Algunas nociones básicas sobre Estadística

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Algunas nociones básicas sobre Estadística"

Transcripción

1 Escuela de Formación Básica - Física 1 Laboratorio - 10 Semestre 2010 Comisiones 15 Y 16 (Docentes: Carmen Tachino - Graciela Salum) ntroducción Algunas nociones básicas sobre Estadística Como se ha explicado en clases, los datos experimentales obtenidos por un observador durante una experiencia en un laboratorio tienen siempre asociada una incerteza. Dicha incertezas tienen su origen en una multiplicidad de factores, siendo algunos de éstos los errores sistemáticos, casuales y de apreciación. Asumiendo que las incertezas asociadas a los errores sistemáticos han sido disminuidas y que se ha escogido un instrumento de medición acorde a la situación (con lo cual no se generan incertezas groseras debido a la apreciación del mismo), quedan aún los errores casuales. Debido al carácter azaroso de este tipo de errores los resultados pueden estar afectados en un sentido u otro (de más o de menos). La única forma de compensar esta situación es realizando una gran cantidad de mediciones y aplicando sobre ellos leyes de carácter estadístico. Supongamos que hemos medido el largo de una mesa con una cinta métrica de apreciación 1 milímetro unas 100 veces. Uno podría presentar las cien mediciones del largo de la mesa y decir "estos son mis resultados", pero de poco serviría mostrar dichos datos de esa forma pues resultaría muy dificultoso analizarlos. Por ello, es necesario establecer un resultado representativo del conjunto de datos del que disponemos. El primer paso en el estudio de la información consiste en analizar los datos de acuerdo a la cantidad de mediciones que se han realizado, pues el tratamiento difiere de acuerdo a que sean más de 10 datos o menos de 10 datos 1 a) Cantidad de datos o inferior a 10 En este caso, la magnitud representativa del conjunto de mediciones será el valor promedio, que se define como: - ;=1 donde es la cantidad de mediciones realizadas y los X; son los valores de cada una de las mediciones. Ahora bien, dado que estamos trabajando con datos experimentales y cada uno de ellos tiene asociada una incerteza, es natural asociar una incerteza al valor promedio calculado. Aquí se presentarán dos formas distintas de calcular la incerteza del valor promedio, : Sean x max y X min los resultados experimentales más grande y más pequeño, respectivamente. Se puede calcular la incerteza del promedio restando ambos valores: El límite de 10 datos es una convención adoptada internamente por algunos docentes de cátedra. Este valor puede variar según el docente y de acuerdo a la bibliografia consultada.

2 = X.max _ X min Otra forma consiste en calcular dos diferencias, x max - X Y X - x m in, y escoger el mayor de ellos: = max{x max - X ;X - Sea cual sea el criterio seleccionado, siempre hay que tener en cuenta que el intervalo ± debe abarcar todos los datos experimentales con los que se está trabajando (es decir, ningún Xi debe quedar por fuera de dicho intervalo). b) Cantidad de datos superior a 10 En este caso necesitamos primero conocer algunos conceptos básicos de la teoría estadística. Conceptos básicos La presentación y descripción del conjunto de datos experimentales sobre el cual debemos trabajar puede realizarse de dos maneras: (a) con estadística numérica, (b) con métodos gráficos. Asumiremos de aquí en adelante que el conjunto de datos que estamos estudiando presenta una distribución normal o gaussiana. 1) Métodos Gráficos Uno de los métodos gráficos más útiles para analizar un conjunto extenso de datos experimentales es el histograma. Para graficar un histograma es necesario primero analizar la distribución de frecuencias de la muestra de datos con la que estamos trabajando. La distribución de frecuencias es un listado que asocia cada valor de una variable con su frecuencia (cantidad de veces que se repite un mismo valor). Un histograma no es ni más ni menos que la representación gráfica (realizada con un diagrama de barras) de la distribución de frecuencias. En dicha gráfica, el eje vertical indica las frecuencias (variable dependiente) y el eje horizontal identifica la variable X (variable independiente). A continuación se presentan distintos ejemplos de histogramas según su forma geométrica. H El histograma 1 corresponde a la forma de campana habitual que representa la variabilidad debida a causas aleatorias. Se le puede ajustar una curva de frecuencias simétricas o en forma de campana, que se caracteriza porque las observaciones equidistantes del máximo central tienen la misma frecuencia. En este caso, la curva se denomina normal o Gaussiana. 2

3 1 1 El histograma 2, con dos máximos diferenciados, responde a una distribución denominada bimodal y se presenta cuando están mezclados datos de distinto origen centrados en valores distintos. 1 isiogrnma El histograma 3 se denomina, por su forma, sesgado a la derecha, y responde a la variabilidad que presenta ciertas variables que no siguen una ley normal, como los tiempos de vida Al histograma 4 parece faltarle una parte y por ello se le llama censurado o sesgado (en este caso, a la izquierda). o representa una variabilidad natural y por tanto hay que sospechar que se han eliminado algunos valores. l listoarurna Histograma En los histogramas 5 y 6 aparecen datos que no siguen el patrón de comportamiento general (anomalías, errores, etc...). 2) Tratamiento umérico Comenzaremos analizando los conceptos principales para el tratamiento numérico de los datos. Supongamos que tenemos un grupo de observaciones Xi (i=l,..., ) donde cada uno de estos datos tiene asociada una incerteza Las medidas de tendencia central son valores numéricos que localizan, de alguna manera, el centro del conjunto de datos. Son valores que se pueden tomar como representativos de todos los datos. Hay diferentes modos para definir el "centro" de las observaciones en un conjunto de datos. Por orden de importancia, son: 3

4 Media aritmética Se define la media aritmética X como:. La media aritmética es, probablemente, uno de los parámetros estadísticos más extendidos. Se le llama también promedio o, simplemente, media. Este valor no coincide con los valores de la tabla de datos. - Es el valor que separa por la mitad las observaciones ordenadas de menor a mayor, de tal forma que el 50% de estas son menores que la mediana y el otro 50% son mayores. Si el número de datos es impar la mediana será el valor central, si es par tomaremos como mediana la media aritmética de los dos valores centrales. Es el valor que más veces se repite. o tiene porqué ser única. Ahora bien, los promedios determinan el centro de distribución, pero nada indican acerca de cómo están situados los datos experimentales respecto de dicho "centro". Para conocer cómo se posicionan nuestros resultados con respecto al "valor central" (calculado con la media, la moda o la mediana) de la distribución, es necesario conocer ahora las medidas de dispersión. Las medidas de dispersión cuantifican la separación, la dispersión, la variabilidad de los valores de la distribución respecto al valor central. En este caso nos limitaremos a estudiar las medidas de dispersión con respecto a la media aritmética de la muestra de datos. Desviación media estándar Se define como: (J= =1 _X )2 Como puede observarse, la desviación media estándar (también se la conoce como error cuadrático medio o dispersión) tiene las mismas unidades que los datos de la muestra. La desviación estándar es una medida del grado de dispersión de los datos con respecto al valor promedio, y puede ser interpretada como una medida de la incertidumbre o incerteza. Por lo tanto, la desviación estándar de un grupo repetido de medidas nos da la precisión de éstas. ncerteza del valor medio Se define como: E=.J-l 4

5 Esta magnitud define un intervalo de longitud 2E alrededor del valor X, dentro del cual debería encontrarse el valor teórico de la cantidad a medir (X ), es decir: Como puede observarse de las expresiones para la desviación estándar y para la incerteza del valor medio, cuanto mayor sea la cantidad de mediciones realizadas, más pequeña será la magnitud de y de E. Es decir, mientras más grande sea la cantidad de datos tomados, más preciso será nuestro resultado final", 2 Se asume aquí que, a pesar de estar trabajando con datos viciados por la presencia de errores casuales, los mismos no se desvían en gran medida del valor promedio. En otras palabras, no existen datos que se encuentren muy "fuera de rango" o que difieran mucho del valor promedio calculado. Cuando en una serie de mediciones, se encuentran este tipo de valores, la opción más común consiste en descartar ese dato y, de ser posible, volver a medirlo. 5

6 Ejemplo ilustrativo Un alumno midió el diámetro de una esfera de acero 40 veces, siempre en las mismas condiciones. Dichas mediciones fueron realizadas con un palmer de apreciación 0,01 mm. Medición (mm) Medición (mm) Medición (mm) Medición (mm) 1 17, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,06 Debido a que la cantidad de datos disponibles es mayor a 20, se utilizará un tratamiento estadístico. En primer lugar se realiza la tabla con la distribución de frecuencias. Valor Exp. Frec. 17, , , , ,07 2 Esta tabla "dice" que el valor 17,03 se midió una sola vez, que el valor 17,04 se midió 9 veces, etc. Una vez que se cuenta con estos datos, se puede graficar el histograma o o d,(mm) Como puede observarse, este histograma presenta una distribución normal (O gaussiana), pues es simétrico con respecto a su valor central. Aquí puede verse que el valor d =17,OS mm es el que más se repite. Pero cómo puedo encontrar una expresión numérica que más explícitamente el conjunto de valores experimentales? 6

7 Para ello calculamos la media aritmética, la desviación estándar y la incerteza del valor medio, d' it 505 Me la an me ica: = 17,0 mm Desviación media estándar: o = )2 =0, mm.. E ncerteza del valor medo: = = 0, mm De esta forma, se puede decir que el valor buscado del diámetro de la esfera de acero se encuentra en un intervalo de datos dado por: d=d±e d = (17, ,002) mm (el resultado se ha expresado de acuerdo a las reglas de redondeo vistas en clases). 7

3 ANALISIS DESCRIPTIVO DE LOS DATOS

3 ANALISIS DESCRIPTIVO DE LOS DATOS 3 ANALISIS DESCRIPTIVO DE LOS DATOS 3.1 La tabulación de los datos 3.1.1 Tabla de distribución de frecuencias. 3.1.2 El histograma. 3.2 Medidas de tendencia central 3.2.1 La media. 3.2.2 La mediana. 3.2.3

Más detalles

Estadística Inferencial. Estadística Descriptiva

Estadística Inferencial. Estadística Descriptiva INTRODUCCIÓN Estadística: Ciencia que trata sobre la teoría y aplicación de métodos para coleccionar, representar, resumir y analizar datos, así como realizar inferencias a partir de ellos. Recogida y

Más detalles

Tema 3: Estadística Descriptiva

Tema 3: Estadística Descriptiva Tema 3: Estadística Descriptiva Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 3: Estadística Descriptiva Curso 2008-2009 1 / 27 Índice

Más detalles

Teoría de errores -Hitogramas

Teoría de errores -Hitogramas FÍSICA I Teoría de errores -Hitogramas Autores: Pablo Iván ikel - e-mail: pinikel@hotmail.com Ma. Florencia Kronberg - e-mail:sil_simba@hotmail.com Silvina Poncelas - e-mail:flo_kron@hotmail.com Introducción:

Más detalles

Mediciones II. Todas las mediciones tienen asociada una incertidumbre que puede deberse a los siguientes factores:

Mediciones II. Todas las mediciones tienen asociada una incertidumbre que puede deberse a los siguientes factores: Mediciones II Objetivos El alumno determinará la incertidumbre de las mediciones. El alumno determinará las incertidumbres a partir de los instrumentos de medición. El alumno determinará las incertidumbres

Más detalles

Fundamentos de Estadística y Simulación Básica

Fundamentos de Estadística y Simulación Básica Fundamentos de Estadística y Simulación Básica TEMA 2 Estadística Descriptiva Clasificación de Variables Escalas de Medición Gráficos Tabla de frecuencias Medidas de Tendencia Central Medidas de Dispersión

Más detalles

En ciencias e ingeniería (experimentales) es imprescindible realizar mediciones, que consisten en obtener

En ciencias e ingeniería (experimentales) es imprescindible realizar mediciones, que consisten en obtener ERRORES DE MEDICION Y SU PROPAGACION En ciencias e ingeniería (experimentales) es imprescindible realizar mediciones, que consisten en obtener la magnitud fisica de algun atributo de objetos ( proceso,

Más detalles

Equipos Cantidad Observacion Calibrador 1 Tornillo micrometrico 1 Cinta metrica 1 Esferas 3 Calculadora 1

Equipos Cantidad Observacion Calibrador 1 Tornillo micrometrico 1 Cinta metrica 1 Esferas 3 Calculadora 1 No 1 LABORATORIO DE FISICA PARA LAS CIENCIAS DE LA VIDA DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Realizar mediciones de magnitudes de diversos objetos

Más detalles

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada.

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada. ANEXO 1. CONCEPTOS BÁSICOS Este anexo contiene información que complementa el entendimiento de la tesis presentada. Aquí se exponen técnicas de cálculo que son utilizados en los procedimientos de los modelos

Más detalles

LABORATORIO No. 0. Cálculo de errores en las mediciones. 0.1 Introducción

LABORATORIO No. 0. Cálculo de errores en las mediciones. 0.1 Introducción LABORATORIO No. 0 Cálculo de errores en las mediciones 0.1 Introducción Es bien sabido que la especificación de una magnitud físicamente medible requiere cuando menos de dos elementos: Un número y una

Más detalles

Apuntes y ejercicios de Estadística para 2º E.S.O

Apuntes y ejercicios de Estadística para 2º E.S.O Apuntes y ejercicios de Estadística para 2º E.S.O 1 Introducción La Estadística es la ciencia que se encarga de recoger, organizar, describir e interpretar datos referidos a distintos fenómenos para, posteriormente,

Más detalles

ESTADÍSTICA EN RRLL - CURSO 2010 TURNO NOCTURNO

ESTADÍSTICA EN RRLL - CURSO 2010 TURNO NOCTURNO ESTADÍSTICA EN RRLL - CURSO 2010 TURNO NOCTURNO MODULO 3: Medidas de tendencia central Haga clic para modificar el estilo de subtítulo del patrón Docentes: Mariana Cabrera - Laura Noboa - Verónica Curbelo

Más detalles

Dr. Richard Mercado Rivera 18 de agosto de 2012 Matemática Elemental

Dr. Richard Mercado Rivera 18 de agosto de 2012 Matemática Elemental Universidad de Puerto Rico Recinto de Aguadilla Programa CeCiMat Elemental Definición de conceptos fundamentales de la Estadística y la Probabilidad y su aportación al mundo moderno Dr. Richard Mercado

Más detalles

Medidas de variabilidad (dispersión)

Medidas de variabilidad (dispersión) Medidas de posición Las medidas de posición nos facilitan información sobre la serie de datos que estamos analizando. Estas medidas permiten conocer diversas características de esta serie de datos. Las

Más detalles

Medidas de Tendencia Central.

Medidas de Tendencia Central. Medidas de Tendencia Central www.jmontenegro.wordpress.com MEDIDAS DE RESUMEN MDR MEDIDAS DE TENDENCIA CENTRAL MEDIA MEDIANA MODA CUARTILES,ETC. MEDIDAS DE DISPERSIÓN RANGO DESVÍO EST. VARIANZA COEFIC.

Más detalles

Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Estadística Básica COMISIÓN 1. 1 Cuatrimestre 2016

Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Estadística Básica COMISIÓN 1. 1 Cuatrimestre 2016 Universidad Nacional de Mar del Plata Facultad de Ingeniería Estadística Básica COMISIÓN 1 1 Cuatrimestre 2016 s. La palabra Estadística procede del vocablo Estado, pues era función principal de los Gobiernos

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS (Universidad del Perú, DECANA DE AMERICA) MEDIDAS DE TENDENCIA CENTRAL 20/05/2008 Ing. SEMS 2.1 INTRODUCCIÓN En el capítulo anterior estudiamos de qué manera los

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA Medidas de tendencia central y de dispersión Giorgina Piani Zuleika Ferre 1. Tendencia Central Son un conjunto de medidas estadísticas que determinan un único valor que define el

Más detalles

II. ORGANIZACIÓN N Y PRESENTACIÓN N DE DATOS

II. ORGANIZACIÓN N Y PRESENTACIÓN N DE DATOS UNIVERSIDAD INTERAMERICANA PARA EL DESARROLLO ORGANIZACIÓN N Y PRESENTACIÓN N DE DATOS Contenido II. ORGANIZACIÓN N Y PRESENTACIÓN N DE DATOS II. Tablas de frecuencia II. Gráficos: histograma, ojiva, columna,

Más detalles

Introducción a la Teoría de Errores

Introducción a la Teoría de Errores Introducción a la Teoría de Errores March 21, 2012 Al medir experimentalmente una magnitud física (masa, tiempo, velocidad...) en un sistema físico, el valor obtenido de la medida no es el valor exacto.

Más detalles

Cátedra: Estadística Técnica Facultad de Ingeniería UNCuyo. Índice D. Fernández & M. Guitart TABLA DE CONTENIDOS

Cátedra: Estadística Técnica Facultad de Ingeniería UNCuyo. Índice D. Fernández & M. Guitart TABLA DE CONTENIDOS Cátedra: TABLA DE CONTENIDOS INTRODUCCIÓN Qué es la Probabilidad? Qué es la Estadística? La evolución histórica de la Estadística Algunos conceptos imprescindibles Fuentes de datos Tipos de datos y escalas

Más detalles

1, 2, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 2, 1, 1, 4, 1

1, 2, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 2, 1, 1, 4, 1 8 Estadística 81 Distribuciones unidimensionales Tablas de frecuencias En este tema nos ocuparemos del tratamiento de datos estadísticos uestro objeto de estudio será pues el valor de una cierta variable

Más detalles

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS Ejemplos y ejercicios de Estadística Descriptiva yanálisis de Datos Diplomatura en Estadística Curso 007/08 Descripción estadística de una variable. Ejemplos

Más detalles

MEDICIÓN Y PROPAGACIÓN DE ERRORES. Comprender el proceso de medición y expresar correctamente el resultado de una medida realizada.

MEDICIÓN Y PROPAGACIÓN DE ERRORES. Comprender el proceso de medición y expresar correctamente el resultado de una medida realizada. LABORATORIO Nº 1 MEDICIÓN Y PROPAGACIÓN DE ERRORES I. LOGROS Comprender el proceso de medición y expresar correctamente el resultado de una medida realizada. Aprender a calcular el error propagado e incertidumbre

Más detalles

1. La Distribución Normal

1. La Distribución Normal 1. La Distribución Normal Los espacios muestrales continuos y las variables aleatorias continuas se presentan siempre que se manejan cantidades que se miden en una escala continua; por ejemplo, cuando

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cálculo de medidas de dispersión y muestreo GUICEN041MT22-A16V1

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cálculo de medidas de dispersión y muestreo GUICEN041MT22-A16V1 GUÍA DE EJERCITACIÓN AVANZADA Cálculo de medidas de dispersión y muestreo Desafío Una población estadística está compuesta de cuatro números enteros consecutivos, siendo n el menor de ellos. La desviación

Más detalles

Tema 2: Estadísticos. Bioestadística. U. Málaga. Tema 2: Estadísticos 1

Tema 2: Estadísticos. Bioestadística. U. Málaga. Tema 2: Estadísticos 1 Bioestadística Tema 2: Estadísticos Tema 2: Estadísticos 1 Parámetros y estadísticos Parámetro: Es una cantidad numérica calculada sobre una población La altura media de los individuos de un país La idea

Más detalles

2. Distribuciones de Muestreo

2. Distribuciones de Muestreo 2. Distribuciones de Muestreo Conceptos básicos Para introducir los conceptos básicos consideremos el siguiente ejemplo: Supongamos que estamos interesados en determinar el número medio de televisores

Más detalles

Y accedemos al cuadro de diálogo Descriptivos

Y accedemos al cuadro de diálogo Descriptivos SPSS: DESCRIPTIVOS PROCEDIMIENTO DE ANÁLISIS INICIAL DE DATOS: DESCRIPTIVOS A diferencia con el procedimiento Frecuencias, que contiene opciones para describir tanto variables categóricas como cuantitativas

Más detalles

PRACTICA DE LABORATORIO NO. 1

PRACTICA DE LABORATORIO NO. 1 UIVERSIDAD PEDAGÓGICA ACIOAL FRACISCO MORAZÁ CETRO UIVERSITARIO REGIOAL DE LA CEIBA DEPARTAMETO DE CIECIAS ATURALES PRACTICA DE LABORATORIO O. 1 I PERIODO 2014 ombre de la Practica: MEDICIOES E ICERTIDUMBRES.

Más detalles

Tema 1: Análisis de datos univariantes

Tema 1: Análisis de datos univariantes Tema 1: Análisis de datos univariantes 1 En este tema: Conceptos fundamentales: muestra y población, variables estadísticas. Variables cualitativas o cuantitativas discretas: Distribución de frecuencias

Más detalles

Curso de Estadística Básica

Curso de Estadística Básica Curso de SESION 3 MEDIDAS DE TENDENCIA CENTRAL Y MEDIDAS DE DISPERSIÓN MCC. Manuel Uribe Saldaña MCC. José Gonzalo Lugo Pérez Objetivo Conocer y calcular las medidas de tendencia central y medidas de dispersión

Más detalles

REPASO DE ESTADÍSTICA DESCRIPTIVA

REPASO DE ESTADÍSTICA DESCRIPTIVA ÍNDICE: 1.- Tipos de variables 2.- Tablas de frecuencias 3.- Gráficos estadísticos 4.- Medidas de centralización 5.- Medidas de dispersión REPASO DE ESTADÍSTICA DESCRIPTIVA 1.- Tipos de variables La estadística

Más detalles

Probabilidad y Estadística, EIC 311

Probabilidad y Estadística, EIC 311 Probabilidad y Estadística, EIC 311 Medida de resumen 1er Semestre 2016 1 / 105 , mediana y moda para datos no Una medida muy útil es la media aritmética de la muestra = Promedio. 2 / 105 , mediana y moda

Más detalles

Tutorial MT-m6. Matemática Tutorial Nivel Medio. Estadística Descriptiva

Tutorial MT-m6. Matemática Tutorial Nivel Medio. Estadística Descriptiva 12345678901234567890 M ate m ática Tutorial MT-m6 Matemática 2006 Tutorial Nivel Medio Estadística Descriptiva Matemática 2006 Tutorial Estadística descriptiva Marco Teórico 1. Estadística descriptiva

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadística Descriptiva 1 Qué veremos 1. OBJECTIVOS DEL CURSO. DEFINICIONES IMPORTANTES 2. TIPOS DE VARIABLES 3 5 1. Estadísticos de tendencia central 2. Estadísticos de posición 3. Estadísticos de variabilidad/dispersión

Más detalles

GLOSARIO ESTADÍSTICO. Fuente: Murray R. Spiegel, Estadística, McGraw Hill.

GLOSARIO ESTADÍSTICO. Fuente: Murray R. Spiegel, Estadística, McGraw Hill. GLOSARIO ESTADÍSTICO Fuente: Murray R. Spiegel, Estadística, McGraw Hill. CONCEPTOS Y DEFINICIONES ESPECIALES Es el estudio científico de los métodos para recoger, organizar, resumir y analizar los datos

Más detalles

Teoría de la decisión

Teoría de la decisión 1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia

Más detalles

MEDIDAS DE RESUMEN. Medidas de Tendencia Central Medidas de Dispersión. Rafael Díaz Sarmiento, M.D., E.S.O., E.C. Las Palmas de Gran Canario, España

MEDIDAS DE RESUMEN. Medidas de Tendencia Central Medidas de Dispersión. Rafael Díaz Sarmiento, M.D., E.S.O., E.C. Las Palmas de Gran Canario, España MEDIDAS DE RESUMEN Medidas de Tendencia Central Medidas de Dispersión Rafael Díaz Sarmiento, M.D., E.S.O., E.C. Las Palmas de Gran Canario, España MEDIDAS DE RESUMEN DEFINICIONES: Medida de tendencia central:

Más detalles

Tabla de frecuencias agrupando los datos Cuando hay muchos valores distintos, los agruparemos en intervalos (llamados clases) de la misma amplitud.

Tabla de frecuencias agrupando los datos Cuando hay muchos valores distintos, los agruparemos en intervalos (llamados clases) de la misma amplitud. 1. TABLAS Y GRÁFICOS ESTADÍSTICOS Estadística Es la ciencia que estudia conjunto de datos obtenidos de la realidad. Estos datos son interpretados mediante tablas, gráficas y otros parámetros tales como

Más detalles

ESTADÍSTICA SEMANA 3

ESTADÍSTICA SEMANA 3 ESTADÍSTICA SEMANA 3 ÍNDICE MEDIDAS DESCRIPTIVAS... 3 APRENDIZAJES ESPERADOS... 3 DEFINICIÓN MEDIDA DESCRIPTIVA... 3 MEDIDAS DE POSICIÓN... 3 MEDIDAS DE TENDENCIA CENTRAL... 4 MEDIA ARITMÉTICA O PROMEDIO...

Más detalles

MEDICION DE CANTIDADES FISICAS

MEDICION DE CANTIDADES FISICAS UNIVERSIDAD CATOLICA ANDRES BELLO FACULTAD DE INGENIERIA DEPARTAMENTO DE FÍSICA LABORATORIO DE FISICA II TELECOMUNICACIONES MEDICION DE CANTIDADES FISICAS Esta primera práctica introduce un conjunto de

Más detalles

MÉTODO DE ANÁLISIS MIGUEL MARTÍNEZ VIGIL CARMEN HERNÁNDEZ CORRAL 64 FORUM CALIDAD 87/97

MÉTODO DE ANÁLISIS MIGUEL MARTÍNEZ VIGIL CARMEN HERNÁNDEZ CORRAL 64 FORUM CALIDAD 87/97 3.3 MÉTODOS DE ANÁLISIS 0/7 MÉTODO DE ANÁLISIS HISTOGRAMA MIGUEL MARTÍNEZ VIGIL CARMEN HERNÁNDEZ CORRAL 64 FORUM CALIDAD 87/97 3.3 MÉTODO DE TRABAJO 1/7 3.3.1- DEFINICIÓN Un histograma es una representación

Más detalles

Problemas de cálculo

Problemas de cálculo Ejercicio resuelto completo Problemas Conocer una variable Vicente Manzano-Arrondo, 2010-2014 Problemas de cálculo En 50 ocasiones hemos preguntado a Asensio por su número favorito. En contra de lo que

Más detalles

2º ESO UNIDAD 14 ESTADÍSTICA Y PROBABILIDAD

2º ESO UNIDAD 14 ESTADÍSTICA Y PROBABILIDAD º ESO UNIDAD 1 ESTADÍSTICA Y PROBABILIDAD 1 1.- CONCEPTOS BÁSICOS Estadística.- Es la ciencia que estudia conjuntos de datos obtenidos de la realidad. Estos datos son interpretados mediante tablas, gráficas

Más detalles

Instrumentos de medida. Estimación de errores en medidas directas.

Instrumentos de medida. Estimación de errores en medidas directas. Instrumentos de medida. Estimación de errores en medidas directas. Objetivos El objetivo de esta primera práctica es la familiarización con el uso de los instrumentos de medida y con el tratamiento de

Más detalles

UNIDAD 6. Estadística

UNIDAD 6. Estadística Matemática UNIDAD 6. Estadística 2 Medio GUÍA N 1 MEDIDAS DE DISPERSIÓN PARA DATOS NO AGRUPADOS ACTIVIDAD Consideremos los siguientes conjuntos de valores referidos a las edades de los jugadores de dos

Más detalles

UNIVERSIDAD AUTONOMA DEL ESTADO DE MEXICO ESCUELA PREPARATORIA TEXCOCO

UNIVERSIDAD AUTONOMA DEL ESTADO DE MEXICO ESCUELA PREPARATORIA TEXCOCO UNIVERSIDAD AUTONOMA DEL ESTADO DE MEXICO ESCUELA PREPARATORIA TEXCOCO MEDIDAS DE TENDENCIA CENTRAL Y DE DISPERSIÓN PARA DATOS NO AGRUPADOS MATERIAL DIDACTICO SOLO VISION ASIGNATURA QUE CORRESPONDE: ESTADISTICA

Más detalles

MATERIA: CONTROL ESTADÍSTICO DEL PROCESO GRADO: ENCARGADA DE LA MATERIA: LIC. EDGAR GERARDO MATA ORTIZ TEMA: INTERPRETACIÓN DE HISTOGRAMAS

MATERIA: CONTROL ESTADÍSTICO DEL PROCESO GRADO: ENCARGADA DE LA MATERIA: LIC. EDGAR GERARDO MATA ORTIZ TEMA: INTERPRETACIÓN DE HISTOGRAMAS MATERIA: CONTROL ESTADÍSTICO DEL PROCESO GRADO: 3C ENCARGADA DE LA MATERIA: LIC. EDGAR GERARDO MATA ORTIZ TEMA: INTERPRETACIÓN DE HISTOGRAMAS INTEGRANTES DEL EQUIPO: ELIZABETH GRIJALVA ROCHA KAREN LIZETH

Más detalles

LOS ESTADÍGRAFOS BÁSICOS Y SU INTERPRETACIÓN, M TENDENCIA CENTRAL

LOS ESTADÍGRAFOS BÁSICOS Y SU INTERPRETACIÓN, M TENDENCIA CENTRAL PreUnAB LOS ESTADÍGRAFOS BÁSICOS Y SU INTERPRETACIÓN, MEDIDAS DE TENDENCIA CENTRAL Clase # 26 Noviembre 2014 ESTADÍGRAFOS Concepto de estadígrafo Un estadígrafo, o estadístico, es un indicador que se calcula

Más detalles

DISTRIBUCIONES DE FRECUENCIAS

DISTRIBUCIONES DE FRECUENCIAS Distribuciones de frecuencias CAPITULO 2 DATOS SUELTOS Se les llama datos sueltos a los datos recolectados que no han sido organizados numéricamente. Un ejemplo es el conjunto de las estaturas de 100 estudiantes

Más detalles

MINISTERIO DE EDUCACIÓN. Educación Técnica y Profesional. Familia de especialidades: Economía. Programa: Estadística

MINISTERIO DE EDUCACIÓN. Educación Técnica y Profesional. Familia de especialidades: Economía. Programa: Estadística MINISTERIO DE EDUCACIÓN Educación Técnica y Profesional Familia de especialidades: Economía Programa: Estadística Nivel: Técnico Medio en Contabilidad. Escolaridad inicial: 12mo. Grado AUTORA MSc. Caridad

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Medidas de Tendencia Central y de Dispersión Ciclo 2017 UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE CIENCIAS MÉDICAS FASE I, PRIMER ANO U.D. ESTADISTICA Documento elaborado por: MEDIDAS DE TENDENCIA

Más detalles

ANÁLISIS GRANULOMÉTRICOS - REPRESENTACIONES GRÁFICAS PARÁMETROS ESTADÍSTICOS

ANÁLISIS GRANULOMÉTRICOS - REPRESENTACIONES GRÁFICAS PARÁMETROS ESTADÍSTICOS ANÁLISIS GRANULOMÉTRICOS - REPRESENTACIONES GRÁFICAS PARÁMETROS ESTADÍSTICOS REPRESENTACIONES GRÁFICAS Los análisis texturales presentados como gráficas simplifican la comparación entre las muestras y

Más detalles

Transformaciones de Potencia

Transformaciones de Potencia Transformaciones de Potencia Resumen El procedimiento Transformaciones de Potencia está diseñado para definir una transformación normalizadora para una columna de observaciones numéricas que no provienen

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL MEDIDAS DE TENDENCIA CENTRAL Al describir grupos de observaciones, con frecuencia es conveniente resumir la información con un solo número. Este número que, para tal fin, suele situarse hacia el centro

Más detalles

MEDIDAS DE VARIABILIDAD

MEDIDAS DE VARIABILIDAD MEDIDAS DE VARIABILIDAD 1 Medidas de variabilidad Qué son las medidas de variabilidad? Las medidas de variabilidad de una serie de datos, muestra o población, permiten identificar que tan dispersos o concentrados

Más detalles

Estadística Descriptiva

Estadística Descriptiva M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Desde la segunda mitad del siglo anterior, el milagro industrial sucedido en Japón, hizo

Más detalles

Estadística Descriptiva. SESIÓN 11 Medidas de dispersión

Estadística Descriptiva. SESIÓN 11 Medidas de dispersión Estadística Descriptiva SESIÓN 11 Medidas de dispersión Contextualización de la sesión 11 En la sesión anterior se explicaron los temas relacionados con la dispersión, una de las medidas de dispersión,

Más detalles

FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- BLOQUE ESTADÍSTICA: ESTADÍSTICA VARIABLE UNIDIMENSIONAL. Estadística variable unidimensional

FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- BLOQUE ESTADÍSTICA: ESTADÍSTICA VARIABLE UNIDIMENSIONAL. Estadística variable unidimensional FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- Estadística variable unidimensional 1. Conceptos de Estadística 2. Distribución de frecuencias 2.1. Tablas de valores con variables continuas 3. Parámetros

Más detalles

Guión de Prácticas. PRÁCTICA METROLOGIA. Medición. 2. CONSIDERACIONES PREVIAS a tener en cuenta SIEMPRE

Guión de Prácticas. PRÁCTICA METROLOGIA. Medición. 2. CONSIDERACIONES PREVIAS a tener en cuenta SIEMPRE 1. OBJETIVOS Guión de Prácticas. PRÁCTICA METROLOGIA. Medición Conocimientos de los fundamentos de medición Aprender a utilizar correctamente los instrumentos básicos de medición. 2. CONSIDERACIONES PREVIAS

Más detalles

Estadística. Análisis de datos.

Estadística. Análisis de datos. Estadística Definición de Estadística La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un

Más detalles

Histograma y Grafico de Control

Histograma y Grafico de Control 2014 Histograma y Grafico de Control Sustentantes: Sabrina Silvestre 2011-0335 Juan Emmanuel Sierra Santos 2011-0367 Rosa Stefany Flech Mesón 2011-0436 Docente: Ing.MS Eliza N. González Universidad Central

Más detalles

INCERTIDUMBRE Y ERROR EN LAS MEDICIONES EXPERIMENTALES. Profesor: Iván Torres Álvarez Física, Nivel Medio LOGO

INCERTIDUMBRE Y ERROR EN LAS MEDICIONES EXPERIMENTALES. Profesor: Iván Torres Álvarez Física, Nivel Medio LOGO INCERTIDUMBRE Y ERROR EN LAS MEDICIONES EXPERIMENTALES Profesor: Iván Torres Álvarez Física, Nivel Medio LOGO Contenidos Introducción a Errores Incertidumbre de los Resultados Incertidumbre en las Gráficas

Más detalles

MEDIDAS ESTADÍSTICAS Medidas de Tendencia Central y de Variabilidad

MEDIDAS ESTADÍSTICAS Medidas de Tendencia Central y de Variabilidad MEDIDAS ESTADÍSTICAS Medidas de Tendencia Central y de Variabilidad 1 Propiedades deseables de una medida de Tendencia Central. 1) Definida objetivamente a partir de los datos de la serie. 2) Que dependa

Más detalles

UNIVERSIDAD ABIERTA PARA ADULTOS UAPA CARRERA LICENCIATURA EN ADMINISTRACIÓN DE EMPRESAS PROGRAMA DE LA ASIGNATURA ESTADÍSTICA I

UNIVERSIDAD ABIERTA PARA ADULTOS UAPA CARRERA LICENCIATURA EN ADMINISTRACIÓN DE EMPRESAS PROGRAMA DE LA ASIGNATURA ESTADÍSTICA I UNIVERSIDAD ABIERTA PARA ADULTOS UAPA CARRERA LICENCIATURA EN ADMINISTRACIÓN DE EMPRESAS PROGRAMA DE LA ASIGNATURA ESTADÍSTICA I CLAVE: MAT 131 ; PRE REQ.: MAT 111 ; No. CRED.: 4 I. PRESENTACIÓN: Este

Más detalles

Medidas de la pieza. Forma-posición elemento

Medidas de la pieza. Forma-posición elemento TOLERANCIAS DIMENSIONALES Introducción 1 - Podemos conseguir una dimensión exacta?. - Máquinas están sometidos a: desajustes, deformaciones de tipo elástico y térmico que dan lugar a imperfecciones dimensionales.

Más detalles

Medidas de centralización

Medidas de centralización 1 1. Medidas de centralización Medidas de centralización Hemos visto cómo el estudio del conjunto de los datos mediante la estadística permite realizar representaciones gráficas, que informan sobre ese

Más detalles

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO CENTRO UNIVERSITARIO UAEM ZUMPANGO LICENCIATURA EN TURISMO UNIDAD DE APRENDIZAJE: ESTADISTICA TEMA 1.5 : ESTADISTICA DESCRIPTIVA M. EN C. LUIS ENRIQUE KU MOO FECHA:

Más detalles

Estadística Inga Patricia Juárez, 2017 MEDIDAS DE TENDENCIA CENTRAL

Estadística Inga Patricia Juárez, 2017 MEDIDAS DE TENDENCIA CENTRAL MEDIDAS DE TENDENCIA CENTRAL Las medidas de tendencia central nos proporcionan la descripción significativa de un conjunto de observaciones. Como su nombre lo indica, son datos de una variable que tienden

Más detalles

TEMA 7 EL MODELO DE LA CURVA NORMAL. CONCEPTO Y APLICACIONES

TEMA 7 EL MODELO DE LA CURVA NORMAL. CONCEPTO Y APLICACIONES TEMA 7 EL MODELO DE LA CURVA NORMAL. CONCEPTO Y APLICACIONES 1. Puntuaciones diferenciales y puntuaciones típicas 2. La curva normal 3. Cálculo de áreas bajo la curva normal 3.1. Caso 1: Cálculo del número

Más detalles

TEMA 8: ESTADÍSTICA DESCRIPTIVA.

TEMA 8: ESTADÍSTICA DESCRIPTIVA. I.E.S. Salvador Serrano de Alcaudete Departamento de Matemáticas º ESO 0 / TEMA 8: ESTADÍSTICA DESCRIPTIVA. 8. Introducción. La palabra ESTADÍSTICA procede del vocablo Estado, pues era función principal

Más detalles

Tema 2 Estadística Descriptiva

Tema 2 Estadística Descriptiva Estadística Descriptiva 1 Tipo de Variables 2 Tipo de variables La base de datos anterior contiene la información de 36 alumnos de un curso de Estadística de la Universidad de Talca. En esta base de datos

Más detalles

Fase 2. Estudio de mercado: ESTADÍSTICA

Fase 2. Estudio de mercado: ESTADÍSTICA 1. CONCEPTO DE ESTADÍSTICA. ESTADÍSTICA DESCRIPTIVA 2. 3. TABLA DE FRECUENCIAS 4. REPRESENTACIONES GRÁFICAS 5. TIPOS DE MEDIDAS: A. MEDIDAS DE POSICIÓN B. MEDIDAS DE DISPERSIÓN C. MEDIDAS DE FORMA 1 1.

Más detalles

UNIVERSIDAD INTERAMERICANA DE PUERTO RICO RECINTO DE ARECIBO CENTRO DE SERVICIOS DE APOYO AL ESTUDIANTE

UNIVERSIDAD INTERAMERICANA DE PUERTO RICO RECINTO DE ARECIBO CENTRO DE SERVICIOS DE APOYO AL ESTUDIANTE UNIVERSIDAD INTERAMERICANA DE PUERTO RICO RECINTO DE ARECIBO CENTRO DE SERVICIOS DE APOYO AL ESTUDIANTE Glosario Media: es la puntuación promedio de un grupo de datos. Mediana: la mediana viene a ser la

Más detalles

NOCIONES DE ESTADÍSTICA CURSO PRÁCTICO DE CLIMATOLOGÍA 2011

NOCIONES DE ESTADÍSTICA CURSO PRÁCTICO DE CLIMATOLOGÍA 2011 NOCIONES DE ESTADÍSTICA CURSO PRÁCTICO DE CLIMATOLOGÍA 2011 CÓMO CARACTERIZAR UNA SERIE DE DATOS? POSICIÓN- dividen un conjunto ordenado de datos en grupos con la misma cantidad de individuos CENTRALIZACIÓN-

Más detalles

ESTADISTICA Y PROBABILIDAD ESTADÍSTICA

ESTADISTICA Y PROBABILIDAD ESTADÍSTICA ESTADÍSTICA La estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comprobaciones y sacar conclusiones. Un estudio estadístico consta

Más detalles

4. Medidas de dispersión

4. Medidas de dispersión FUOC XP00/71004/00017 27 Medidas de dispersión 4. Medidas de dispersión Los cuartiles y la desviación estándar En el capítulo 3 hemos aprendido varias maneras de medir el centro de una distribución. Pero,

Más detalles

PROBABILIDAD Y ESTADÍSTICA. Sesión 6 (A partir de tema 5.9)

PROBABILIDAD Y ESTADÍSTICA. Sesión 6 (A partir de tema 5.9) PROBABILIDAD Y ESTADÍSTICA Sesión 6 (A partir de tema 5.9) 5.9 Muestreo: 5.9.1 Introducción al muestreo 5.9.2 Tipos de muestreo 5.10 Teorema del límite central 5.11 Distribución muestral de la media 5.12

Más detalles

1 - TEORIA DE ERRORES : distribución de frecuencias

1 - TEORIA DE ERRORES : distribución de frecuencias - TEORIA DE ERRORES : distribución de frecuencias CONTENIDOS Distribución de Frecuencias. Histograma. Errores de Apreciación. Propagación de errores. OBJETIVOS Representar una serie de datos mediante un

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL MEDIDAS DE TENDENCIA CENTRAL 1 Medidas de tendencia central http://www.hiru.com/es/matematika/matematika_05900.html Las características globales de un conjunto de datos estadísticos pueden resumirse mediante

Más detalles

ESTADÍSTICA APLICADA. TEMA 1. ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA APLICADA. TEMA 1. ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA APLICADA. TEMA 1. ESTADÍSTICA DESCRIPTIVA Definición de Estadística: La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer

Más detalles

Ejemplos solo con datos cuantitativos o numéricos: Medidas de centralización Para datos a granel:

Ejemplos solo con datos cuantitativos o numéricos: Medidas de centralización Para datos a granel: Ejemplos solo con datos cuantitativos o numéricos: Medidas de centralización Para datos a granel: Considere una muestra de notas de un alumno en la asignatura de matemática: Notas 4.5 3.5 6.7 4.6 5.3 4.8

Más detalles

MINISTERIO DE EDUCACIÓN. Dirección de Educación Técnica y Profesional. Familia de especialidades:servicios. Programa: Estadística Matemática

MINISTERIO DE EDUCACIÓN. Dirección de Educación Técnica y Profesional. Familia de especialidades:servicios. Programa: Estadística Matemática MINISTERIO DE EDUCACIÓN Dirección de Educación Técnica y Profesional Familia de especialidades:servicios Programa: Estadística Matemática Nivel: Técnico Medio en Contabilidad. Escolaridad inicial: 9no.

Más detalles

1. Dado el siguiente volumen de ventas de una empresa y su gasto en I+D en miles. Prediga las ventas de este empresario para un gasto en I+D de 7.

1. Dado el siguiente volumen de ventas de una empresa y su gasto en I+D en miles. Prediga las ventas de este empresario para un gasto en I+D de 7. MODELO A Examen de Estadística Económica (2407) 20 de junio de 2009 En cada pregunta sólo existe UNA respuesta considerada más correcta. Si hay dos correctas deberá escoger aquella respuesta que tenga

Más detalles

Los estadísticos descriptivos clásicos (Robustez)

Los estadísticos descriptivos clásicos (Robustez) Los estadísticos descriptivos clásicos (Robustez) MUESTRA 0 0 4 6 8 9 MUESTRA 0 0 4 6 8 57 Nº CASOS Media Mediana Moda Desviación Simetría Curtosis MUESTRA,85 4,74 0, -0.688 MUESTRA 6,77 4.8.7.77 Ambas

Más detalles

ESTADÍSTICA UNIDIMENSIONAL

ESTADÍSTICA UNIDIMENSIONAL ESTADÍSTICA UNIDIMENSIONAL DEFINICIÓN DE VARIABLE Una variable estadística es cada una de las características o cualidades que poseen los individuos de una población. TIPOS DE VARIABLE ESTADÍSTICAS Ø Variable

Más detalles

UNIDAD: ESTADISTICA. La estadística se ocupa de recopilar datos, organizarlos en tablas y gráficos y analizarlos con un determinado objetivo.

UNIDAD: ESTADISTICA. La estadística se ocupa de recopilar datos, organizarlos en tablas y gráficos y analizarlos con un determinado objetivo. UNIDAD: ESTADISTICA La estadística se ocupa de recopilar datos, organizarlos en tablas y gráficos y analizarlos con un determinado objetivo. La estadística puede ser descriptiva o inferencial. La estadística

Más detalles

Estadística Descriptiva Métodos descriptivos visuales y medidas resumen

Estadística Descriptiva Métodos descriptivos visuales y medidas resumen 6 Estadística Descriptiva Métodos descriptivos visuales y medidas resumen Las técnicas de la estadística descriptiva pueden aplicarse tanto a datos muestrales como a datos poblacionales. Tipos de datos.

Más detalles

NOCIONES DE ESTADÍSTICA CURSO PRÁCTICO DE CLIMATOLOGÍA 2012

NOCIONES DE ESTADÍSTICA CURSO PRÁCTICO DE CLIMATOLOGÍA 2012 NOCIONES DE ESTADÍSTICA CURSO PRÁCTICO DE CLIMATOLOGÍA 2012 Matilde Ungerovich- mungerovich@fisica.edu.uy DEFINICIÓN PREVIA: Distribución: función que nos dice cuál es la probabilidad de que cada suceso

Más detalles

Histograma del puntaje de vocabulario y la aproximación por una curva gaussiana.

Histograma del puntaje de vocabulario y la aproximación por una curva gaussiana. 35 Curvas de densidad Existe alguna manera de describir una distribución completa mediante una única expresión? un diagrama tallo-hoja no es práctico pues se trata de demasiados datos un histograma elimina

Más detalles

Otra forma de enumerar los resultados es en una tabla de frecuencia:

Otra forma de enumerar los resultados es en una tabla de frecuencia: Materia: Matemática de Séptimo Tema: Intervalo de Clases e Histogramas Qué pasa si quisieras matar algo tiempo mientras esperas tu vuelo de conexión en el aeropuerto? Empiezas a contar el número de personas

Más detalles

Curso de nivelación Estadística y Matemática

Curso de nivelación Estadística y Matemática Curso de nivelación Estadística y Matemática Primera clase: Estadística Descriptiva Programa Técnico en Riesgo, 2016 Agenda 1 Tipos de variables y niveles de medición 2 3 Tipos de variables Variables Cuantitativas

Más detalles

CM0244. Suficientable

CM0244. Suficientable IDENTIFICACIÓN NOMBRE ESCUELA ESCUELA DE CIENCIAS NOMBRE DEPARTAMENTO Ciencias Matemáticas ÁREA DE CONOCIMIENTO MATEMATICAS, ESTADISTICA Y AFINES NOMBRE ASIGNATURA EN ESPAÑOL ESTADÍSTICA GENERAL NOMBRE

Más detalles

Los Gráficos de Control de Shewart

Los Gráficos de Control de Shewart Los Gráficos de Control de Shewart La idea tradicional de inspeccionar el producto final y eliminar las unidades que no cumplen con las especificaciones una vez terminado el proceso, se reemplaza por una

Más detalles

MEDIDAS DE RESUMEN: MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN. Lic. Esperanza García Cribilleros

MEDIDAS DE RESUMEN: MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN. Lic. Esperanza García Cribilleros MEDIDAS DE RESUMEN: MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN Lic. Esperanza García Cribilleros ANÁLISIS EXPLORATORIO DE DATOS Diagrama de tallo y hojas Diagrama de caja DESCRIPCIÓN N DE LOS DATOS Tablas

Más detalles

Tema 6. Estadística Descriptiva e Introducción a la Inferencia Estadística

Tema 6. Estadística Descriptiva e Introducción a la Inferencia Estadística Tema 6. Estadística Descriptiva e Introducción a la Inferencia Estadística Fuente de los comics: La Estadística en Comic. LarryGonicky Woollcatt Smith. Ed. ZendreraZariquiey, 1999 ESTADÍSTICA ESTADÍSTICA

Más detalles

3. ANÁLISIS DE DATOS DE PRECIPITACIÓN.

3. ANÁLISIS DE DATOS DE PRECIPITACIÓN. 3. ANÁLISIS DE DATOS DE PRECIPITACIÓN. Teniendo en cuenta que la mayoría de procesos estadísticos se comportan de forma totalmente aleatoria, es decir, un evento dado no está influenciado por los demás,

Más detalles

Datos cuantitativos. Método tabular

Datos cuantitativos. Método tabular Datos cuantitativos Cuando la muestra consta de 30 o más datos, lo aconsejable es agrupar los datos en clases y a partir de estas determinar las características de la muestra y por consiguiente las de

Más detalles

Curso de Estadística Aplicada a las Ciencias Sociales

Curso de Estadística Aplicada a las Ciencias Sociales Curso de Estadística Aplicada a las Ciencias Sociales Tema 6. Descripción numérica (2) Capítulo 5 del manual Tema 6 Descripción numérica (2) Introducción 1. La mediana 2. Los cuartiles 3. El rango y el

Más detalles