Elementos de máquinas de vectores de soporte

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Elementos de máquinas de vectores de soporte"

Transcripción

1 Elementos de máquinas de vectores de soporte Clasificación binaria y funciones kernel Julio Waissman Vilanova Departamento de Matemáticas Universidad de Sonora Seminario de Control y Sistemas Estocásticos 2010 J. Waissman (UNISON) SVM SCSE / 29

2 Plan de la presentación 1 Clasificador lineal binario 2 Solución del problema de clasificación binaria 3 El truco de las funciones kernel J. Waissman (UNISON) SVM SCSE / 29

3 Aprendizaje supervisado Se tiene un conjunto de aprendizaje X t = {(x 1, y 1 ), (x 2, y 2 ),..., (x m, y m )} donde x i X = A 1 A 2 A n son los datos (objetos, patrones) de entrada A j es el j ésimo atributo de x i. y i Y = {0, 1} es la clase a la que pertenece el dato x i El aprendizaje supervisado consiste en estimar una regla de decisión f : X Θ Y, donde Θ es el espacio de parámetros, tal que para un dato desconocido x, f (x, θ) = ŷ sea una estimación aceptable de y. Que es una estimación aceptable? Cual es la estructura de la regla de decisión? J. Waissman (UNISON) SVM SCSE / 29

4 Clasificador lineal binario Si se asume que X R n, un clasificador lineal es ŷ = sign ( ω T x + b ) = sign ( ω, x + b ) J. Waissman (UNISON) SVM SCSE / 29

5 Cual es la mejor separación? J. Waissman (UNISON) SVM SCSE / 29

6 Cual es la mejor separación? Perceptron: Discriminante lineal J(ω e ) = J(ω e ) = 1 mín ω e R n+1 m máx ω R n+1 m (y i ŷ i ) 2 i=1 Maquinas de Vectores de Soporte (SVM): ω T e S B ω e ω T e S W ω e Maximizar el margen de separación J. Waissman (UNISON) SVM SCSE / 29

7 Maximización del margen de separación J. Waissman (UNISON) SVM SCSE / 29

8 Maximización del margen de separación ω T x + + b = 1 para todo x + ω T x + b = 1 para todo x Para cada x corresponde un x + tal que x + = x + M ω ω ω T x + + b = 1 ω T (x + M ω ω ) + b = 1 ω T x + b + M ω ωt ω = 1 M = 2 ω T ω J. Waissman (UNISON) SVM SCSE / 29

9 Criterio de optimización para las SVM Criterio de optimización bajo las restricciones: 1 J(w, b) = mín ω R n 2 ωt ω (ω T x i + b)y i 1, para todo i = 1, 2,..., m El error de clasificación se incorpora al criterio como restricciones La constante b se calcula después de la optimización J. Waissman (UNISON) SVM SCSE / 29

10 Y si X T no es linealmente separable? Permitir errores en clasificación Compromiso entre el máximo margen de separación y los posibles errores de predicción Mejora la capacidad de generalización de las SVM Evita el sobreaprendizaje Uso de variables de holgura J. Waissman (UNISON) SVM SCSE / 29

11 Ejemplo de sobreaprendizaje (a) Training data and an overfitting classifier (b) Applying an overfitting classifier on testing data (c) Training data and a better classifier (d) Applying a better classifier on testing data J. Waissman (UNISON) SVM SCSE / 29

12 Planteamiento del problema de SVM Criterio de optimización bajo las restricciones: para todo i = 1, 2,..., m. 1 J(w, b, ξ) = mín ω R n 2 ωt ω + C m (ω T x i + b)y i 1 ξ i, ξ i 0, m ξ i (1) i=1 Variables de holgura ξ = [ξ 1,..., ξ m ] Es necesario establecer C Problema de optimización cuadrática con restricciones J. Waissman (UNISON) SVM SCSE / 29

13 Problema primal Resolver el problema (1) equivale a encontrar para L P = 1 2 ωt ω + C m m m ) ξ i (α i (ω T x i + b)y i 1 + ξ i ) + β i ξ i i=1 i=1 los valores de ω, b, ξ, ᾱ y β tal que para toda ω, b, ξ, α y β L P ( ω, b, ξ, α, β) L P ( ω, b, ξ, ᾱ, β) L P (ω, b, ξ, ᾱ, β) donde α i 0, β i 0 son los multiplicadores de Lagrange. J. Waissman (UNISON) SVM SCSE / 29

14 Condiciones necesarias Karush Kuhn Tucker Para que ω, b, ξ, ᾱ y β sea una solución, es necesario que: ᾱ i ( ω T x i + b)y i 1 + ξ i ) = 0, i = 1,..., m, β i ξi = 0, i = 1,..., m, ω L P ( ω, b, ξ, ᾱ, β) = 0 = ω b L P ( ω, b, ξ, ᾱ, β) = 0 = ξ L P ( ω, b, ξ, ᾱ, β) = 0 m ᾱ i y i x i i=1 m ᾱ i y i i=1 = C m m ) (ᾱi + β i i=1 J. Waissman (UNISON) SVM SCSE / 29

15 Problema dual De las condiciones KKT ω = m α i y i x i, i=1 C m = α i + β i, de donde α i C m, m α i y i = 0, i=1 se sustituyen en L P para encontar el problema dual L D (α) = m α i 1 2 i=1 m m α i α j y i y j xi T x j, i=1 j=1 el cual es únicamente un problema de maximización en α. J. Waissman (UNISON) SVM SCSE / 29

16 Reconocimiento La regla de decisión del clasificador lineal es ŷ = sign ( ω T x + b ) = sign ( α i y i xi T x + b ), i SV donde SV es el conjunto de índices tales que α i > 0. Para calcular b numéricamente estable, se considera un promedio del valor de b los vectores soporte en los cuales ξ i = 0, tal que, ( ω T x i + b ) y i = 1. Si ξ i > 0, entonces β i = 0 y por lo tanto α i = C m. Por lo tanto: b = 1 ( yi SV y i ω T ) x i, i SV donde SV es el conjunto de índices tales que 0 < α i < C/m. J. Waissman (UNISON) SVM SCSE / 29

17 Máquina de vectores de soporte Entrenamiento máx L D(α) = α R m m α i 1 2 i=1 m m α i α j y i y j x i, x j, i=1 j=1 bajo 0 α i C m, para i = 1,..., m. Reconocimiento ŷ = sign ( α i y i x i, x + b ) i SV Tanto el aprendizaje como el reconocimiento dependen solamente en el producto interno entre vectores! J. Waissman (UNISON) SVM SCSE / 29

18 El truco del kernel: el problema de la Xor J. Waissman (UNISON) SVM SCSE / 29

19 El truco del kernel: el problema de la Xor J. Waissman (UNISON) SVM SCSE / 29

20 Clasificadores polinomiales Sea C d : R n R N C donde las entrada de C d (x) son todos los posibles productos ordenados de grado d de x. Sea θ : R n R N θ los productos no ordenados de grado d, tal que C d (x), C d (x ) = θ(x), θ(x ). Por ejemplo C 2 ([x 1, x 2 ] T ) = [x 2 1, x 2 2, x 1 x 2, x 2 x 1 ] T, θ([x 1, x 2 ] T ) = [x 2 1, x 2 2, 2x 1 x 2 ] T. Un clasificador polinomial realiza una transformación del espacio de entrada a un espacio de características de mayor dimensión, esperando encontrar una separación lineal en el nuevo espacio. Se pueden aplicar otro tipo de transformaciones y utilizar un clasificador lineal en el espacio de características. J. Waissman (UNISON) SVM SCSE / 29

21 La maldición de la dimensionalidad Cual es la dimensión del nuevo espacio de características? ( ) d + n 1 N θ = = d + n 1 d d!(n 1)!) Ejemplo: Reconocimiento de caracteres escritos a mano, en forma de mapa de bits de (256 atributos). Si se considera una transformación θ 5, N θ El problema no es tratable! J. Waissman (UNISON) SVM SCSE / 29

22 El truco de las funciones kernel Para entrenar y utilizar un clasificado con SVM, solamente se requiere poder calcular el producto interno θ d (x), θ d x. Si se define k : R n R tal que k(x, x ) = θ d (x), θ d x = C d (x ), C d x n n = x j1... x jd x j 1... x j d = j 1 =1 j d =1 n x j1 x j 1 j 1 =1 n = x j x j j=1 d n x jd x j d j 1 =1 = x, x d J. Waissman (UNISON) SVM SCSE / 29

23 Funciones kernel Dada una función k : X 2 R, y un conjunto X T = {x 1,..., x m }, x i X, la matriz K de dimensión m m con elementos: K ij = k(x i, x j ) se conoce como Matriz de Gram (o matriz de kernel) generada por k respecto a X T. Sea X un conjunto no vacío, la función k : X 2 R la cual, para todo m N y para todo conjunto X T = {x 1,..., x m } genera una matriz de Gram K simétrica definida positiva es llamado un kernel real definido positivo, o simplemente kernel. J. Waissman (UNISON) SVM SCSE / 29

24 Propiedades de las funciones kernel k(x, x) 0 para todo x X k(x, x ) = k(x, x) k(x, x ) k(x, x )k(x, x) J. Waissman (UNISON) SVM SCSE / 29

25 Resultado interesante Una función kernel k : X 2 R es un producto interno en al menos un espacio de características. Sea θ : X {f : X R} tal que θ(x)( ) = k(x, ). Se genera un espacio vectorial con la imagen de θ: m f ( ) = α i k(, x i ), m N, α i R, x i X, i=1 m g( ) = β j k(, x j), m N, β j R, x j X, j=1 J. Waissman (UNISON) SVM SCSE / 29

26 Resultado interesante Se define un producto interno: m m f, g := α i β j k(x i, x j ) i=1 j=1 Para demostrar que f, g es un producto interno: f, g = β j f (x j) = f, g = m j=1 m α i g(x i ), i=1 m α i α j k(x i, x j ) 0, i,j=1 f (x) = f, k(, x), f (x) 2 = f, k(, x) 2 f, f k(x, x) por lo que el producto interno es bilineal, simétrico, definido positivo y f, f implica f = 0. J. Waissman (UNISON) SVM SCSE / 29

27 Función kernel como producto interno Por lo tanto: k(x, x ) = k(, x), k(, x ) = θ(x), θ(x ) Principales funciones kernel utilizadas: Polinomial: k(x, x ) = x, x d, Polinomial no homogeneo: k(x, x ) = ( x, x + c) d, Gaussiano: k(x, x ) = exp ( x x ), 2 2σ 2 Sigmoide: k(x, x ) = tanh(κ x, x + ν). J. Waissman (UNISON) SVM SCSE / 29

28 Ejemplo J. Waissman (UNISON) SVM SCSE / 29

29 Ejemplo J. Waissman (UNISON) SVM SCSE / 29

30 ... y esto fue todo por hoy! Muchas gracias por su atención J. Waissman (UNISON) SVM SCSE / 29

TEMA 6. SVM Support Vector Machines (Máquinas de Vectores Soporte)

TEMA 6. SVM Support Vector Machines (Máquinas de Vectores Soporte) TEMA 6. SVM Support Vector Machines (Máquinas de Vectores Soporte) Francisco José Ribadas Pena Modelos de Razonamiento y Aprendizaje 5 Informática ribadas@uvigo.es 17 de abril de 2012 FJRP ccia [Modelos

Más detalles

Máquinas de Vectores de Soporte

Máquinas de Vectores de Soporte Máquinas de Vectores de Soporte Support Vector Machines (SVM) Introducción al Reconocimiento de Patrones IIE - FING - UdelaR 2015 Bishop, Cap. 7 Schölkopf & Smola, Cap 7 Motivación Limitantes del perceptrón:

Más detalles

SISTEMAS INTELIGENTES

SISTEMAS INTELIGENTES SISTEMAS INTELIGENTES T11: Métodos Kernel: Máquinas de vectores soporte {jdiez, juanjo} @ aic.uniovi.es Índice Funciones y métodos kernel Concepto: representación de datos Características y ventajas Funciones

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

Support Vector Machine

Support Vector Machine Juan Carlos Caicedo Juan Carlos Mendivelso Maestria en Ingenieria de Sistemas y Computacion Universidad Nacional de Colombia 20 de marzo de 2007 Agenda 1 2 3 4 Outline 1 2 3 4 Clasificador lineal que utiliza

Más detalles

1. (F, +) es un grupo abeliano, denominado el grupo aditivo del campo.

1. (F, +) es un grupo abeliano, denominado el grupo aditivo del campo. Capítulo 5 Campos finitos 5.1. Introducción Presentaremos algunos conceptos básicos de la teoría de los campos finitos. Para mayor información, consultar el texto de McEliece [61] o el de Lidl y Niederreiter

Más detalles

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 4 Optimización no Lineal

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 4 Optimización no Lineal OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA Tema 4 Optimización no Lineal ORGANIZACIÓN DEL TEMA Sesiones: El caso sin restricciones: formulación, ejemplos Condiciones de optimalidad, métodos Caso con restricciones:

Más detalles

MÁQUINA DE VECTORES DE SOPORTE

MÁQUINA DE VECTORES DE SOPORTE MÁQUINA DE VECTORES DE SOPORTE La teoría de las (SVM por su nombre en inglés Support Vector Machine) fue desarrollada por Vapnik basado en la idea de minimización del riesgo estructural (SRM). Algunas

Más detalles

Formulación del problema de la ruta más corta en programación lineal

Formulación del problema de la ruta más corta en programación lineal Formulación del problema de la ruta más corta en programación lineal En esta sección se describen dos formulaciones de programación lineal para el problema de la ruta más corta. Las formulaciones son generales,

Más detalles

Universidad del Rosario Economía Matemática II Taller 8 - Kuhn Tucker

Universidad del Rosario Economía Matemática II Taller 8 - Kuhn Tucker . En los siguientes problemas de optimización: Universidad del Rosario Economía Matemática - 202-II Taller 8 - Kuhn Tucker a. Dibuje el conjunto K de puntos factibles y las curvas de nivel de la función

Más detalles

Aplicando máquinas de soporte vectorial al análisis de pérdidas no técnicas de energía eléctrica

Aplicando máquinas de soporte vectorial al análisis de pérdidas no técnicas de energía eléctrica Facultad de Matemática, Astronomía, Física y Computación Universidad Nacional de Córdoba Trabajo Especial Aplicando máquinas de soporte vectorial al análisis de pérdidas no técnicas de energía eléctrica

Más detalles

Introducción a los métodos Kernel

Introducción a los métodos Kernel p. 1/3 Introducción a los métodos Kernel Universidad Autónoma de Madrid 29 de abril de 2008 Manel Martínez Ramón Universidad Carlos III de Madrid Departamento de Teoría de la Señal y Comunicaciones Transparencias

Más detalles

520142: ALGEBRA y ALGEBRA LINEAL

520142: ALGEBRA y ALGEBRA LINEAL 520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición

Más detalles

Inteligencia Artificial. Aprendizaje neuronal. Ing. Sup. en Informática, 4º. Curso académico: 2011/2012 Profesores: Ramón Hermoso y Matteo Vasirani

Inteligencia Artificial. Aprendizaje neuronal. Ing. Sup. en Informática, 4º. Curso académico: 2011/2012 Profesores: Ramón Hermoso y Matteo Vasirani Inteligencia Artificial Aprendizaje neuronal Ing. Sup. en Informática, 4º Curso académico: 20/202 Profesores: Ramón Hermoso y Matteo Vasirani Aprendizaje Resumen: 3. Aprendizaje automático 3. Introducción

Más detalles

OPTIMIZACIÓN VECTORIAL

OPTIMIZACIÓN VECTORIAL OPTIMIZACIÓN VECTORIAL Métodos de Búsqueda Directa Utilizan sólo valores de la función Métodos del Gradiente Métodos de Segundo Orden Requieren valores aproimados de la primera derivada de f) Además de

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN May 4, 2012 1. Optimización Sin Restricciones En toda esta sección D denota un subconjunto abierto de R n. 1.1. Condiciones Necesarias de Primer Orden. Proposición 1.1. Sea f : D R diferenciable. Si p

Más detalles

Estadística Espacial en Ecología del Paisaje

Estadística Espacial en Ecología del Paisaje Estadística Espacial en Ecología del Paisaje Introducción H. Jaime Hernández P. Facultad de Ciencias Forestales U. de Chile Tipos de datos en análisis espacial Patrones espaciales puntuales Muestras geoestadísticas

Más detalles

Support Vector Machines

Support Vector Machines Support Vector Machines Separadores lineales Clasificacion binaria puede ser vista como la tarea de separar clases en el espacio de caracteristicas w T x + b > 0 w T x + b = 0 w T x + b < 0 f(x) = sign(w

Más detalles

Departamento de Matemáticas. ITAM Programación lineal (+ extensiones). Objetivos y panorama del c

Departamento de Matemáticas. ITAM Programación lineal (+ extensiones). Objetivos y panorama del c Programación lineal (+ extensiones). Objetivos y panorama del curso. Departamento de Matemáticas. ITAM. 2008. Introducción Programación lineal http://allman.rhon.itam.mx/ jmorales La programación lineal

Más detalles

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República ALN Repaso matrices In. Co. Facultad de Ingeniería Universidad de la República Definiciones básicas - Vectores Definiciones básicas - Vectores Construcciones Producto interno: ( x, y n i x y i i ' α Producto

Más detalles

Tema 3: Espacios vectoriales

Tema 3: Espacios vectoriales Tema 3: Espacios vectoriales K denotará un cuerpo. Definición. Se dice que un conjunto no vacio V es un espacio vectorial sobre K o que es un K-espacio vectorial si: 1. En V está definida una operación

Más detalles

PROGRAMACIÓN NO LINEAL INTRODUCCIÓN

PROGRAMACIÓN NO LINEAL INTRODUCCIÓN PROGRAMACIÓN NO LINEAL Conceptos generales INTRODUCCIÓN Una suposición importante de programación lineal es que todas sus funciones Función objetivo y funciones de restricción son lineales. Aunque, en

Más detalles

DEPARTAMENTO DE MATEMATICAS Y FISICA Matemáticas Discreta

DEPARTAMENTO DE MATEMATICAS Y FISICA Matemáticas Discreta DEPARTAMENTO DE MATEMATICAS Y FISICA Matemáticas Discreta SUCESIONES Y RELACIONES DE RECURRENCIA Esta última sección la dedicamos a presentar el concepto de recurrencia, que esta muy ligado al axioma de

Más detalles

Programación lineal. Estimar M. Ejemplos.

Programación lineal. Estimar M. Ejemplos. Departamento de Matemáticas. ITAM. 2010. Los problemas P y P minimizar x c T x sujeta a Ax = b, x 0, b 0 minimizar c T x + M(y 1 + y 2 + + y m ) x sujeta a Ax + y = b, x 0, y 0. Cómo estimar M? Resultado

Más detalles

Métodos basados en Kernels para el Procesamiento de Lenguaje Natural

Métodos basados en Kernels para el Procesamiento de Lenguaje Natural para el Procesamiento de Lenguaje Natural Métodos basados en para el Procesamiento de Lenguaje Natural G. Moncecchi 1 Grupo PLN, Instituto de Computación, Facultad de Ingeniería, Universidad de la República,

Más detalles

MÉTODOS MATEMÁTICOS DE LA ECONOMÍA

MÉTODOS MATEMÁTICOS DE LA ECONOMÍA Universidad de Valladolid Facultad de Ciencias Económicas y Empresariales Departamento de Economía Aplicada Subsección de Matemáticas Esquemas teóricos de la asignatura de las licenciaturas en Economía

Más detalles

Matrices, Determinantes y Sistemas Lineales.

Matrices, Determinantes y Sistemas Lineales. 12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión

Más detalles

Análisis de imágenes digitales

Análisis de imágenes digitales Análisis de imágenes digitales SEGMENTACIÓN DE LA IMAGEN Segmentación basada en texturas INTRODUCCIÓN La textura provee información sobre la distribución espacio-local del color o niveles de intensidades

Más detalles

PROBLEMAS DE OPTIMIZACIÓN CON RESTRICCIONES. PROBLEMA DE PROGRAMACIÓN NO- LINEAL (NLP).

PROBLEMAS DE OPTIMIZACIÓN CON RESTRICCIONES. PROBLEMA DE PROGRAMACIÓN NO- LINEAL (NLP). PROBLEMAS DE OPTIMIZACIÓN CON RESTRICCIONES. PROBLEMA DE PROGRAMACIÓN NO- LINEAL (NLP. Optimización con restricciones La presencia de restricciones reduce la región en la cual buscamos el óptimo. Los criterios

Más detalles

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4 Ing. César Urquizú UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4 Ing. César Urquizú Teoría de la dualidad El desarrollo de esta teoría de la dualidad es debido al interés que existe en la interpretación económica

Más detalles

Cálculo numérico. Sistemas de ecuaciones lineales.

Cálculo numérico. Sistemas de ecuaciones lineales. José Luis Morales http://allman.rhon.itam.mx/ jmorales Departamento de Matemáticas. ITAM. 2010. Las raíces de x 2 bx + c = 0. r = b ± b 2 4c 2 b = 3.6778, c = 0.0020798 r 1 = 3.67723441190... r 2 = 0.00056558809...

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios

Más detalles

CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero

CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero Fundamento Científico del Currículum de Matemáticas en Enseñanza Secundaria CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero ESPACIOS VECTORIALES DEFINICIÓN... 1 PROPIEDADES DE

Más detalles

Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut

Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut 8.1 Para cada uno de los siguientes conjuntos, encontrar una desigualdad válida que agregada a la formulación

Más detalles

Tema 5: Sistemas de ecuaciones lineales.

Tema 5: Sistemas de ecuaciones lineales. TEORÍA DE ÁLGEBRA: Tema 5 DIPLOMATURA DE ESTADÍSTICA 1 Tema 5: Sistemas de ecuaciones lineales 1 Definiciones generales Definición 11 Una ecuación lineal con n incognitas es una expresión del tipo a 1

Más detalles

MÉTODO DE VARIACIÓN DE PARÁMETROS

MÉTODO DE VARIACIÓN DE PARÁMETROS MÉTODO DE VARIACIÓN DE PARÁMETROS El método de variación de parámetros es aplicado en la solución de ecuaciones diferenciales no homogéneas de orden superior de las cuales sabemos que la solución de la

Más detalles

Tema II. Capítulo 5. Aplicaciones bilineales y formas cuadráticas.

Tema II. Capítulo 5. Aplicaciones bilineales y formas cuadráticas. Tema II Capítulo 5 Aplicaciones bilineales y formas cuadráticas Álgebra Departamento de Métodos Matemáticos y de Representación UDC 5 Aplicaciones bilineales y formas cuadráticas o simplemente f( x, ȳ)

Más detalles

Rectas y Planos en el Espacio

Rectas y Planos en el Espacio Rectas y Planos en el Espacio Rectas y Planos en el Espacio Verónica Briceño V. septiembre 2012 Verónica Briceño V. () Rectas y Planos en el Espacio septiembre 2012 1 / 20 En esta Presentación... En esta

Más detalles

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex.

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex. El método simplex Forma estándar y cambios en el modelo. Definiciones. Puntos extremos y soluciones factibles básicas. 4 El método simplex. Definiciones y notación. Teoremas. Solución factible básica inicial.

Más detalles

2 Ondas superficiales

2 Ondas superficiales 513430 - Sismología 6 2 Ondas superficiales En las interfases que separan medios elásticos de diferentes características, las ondas del cuerpo (P, S) se interfieren constructivamente para producir ondas

Más detalles

Métodos Clásicos de Optimización para Problemas No-Lineales sin Restricciones

Métodos Clásicos de Optimización para Problemas No-Lineales sin Restricciones Métodos Clásicos de Optimización para Problemas No-Lineales sin Restricciones Dr. Gonzalo Hernández Oliva UChile - Departamento de Ingeniería Matemática 07 de Mayo 2006 Abstract En este apunte veremos

Más detalles

EL PRINCIPIO DE MÁXIMA VEROSIMILITUD (LIKELIHOOD)

EL PRINCIPIO DE MÁXIMA VEROSIMILITUD (LIKELIHOOD) EL PRINCIPIO DE MÁXIMA VEROSIMILITUD (LIKELIHOOD) Fortino Vela Peón fvela@correo.xoc.uam.mx FVela-0 Objetivo Introducir las ideas básicas del principio de máxima verosimilitud. Problema Considere el experimento

Más detalles

El Algoritmo E-M. José Antonio Camarena Ibarrola

El Algoritmo E-M. José Antonio Camarena Ibarrola El Algoritmo E-M José Antonio Camarena Ibarrola Introducción Método para encontrar una estimación de máima verosimilitud para un parámetro ѳ de una distribución Ejemplo simple 24 Si tiene las temperaturas

Más detalles

OPTIMIZACIÓN EXPERIMENTAL. Ing. José Luis Zamorano E.

OPTIMIZACIÓN EXPERIMENTAL. Ing. José Luis Zamorano E. OPTIMIZACIÓN EXPERIMENTAL Ing. José Luis Zamorano E. Introducción n a la metodología de superficies de respuesta EXPERIMENTACIÓN: Significa variar deliberadamente las condiciones habituales de trabajo

Más detalles

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este

Más detalles

Trabajo Práctico Optativo

Trabajo Práctico Optativo rofesor: Julio J. Elías Trabajo ráctico Optativo 1. El método de los multiplicadores de Lagrange Generalmente, en economía trabajamos con modelos que involucran optimización con restricciones. or ejemplo,

Más detalles

[20380] Visió per Computador Prueba 2 (2013) Teoria (10p) (una pregunta test fallada descuenta 1/4 de pregunta acertada)

[20380] Visió per Computador Prueba 2 (2013) Teoria (10p) (una pregunta test fallada descuenta 1/4 de pregunta acertada) 102784 [20380] Visió per Computador Prueba 2 (2013) Teoria (10p) (una pregunta test fallada descuenta 1/4 de pregunta acertada) 1. En cuál de estas posibles aplicaciones podríamos utilizar una característica

Más detalles

PREDICCIÓN DE LA CALIDAD SUPERFICIAL ANTES DEL PROCESO DE MAQUINADO, EN FRESADO A ALTA VELOCIDAD, UTILIZANDO MÁQUINAS DE SOPORTE VECTORIAL

PREDICCIÓN DE LA CALIDAD SUPERFICIAL ANTES DEL PROCESO DE MAQUINADO, EN FRESADO A ALTA VELOCIDAD, UTILIZANDO MÁQUINAS DE SOPORTE VECTORIAL PREDICCIÓN DE LA CALIDAD SUPERFICIAL ANTES DEL PROCESO DE MAQUINADO, EN FRESADO A ALTA VELOCIDAD, UTILIZANDO MÁQUINAS DE SOPORTE VECTORIAL LUIS ALFONSO LOAIZA UPEGUI INSTITUTO TECNOLÓGICO METROPOLITANO

Más detalles

Trabajo Práctico N 5: ESPACIOS VECTORIALES. Ejercicio 1:

Trabajo Práctico N 5: ESPACIOS VECTORIALES. Ejercicio 1: 6 Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio : Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique

Más detalles

Trabajo Práctico N 5: ESPACIOS VECTORIALES

Trabajo Práctico N 5: ESPACIOS VECTORIALES Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio 1: Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique

Más detalles

Tema 2.- Formas Cuadráticas.

Tema 2.- Formas Cuadráticas. Álgebra. 004 005. Ingenieros Industriales. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema.- Formas Cuadráticas. Definición y representación matricial. Clasificación de las formas

Más detalles

MÁQUINAS DE VECTORES DE SOPORTE

MÁQUINAS DE VECTORES DE SOPORTE MÁQUINAS DE VECTORES DE SOPORTE Introducción Se tiene información de N individuos codificada de la forma Las variables X son vectores que reúnen información numérica del individuo, las variables Y indican

Más detalles

FASCÍCULO: SISTEMAS DE ECUACIONES LINEALES

FASCÍCULO: SISTEMAS DE ECUACIONES LINEALES FASCÍCULO: SISTEMAS DE ECUACIONES LINEALES Una de las aplicaciones más famosas del concepto de determinante es el método para resolver sistemas de m ecuaciones con n incógnitas, aparece en en la publicación

Más detalles

Introducción a las Redes Neuronales

Introducción a las Redes Neuronales Introducción a las Redes Neuronales Excepto en las tareas basadas en el cálculo aritmético simple, actualmente, el cerebro humano es superior a cualquier computador: Reconocimiento de imágenes, Interpretación

Más detalles

Construcción de bases en la suma y la intersección de subespacios (ejemplo)

Construcción de bases en la suma y la intersección de subespacios (ejemplo) Construcción de bases en la suma y la intersección de subespacios (ejemplo) Objetivos Aprender a construir bases en S + S y S S, donde S y S están dados como subespacios generados por ciertos vectores

Más detalles

Introducción a la teoría de ciclos ĺımite

Introducción a la teoría de ciclos ĺımite Introducción a la teoría de ciclos ĺımite Salomón Rebollo Perdomo srebollo@inst-mat.utalca.cl Instituto de Matemática y Física 05-09 de enero, 2015. Talca, CL Contenido 1 Introducción Qué es un ciclo ĺımite?

Más detalles

Problemas de Espacios Vectoriales

Problemas de Espacios Vectoriales Problemas de Espacios Vectoriales 1. Qué condiciones tiene que cumplir un súbconjunto no vacío de un espacio vectorial para que sea un subespacio vectorial de este? Pon un ejemplo. Sean E un espacio vectorial

Más detalles

3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE

3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE 3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE ECUACIONES LINEALES Y MATRICES COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2011-2012 3.1.1. Resolución de sistemas de ecuaciones lineales. Método

Más detalles

Análisis de Algoritmos

Análisis de Algoritmos Análisis de Algoritmos Amalia Duch Barcelona, marzo de 2007 Índice 1. Costes en tiempo y en espacio 1 2. Coste en los casos mejor, promedio y peor 3 3. Notación asintótica 4 4. Coste de los algoritmos

Más detalles

Describe el movimiento sin atender a las causas que lo producen. Utilizaremos partículas puntuales

Describe el movimiento sin atender a las causas que lo producen. Utilizaremos partículas puntuales 3. Cinemática Cinemática Describe el movimiento sin atender a las causas que lo producen Utilizaremos partículas puntuales Una partícula puntual es un objeto con masa, pero con dimensiones infinitesimales

Más detalles

Métodos de factorización para resolver sistemas de ecuaciones lineales. 22 de agosto, 2012

Métodos de factorización para resolver sistemas de ecuaciones lineales. 22 de agosto, 2012 Cálculo numérico Métodos de factorización para resolver sistemas de ecuaciones lineales 22 de agosto, 2012 1 Factorización LU Considera el siguiente ejemplo de factorización LU de una matriz en un sistema

Más detalles

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales Sea (K, +,.) un cuerpo con característica 0. Podemos pensar K = Q, R o C. Si V es un conjunto cualquiera en el que

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21

Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21 Algebra Lineal Gustavo Rodríguez Gómez INAOE Verano 2011 Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano 2011 1 / 21 Espacios Vectoriales Espacios Vectoriales INAOE Gustavo Rodríguez Gómez (INAOE)

Más detalles

Esta definición se puede ampliar a cualquier par de bases de los espacio inicial y final MATRIZ DE UNA APLICACIÓN LINEAL EN BASES ARBITRARIAS

Esta definición se puede ampliar a cualquier par de bases de los espacio inicial y final MATRIZ DE UNA APLICACIÓN LINEAL EN BASES ARBITRARIAS Cambios de base 3 3. CAMBIOS DE BASE Dada una aplicación lineal : y la base,,, se ha definido matriz en bases canónicas de la aplicación lineal a la matriz,, cuyas columnas son las coordenadas de en la

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Generalidades Definición [Sistema de ecuaciones lineales] Un sistema de m ecuaciones lineales con n incógnitas, es un conjunto de m igualdades

Más detalles

Ejercicios del Tema 2: Estructuras algebraicas básicas

Ejercicios del Tema 2: Estructuras algebraicas básicas Ejercicios del Tema 2: Estructuras algebraicas básicas En los ejercicios 1, 2, 8 y 9 se utilizará que si G = {g 1,...,g n } es un conjunto finito y * una operación interna definida en G, podemos utilizar

Más detalles

Capítulo 8. Análisis Discriminante

Capítulo 8. Análisis Discriminante Capítulo 8 Análisis Discriminante Técnica de clasificación donde el objetivo es obtener una función capaz de clasificar a un nuevo individuo a partir del conocimiento de los valores de ciertas variables

Más detalles

Aprendizaje basado en ejemplos.

Aprendizaje basado en ejemplos. Aprendizaje basado en ejemplos. In whitch we describe agents that can improve their behavior through diligent study of their own experiences. Porqué queremos que un agente aprenda? Si es posible un mejor

Más detalles

Guía. Álgebra II. Examen parcial III. Transformaciones lineales. Teoremas los más importantes cuyas demostraciones se pueden incluir en el examen

Guía. Álgebra II. Examen parcial III. Transformaciones lineales. Teoremas los más importantes cuyas demostraciones se pueden incluir en el examen Guía. Álgebra II. Examen parcial III. Transformaciones lineales. Teoremas los más importantes cuyas demostraciones se pueden incluir en el examen 1. Teorema de la representación matricial de una transformación

Más detalles

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R.

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R. FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R. PROGRAMA ANALÍTICO DE LA ASIGNATURA: ALGEBRA LINEAL Código L2.07.1 PLAN DE ESTUDIOS: 2002 CARRERA: Licenciatura en Matemática DEPARTAMENTO:

Más detalles

Soluciones de la ecuación diferencial lineal homogénea

Soluciones de la ecuación diferencial lineal homogénea Ecuaciones diferenciales lineales de orden superior Ampliación de matemáticas urso 2008-2009 Ecuación diferencial lineal de orden n (x dn y n + P (x dn y n + + P n (x dy + P n(xy = G(x ( donde, P,...,

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE.

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE. ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K (Q,

Más detalles

Programa Oficial de Asignatura. Ficha Técnica. Presentación. Competencias y/o resultados del aprendizaje. Contenidos Didácticos

Programa Oficial de Asignatura. Ficha Técnica. Presentación. Competencias y/o resultados del aprendizaje. Contenidos Didácticos Ficha Técnica Titulación: Grado en Administración y Dirección de Empresas Plan BOE: BOE número 67 de 19 de marzo de 2014 Asignatura: Módulo: Métodos cuantitativos de la empresa Curso: 2º Créditos ECTS:

Más detalles

1. Lección 1 - Espacio Vectorial

1. Lección 1 - Espacio Vectorial 1. Lección 1 - Espacio Vectorial Definiremos espacio vectorial como la estructura algebraica consistente en: 1. Grupo abeliano {V, +, } cuyos elementos se denominan vectores. Para que los elementos de

Más detalles

Juan Manuel Pacheco Instituto de Investigaciones Teóricas y Aplicadas, Escuela de Estadística

Juan Manuel Pacheco Instituto de Investigaciones Teóricas y Aplicadas, Escuela de Estadística Juan Manuel Pacheco Instituto de Investigaciones Teóricas y Aplicadas, Escuela de Estadística PROGRAMACIÓN CUADRÁTICA Y SELECCIÓN DE CARTERAS DE INVERSIÓN Introducción El trabajo aquí presentado se origina

Más detalles

Tema 2 Datos multivariantes

Tema 2 Datos multivariantes Aurea Grané Máster en Estadística Universidade Pedagógica 1 Aurea Grané Máster en Estadística Universidade Pedagógica 2 Tema 2 Datos multivariantes 1 Matrices de datos 2 Datos multivariantes 2 Medias,

Más detalles

Optimización, Solemne 2. Semestre Otoño 2012 Profesores: Paul Bosch, Rodrigo López, Fernando Paredes, Pablo Rey Tiempo: 110 min.

Optimización, Solemne 2. Semestre Otoño 2012 Profesores: Paul Bosch, Rodrigo López, Fernando Paredes, Pablo Rey Tiempo: 110 min. UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. ESCUELA DE INGENIERIA INDUSTRIAL. Optimización, Solemne. Semestre Otoño Profesores: Paul Bosch, Rodrigo López, Fernando Paredes, Pablo Rey Tiempo: min.

Más detalles

5. PLL Y SINTETIZADORES

5. PLL Y SINTETIZADORES 5. PLL Y SINTETIZADORES (Jun.94) 1. a) Dibuje el esquema de un sintetizador de frecuencia de tres lazos PLL. b) Utilizando una señal de referencia de 100 khz, elegir los divisores programables NA y NB

Más detalles

Aprendizaje Automatizado

Aprendizaje Automatizado Aprendizaje Automatizado Aprendizaje Automatizado Programas que mejoran su comportamiento con la experiencia. Dos formas de adquirir experiencia: A partir de ejemplos suministrados por un usuario (un conjunto

Más detalles

CAPÍTULO 2. SOLUCIÓN DE ECUACIONES DE UNA VARIABLE

CAPÍTULO 2. SOLUCIÓN DE ECUACIONES DE UNA VARIABLE En este capítulo analizaremos uno de los problemas básicos del análisis numérico: el problema de búsqueda de raíces. Si una ecuación algebraica o trascendente es relativamente complicada, no resulta posible

Más detalles

1. RESOLVER el siguiente problema de programación lineal. max z =15x 1 + 10x 2 suj.a : 2x 1 + x 2 1500 x 1 + x 2 1200 0 x 1 500

1. RESOLVER el siguiente problema de programación lineal. max z =15x 1 + 10x 2 suj.a : 2x 1 + x 2 1500 x 1 + x 2 1200 0 x 1 500 1. RESOLVER el siguiente problema de programación lineal max z =15x 1 + 10x 2 suj.a : 2x 1 + x 2 1500 x 1 + x 2 1200 0 x 1 500 x 2 0 2 RESOLVER el siguiente problema de P.L.: max z = 2x 1 + 3x 2 2x 3

Más detalles

Complejidad computacional (Análisis de Algoritmos)

Complejidad computacional (Análisis de Algoritmos) Definición. Complejidad computacional (Análisis de Algoritmos) Es la rama de las ciencias de la computación que estudia, de manera teórica, la optimización de los recursos requeridos durante la ejecución

Más detalles

Álgebra y Trigonometría Clase 2 Ecuaciones, desigualdades y Funciones

Álgebra y Trigonometría Clase 2 Ecuaciones, desigualdades y Funciones Álgebra y Trigonometría Clase 2 Ecuaciones, desigualdades y Funciones CNM-108 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

Trigonometría y Análisis Vectorial

Trigonometría y Análisis Vectorial Unidad Educativa enezuela Trigonometría nálisis ectorial Prof. Ronn J. ltuve Unidad Educativa enezuela Trigonometría nálisis ectorial 1. Teorema de Pitágoras: establece que en un triángulo rectángulo el

Más detalles

Tema 5: Análisis de Sensibilidad y Paramétrico

Tema 5: Análisis de Sensibilidad y Paramétrico Tema 5: Análisis de Sensibilidad y Paramétrico 5.1 Introducción 5.2 Cambios en los coeficientes de la función objetivo 5.3 Cambios en el rhs 5.4 Análisis de Sensibilidad y Dualidad 5.4.1 Cambios en el

Más detalles

Conceptos básicos de Geometría

Conceptos básicos de Geometría Dr. Eduardo A. RODRÍGUEZ TELLO CINVESTAV-Tamaulipas 15 de enero del 2013 Dr. Eduardo RODRÍGUEZ T. (CINVESTAV) 15 de enero del 2013 1 / 25 1 Geometría Afín Geometría Euclidiana Áreas y ángulos Dr. Eduardo

Más detalles

Introducción a Programación Lineal

Introducción a Programación Lineal Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 18 Programación Lineal ICS 1102 Optimización Profesor : Claudio Seebach 4 de octubre de 2005

Más detalles

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados.

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 215/216 Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. 1.1. Grupo abeliano libre. Bases. Definición 1.1. El grupo Z n con

Más detalles

Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS. Números naturales. Inducción matemática

Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS. Números naturales. Inducción matemática Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNAM E-mail: fhq@ciencias.unam.mx

Más detalles

Diagonalización simultánea de formas cuadráticas.

Diagonalización simultánea de formas cuadráticas. Diagonalización simultánea de formas cuadráticas Lucía Contreras Caballero 14-4-2004 Dadas dos formas cuadráticas, si una de ellas es definida positiva, se puede encontrar una base en la que las dos diagonalizan

Más detalles

Optimización no lineal

Optimización no lineal Capítulo Optimización no lineal.1. Introducción En este capítulo se estudian algunos aspectos relacionados con la que hemos dado en llamar cuestión estática de los problemas de optimización. Se presentan

Más detalles

TEMA 5: INTERPOLACION NUMERICA

TEMA 5: INTERPOLACION NUMERICA Lino Alvarez - Aurea Martinez METODOS NUMERICOS TEMA 5: INTERPOLACION NUMERICA 1 EL PROBLEMA GENERAL DE INTER- POLACION En ocasiones se plantea el problema de que se conoce una tabla de valores de una

Más detalles

Tema 8: Contraste de hipótesis

Tema 8: Contraste de hipótesis Tema 8: Contraste de hipótesis 1 En este tema: Conceptos fundamentales: hipótesis nula y alternativa, nivel de significación, error de tipo I y tipo II, p-valor. Contraste de hipótesis e IC. Contraste

Más detalles

ESTIMACIÓN DE PROBABILIDADES A POSTERIORI EN SVMS MULTICLASE PARA RECONOCIMIENTO DE HABLA CONTINUA

ESTIMACIÓN DE PROBABILIDADES A POSTERIORI EN SVMS MULTICLASE PARA RECONOCIMIENTO DE HABLA CONTINUA ESTIMACIÓN DE PROBABILIDADES A POSTERIORI EN SVMS MULTICLASE PARA RECONOCIMIENTO DE HABLA CONTINUA Rubén Solera Ureña, Fernando Pérez-Cruz, Fernando Díaz de María Universidad Carlos III de Madrid Departamento

Más detalles

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES ALGEBRA DE MATRICES DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES DEFINICIONES 2 Las matrices y los determinantes son herramientas

Más detalles

SVM: Máquinas de Vectores Soporte. Carlos Alonso González Grupo de Sistemas Inteligentes Departamento de Informática Universidad de Valladolid

SVM: Máquinas de Vectores Soporte. Carlos Alonso González Grupo de Sistemas Inteligentes Departamento de Informática Universidad de Valladolid SVM: Máquinas de Vectores Soporte Carlos Alonso González Grupo de Sistemas Inteligentes Departamento de Informática Universidad de Valladolid Contenido 1. Clasificación lineal con modelos lineales 2. Regresión

Más detalles

LA FUNCIÓN INVERSA. Si R es una relación, la relación R definida por la proposiciones. (a, b) R (b, a) R. (a, b) R (c, b) R a = c

LA FUNCIÓN INVERSA. Si R es una relación, la relación R definida por la proposiciones. (a, b) R (b, a) R. (a, b) R (c, b) R a = c LA FUNCIÓN INVERSA Existen diferentes definiciones de función inversa, aunque el concepto matemático es el mismo. Expondremos aquí tres de ellas, para efectos formales, ya que para hallar la inversa de

Más detalles

Solución a Problemas de tipo Dirichlet usando Análisis

Solución a Problemas de tipo Dirichlet usando Análisis Solución a Problemas de tipo Dirichlet usando Análisis Armónico Marysol Navarro Burruel UNISON 17 Abril, 2013 Marysol Navarro Burruel (UNISON) Análisis Armónico y problemas de tipo Dirichlet 17 Abril,

Más detalles