLTS DEPARTAMENT DE MATEMÀTICA ECONOMICOEMPRESARIAL DEPARTAMENT D ECONOMIA FINANCERA UNIVERSITAT DE VALÈNCIA LLICENCIATURA EN ECONOMIA LLICENCIATURA EN ADMINISTRACIÓ I DIRECCIÓ D EMPRESES DIPLOMATURA EN CIÈNCIES

Más detalles

Esta es la gráfica de la función lineal y = 3x + 2 Vemos que m = 3 y b = 2 (de la forma y = mx + b)

Esta es la gráfica de la función lineal y = 3x + 2 Vemos que m = 3 y b = 2 (de la forma y = mx + b) FUNCIÓN LINEAL Una función lineal es una función cuyo dominio son todos los números reales, cuyo codominio también todos los números reales, y cuya expresión analítica es un polinomio de primer grado.

Más detalles

CÁLCULO DE PRIMITIVAS

CÁLCULO DE PRIMITIVAS 2 CÁLCULO DE PRIMITIVAS REFLEXIONA Y RESUELVE Concepto de primitiva NÚMEROS Y POTENCIAS SENCILLAS a) b) 2 c) 2 a) 2x b) x c) 3x 3 a) 7x b) c) x 4 a) 3x2 b) x2 c) 2x2 5 a) 6x 5 b) x5 c) 3x5 x 3 2 2 POTENCIAS

Más detalles

Simplificando los cuadrados con las raíces y sumando términos semejantes y elevando al cuadrado nuevamente:

Simplificando los cuadrados con las raíces y sumando términos semejantes y elevando al cuadrado nuevamente: . Resolver la siguiente ecuación irracional 6 7 0 Solución: llevando el término con signo negativo al segundo miemro de la ecuación y elevando al cuadrado: 6 7 6 6 7 7 Simplificando los cuadrados con las

Más detalles

Derivadas de orden superior

Derivadas de orden superior Tema 6 Derivadas de orden superior 6 Polinomios de Taylor Nuestro objetivo es aproimar una función dada mediante funciones polinómicas Resulta conveniente estudiar las funciones polinómicas con más detenimiento

Más detalles

{ 0} - Dominio de. f(x) f(x) g(x) g(x) = f(x) = g(x) x 16. f g. Solución: Para hallar el punto de equilibrio basta resolver el sistema: + =

{ 0} - Dominio de. f(x) f(x) g(x) g(x) = f(x) = g(x) x 16. f g. Solución: Para hallar el punto de equilibrio basta resolver el sistema: + = Funciones Se ha hecho un estudio de mercado en el que la curva de oferta de un determinado producto viene dada por la función,7 8 la curva de demanda por, -. Si el punto de corte de ambas curvas es el

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES 0 FUNCIONES ELEMENTALES Página 5 REFLEIONA RESUELVE Asocia a cada una de las siguientes gráficas una ecuación de las de abajo: A B C D 80 (, π) 50 0 5 E F G H 0 (5, ) 50 0 50 0 (, ) 5 I J K L LINEALES

Más detalles

Profesor: Fco. Javier del Rey Pulido

Profesor: Fco. Javier del Rey Pulido FUNCIONES.- DEFINICIÓN DE FUNCIÓN.- Una función es una relación entre dos magnitudes e y (variables), de forma que a cada valor de le corresponde un único valor de y. y Ejemplo: y 5 y 5 4 5. Doy valores

Más detalles

SOLUCIÓN GENERAL Y SOLUCIÓN PARTICULAR DE UNA ECUACIÓN DIFERENCIAL

SOLUCIÓN GENERAL Y SOLUCIÓN PARTICULAR DE UNA ECUACIÓN DIFERENCIAL SOLUCIÓN GENERAL Y SOLUCIÓN PARTICULAR DE UNA ECUACIÓN DIFERENCIAL Propósito Al finalizar esta sección, quien imparte el curso habrá logrado que los estudiantes: Distingan la solución general de una solución

Más detalles

El número áureo,, utilizado por artistas de todas las épocas (Fidias, Leonardo da Vinci, Alberto Durero, Dalí,..) en las proporciones de sus obras.

El número áureo,, utilizado por artistas de todas las épocas (Fidias, Leonardo da Vinci, Alberto Durero, Dalí,..) en las proporciones de sus obras. 1.- LOS NÚMEROS REALES Los números irracionales Un número es irracional si posee infinitas cifras decimales no periódicas, por tanto no se pueden expresar en forma de fracción. El número irracional más

Más detalles

Los números reales. Álvarez S., Caballero M.V. y Sánchez M a M. Contenidos. Full Screen.

Los números reales. Álvarez S., Caballero M.V. y Sánchez M a M.  Contenidos. Full Screen. Los números reales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es Índice 1. Definiciones 3 2. Herramientas 5 2.1. Propiedades de los números reales.....................

Más detalles

Sea a un real positivo fijo, y sea x cualquier real positivo, entonces:

Sea a un real positivo fijo, y sea x cualquier real positivo, entonces: LOGARITMOS Y RADICALES Definición Sea a un real positivo fijo, y sea x cualquier real positivo, entonces: La función que hace corresponder a cada número real positivo su logaritmo en base, denotada por,se

Más detalles

Ejercicios de repaso de Álgebra Sistemas de ecuaciones Inecuaciones

Ejercicios de repaso de Álgebra Sistemas de ecuaciones Inecuaciones Ejercicios de repaso de Álgebra Sistemas de ecuaciones Inecuaciones + + 8 + 7 + ( + + ) ( + + ). Descompón factorialmente los siguientes polinomios: a) 6 9 5 + 0 b) 6 5 5 + + 8 c) 6 + 6 5 + 9 6 9 a) 6

Más detalles

f(x) tiene una discontinuidad removible en x =0; f(x) = 2;

f(x) tiene una discontinuidad removible en x =0; f(x) = 2; CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0800 (1) Dibujar una función f() que cumpla las condiciones siguientes: lím f() =+ ; lím f() = ; 2 3 f() tiene una discontinuidad removible

Más detalles

PRACTICO: : LÍMITES DE FUNCIONES

PRACTICO: : LÍMITES DE FUNCIONES APUNTE TEORICO-PRACTICO PRACTICO: : LÍMITES DE FUNCIONES UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática 1 Carreras: Lic. en Economía Profesor: Prof. Mabel Chrestia Semestre: 1ero Año: 16 Introducción

Más detalles

PRACTICO: : LÍMITES DE FUNCIONES

PRACTICO: : LÍMITES DE FUNCIONES APUNTE TEORICO-PRACTICO PRACTICO: : LÍMITES DE FUNCIONES UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática 1 Carreras: Lic. en Economía Profesor: Prof. Mabel Chrestia Semestre: 1ero Año: 15 Introducción

Más detalles