3. Coordenadas de un punto en el espacio

Tamaño: px
Comenzar la demostración a partir de la página:

Download "3. Coordenadas de un punto en el espacio"

Transcripción

1 3. Coordenadas de un punto en el espacio Siguiendo lo que hicimos en V consideraremos ahora un punto fijo O del espacio y una base B = {x,y,z} de V 3. Llamaremos referencial o sistema de referencia en el espacio al conjunto {O, x, y, z} porque justamente nos permite determinar de manera única cualquier punto del espacio. En efecto, sea P un punto cualquiera del espacio, entonces queda determinado el vector OP que debe pertenecer a una cierta clase de equivalencia de vectores del espacio equipolentes con él. Elijamos como vector libre un representante de la clase al que denotaremos por p. Como p V 3 y justamente B es una base de V 3, existen tres reales p 1, p y p 3 de forma que p = (p 1, p, p 3 ), entonces si convenimos en que las coordenadas de O son (0,0,0) se tiene que con lo que podemos escribir y finalmente P O = (p 1, p, p 3 ) P = O + (p 1, p, p 3 ) P = (p 1, p, p 3 ) Diremos entonces que (p 1, p, p 3 ) son las coordenadas del punto P en el referencial {O, x, y, z}. Definición Las coordenadas de un punto P del espacio respecto de un sistema de referencia {O, x, y, z} son las componentes del vector posición de P en la base B = {x, y, z}. Ejercicio Halla las coordenadas de los puntos A, B, O y O en los referenciales R = {O, x, y, z} y R = { O, a, b, c }, sabiendo que la figura es un prima recto de base cuadrada en el que la arista lateral es el doble de la arista de la base y que los vectores que aparecen tienen todos módulo uno. 3. Punto medio de un segmento Consideremos el segmento en el espacio de extremos A = (a 1,a,a 3 ) y B = (b 1,b,b 3 ). Si llamamos M = (m 1,m,m 3 ) al punto medio de dicho segmento, entonces se verifica que AB =. AM Diego Charbonnier 1

2 Si calculamos las componentes de AB y de AM, la ecuación anterior queda (b 1 a 1,b a,b 3 a 3 ) =.(m 1 a 1,m a,m 3 a 3 ) igualando la primer componente del primer miembro a la primer componente del segundo miembro y haciendo lo propio con las segundas y terceras componentes, tenemos el siguiente sistema b 1 a 1 =.(m 1 a 1 ) b a =.(m a ) b 3 a 3 =.(m 3 a 3 ) es muy fácil hallar las expresiones correspondientes a m 1, m y m 3 m 1 = a 1 + b 1 m = a + b m 3 = a 3 + b 3 4. Producto escalar de vectores en el espacio Continuando con el paralelo que estamos haciendo con V correspondería ahora definir el producto escalar de dos vectores de V 3, Definición Lamaremos producto escalar de dos vectores u y v de V 3 y lo representaremos por u.v, al número real definido de la siguiente forma { u v cos (u,v) si u o y v o u.v = 0 si u = o o v = o Observa que al igual que en V cuando hablamos del ángulo (u,v) nos referimos al menor de los ángulos que forman dos semirectas concurrentes que tengan direcciones u y v. A partir de la definición anterior, valen los siguientes resultados si 0 (u,v) < π cos (u,v) > 0 u.v > 0 si (u,v) = π cos (u,v) = 0 u.v = 0 si π < (u,v) π cos (u,v) < 0 u.v < 0 Diego Charbonnier

3 En particular diremos que u y v son ortogonales sii su producto escalar es cero Supongamos ahora como caso particular que u = v entonces su producto escalar queda: 4.1 Propiedades del producto escalar u.u = u u cos(0) = u u = u.u 1. u.v = v.u para todo par de vectores u y v de V 3,. u.(v + w) = u.v + u.w para toda terna de vectores u, v y w de V 3, 3. k.(u.v) = (k.u).v = u.(k.v) para todo par de vectores u y v de V 3, con k R. 4. u.u 0 para todo vector u de V 3. Haremos la misma obsevación que hicimos en el plano: el producto que involucra k con u no es el mismo que el producto escalar de u con v por más que los representemos a ambos con un punto. El contexto es que indica de qué producto se trata. 4. Base ortogonal y base ortonormal Definición Diremos que una base de V 3 es ortogonal si sus vectores son dos a dos ortogonales. Si además tienen módulo 1 diremos que se trata de una base ortonormal. x y, x z, y z x y, x z, y z x = y = z = 1 Base ortogonal Base ortonormal 4.3 Interpretación geométrica Sean u y v dos vectores de V 3 y escribamos Proy u v para referirnos al vector proyección de v sobre u y α para referirnos al ángulo (u,v). Si recuerdas la definición de coseno de un ángulo, se tiene si α es agudo Diego Charbonnier 3

4 cos(α) = Proy u v v v cos(α) = Proy u v si α es obtuso cos(π α) = Proy u v v v cos(π α) = Proy u v pero como cos(π α) = cos(α) se tiene que v cos(α) = Proy u v u.v = u Proy u v si α es agudo v cos(α) = Proy u v u.v = u Proy u v si α es obtuso claro está que en cualquier caso vale u.v = u Proy u v Razona de forma similar pero ahora considerando la proyección del vector u sobre el v y escribe el resultado correspondiente. 4.4 Expresión analítica del producto escalar en una base ortonormal Considera que V 3 está munido de una base ortonormal B = { i, j, k } y sean x e y dos vectores de V 3 de forma que sus componentes en la base indicada son x = (x 1,x,x 3 ) e y = (y 1,y,y 3 ). Tratemos de encontrar una expresión para el producto escalar x.y en función de sus componentes en la base B. Para ello escribimos x.y = (x 1 i + x j + x 3 k).(y 1 i + y j + y 3 k) y utilizando las propiedades vistas antes para el producto escalar, tenemos que x.y = x 1 y 1 i.i + x y 1 j.i + x 3 y 1 k.i + x 1 y i. j + x y j. j + x 3 y k. j + x 1 y 3 i.k + x y 3 j.k + x 3 y 3 k.k pero recuerda que la base es ortonormal, entonces los productos escalares correspondientes a vectores diferentes de la base, valen cero y los productos escalares correspondientes a vectores iguales valen uno. Por tanto la ecuación anterior, queda x.y = x 1 y 1 + x y + x 3 y 3 que es una fórmula similar a la que obtuvimos en V. El resultado anterior para el cálculo del producto escalar de dos vectores dados por sus componentes en una base ortonormal, nos permite también encontrar expresiones para el cálculo del módulo de un vector y del ángulo que forman dos vectores dados también en una base ortonormal. Como ejercicio se te pide que halles esas expresiones. Diego Charbonnier 4

5 4.5 Aplicación geométrica Considera el triángulo rectángulo de la figura, en el que la hipotenusa mide a y los cateros miden respectivamente b y c. Introduzcamos un referencial con origen en O y una cierta base. Llamemos u al vector definido por los puntos O y A, de igual forma, llamemos v al definido por los puntos A y B, finalmente llamaremos w al vector definido por los puntos O y B. Evidentemente u = b, v = c y w = a. Podemos ahora calcular el módulo del vector w. a = w = w.w = (u + v).(u + v) = u.u + u.v + v.u + v.v = u + u.v + v pero los vectores u y v son ortogonales, por lo que su producto escalar vale cero, por lo que finalmente queda a = u + v = b + c o sea que hemos probado que en un triángulo rectángulo se cumple a = b + c Ejercicio Utilizando el producto escalar, prueba que cualquier ángulo inscripto en una semi circunferencia cuyos lados pasan por los extremos del diámetro, es recto. 4.6 Aplicación física Como ya saben es en física donde aparecen inicialemente las magnitudes vectoriales, que quedan determinadas por su dirección, sentido y módulo, por ejemplo la fuerza, la velocidad, etc. Pero si recuerdas la definición del trabajo W realizado por una fuerza constante F sobre un objeto que se desplaza desde un punto A hasta un punto B, notarás que en ella aparece el producto escalar de la fuerza por el vector asociado al desplazamiento. W = F.AB Podríamos investigar ahora cómo varía el trabajo que realiza una fuerza constante F aplicada sobre un cuerpo, en función del ángulo ϕ que dicha fuerza forma con la dirección de desplazamiento del cuerpo. Diego Charbonnier 5

6 0 ϕ < π ϕ = π π < ϕ π W = F. AB cos(ϕ) > 0 W = F. AB cos( π ) = W = F. AB cos(ϕ) < 0 = F. AB 0 = 0 En este caso el trabajo es positivo. Cuándo te parece que será máximo? El trabajo es nulo. Cualquier fuerza perpendicular al desplazamiento, no produce trabajo. El trabajo se opone al desplazamiento, en este caso el trabajo es negativo. Ejercicio Calcula el trabajo que realiza una fuerza de 39N sobre un cuerpo que se desplaza sobre el piso a lo largo de 10m, sabiendo que la fuerza forma un ángulo ϕ con la dirección del desplazamiento. i) ϕ = 3π 4, ii) ϕ = 5π 1, iii) ϕ = π 4 Diego Charbonnier 6

Problemas de vectores

Problemas de vectores Problemas de vectores 1.- Expresa el vector mm = (1, 2, 3) como combinación lineal de los vectores: uu = (1, 0, 1), vv = (1, 1, 0) y ww = (0, 1, 1). 2.- Siendo uu = (1, 0, 1), vv = (1, 1, 0) y ww = (0,

Más detalles

ALGEBRA Y GEOMETRIA ANALITICA

ALGEBRA Y GEOMETRIA ANALITICA Diplomatura en Ciencia y Tecnología ALGEBRA Y GEOMETRIA ANALITICA SEGUNDO CUATRIMESTRE DE 2009 Profesora Mariana Suarez PRACTICA N 7: SISTEMA COORDENADO TRIDIMENSIONAL. VECTORES. PRACTICA 7: Sistema coordenado

Más detalles

Algunas cuestiones previas. 1. Vectores en el plano. Liceo Nº35 - IAVA

Algunas cuestiones previas. 1. Vectores en el plano. Liceo Nº35 - IAVA Algunas cuestiones previas Recuerda de los cursos de física que cuando querías representar una fuerza aplicada sobre un objeto, o la velocidad de un móvil en un cierto instante utilizabas vectores, en

Más detalles

1 1 1 u = u u = + = un vector unitario con la dirección de u será u puesto que u = u = : 1 ( ) ( ) ( ) ( ) ( )

1 1 1 u = u u = + = un vector unitario con la dirección de u será u puesto que u = u = : 1 ( ) ( ) ( ) ( ) ( ) Examen de Geometría analítica del plano Curso 05/6 Ejercicio. a) Halla los dos vectores unitarios que son ortogonales al vector w = ( 3, ) w = 3, ; un vector perpendicular a w será u =,3, puesto que u

Más detalles

V E C T O R E S L I B R E S E N E L P L A N O

V E C T O R E S L I B R E S E N E L P L A N O V E C T O R E S L I B R E S E N E L P L A N O 1. V E C T O R E S F I J O S Y V E C T O R E S L I B R E S E N E L P L A N O Existen magnitudes como la fuerza, la velocidad, la aceleración, que no quedan

Más detalles

CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B

CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS CÁLCULO II VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B b) A B + C c) 4A 3B d) 4(A + B) 5C e) 1 2 (A B) + 1 4 C 2. Sean

Más detalles

en el espacio queda caracterizado por un par de puntos A y B, o bien por su módulo, dirección y sentido junto con el origen, siendo:

en el espacio queda caracterizado por un par de puntos A y B, o bien por su módulo, dirección y sentido junto con el origen, siendo: TEMA 10: VECTORES EN EL ESPACIO. 10.1 Vectores fijos y libres en el espacio vectorial. 10. Operaciones con vectores libres. Bases del espacio vectorial. 10.3 Producto escalar. Módulo y ángulo de vectores.

Más detalles

TEMA 5. VECTORES. Dados dos puntos del plano y.

TEMA 5. VECTORES. Dados dos puntos del plano y. TEMA 5. VECTORES. Dados dos puntos del plano y. Se define el vector de origen A y extremo B como el segmento orientado caracterizado por su módulo (su longitud), dirección (la de la recta que lo contiene)

Más detalles

Vectores. en el plano

Vectores. en el plano 7 Vectores 5 en el plano LECTURA INICIAL ESQUEMA INTERNET ACTIVIDAD Los vectores nos dan información en situaciones como el sentido de avance de una barca o la dirección de un trayecto en bicicleta. INICIO

Más detalles

I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1

I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1 PRODUCTO ESCALAR INTRODUCCIÓN El espacio vectorial de los vectores libres del plano se caracteriza por tener definidas dos operaciones: una interna, suma de vectores, y otra externa, producto de un número

Más detalles

GEOMETRÍA ANALÍTICA EN EL ESPACIO (PRODUCTOS ESCALAR, VECTORIAL Y MIXTO) PRODUCTO ESCALAR DE DOS VECTORES. número real

GEOMETRÍA ANALÍTICA EN EL ESPACIO (PRODUCTOS ESCALAR, VECTORIAL Y MIXTO) PRODUCTO ESCALAR DE DOS VECTORES. número real GEOMETRÍA ANALÍTICA EN EL ESPACIO (PRODUCTOS ESCALAR, VECTORIAL Y MIXTO) PRODUCTO ESCALAR DE DOS VECTORES El producto escalar de dos vectores v y u es un número real, que se obtiene multiplicando los módulos

Más detalles

Problemas métricos. Ángulo entre rectas y planos

Problemas métricos. Ángulo entre rectas y planos Problemas métricos Ángulo entre rectas y planos Ángulo entre dos rectas El ángulo que forman dos rectas es el ángulo agudo que determinan entre sí sus vectores directores. Dos rectas son perpendiculares

Más detalles

Unidad 5: Geometría analítica del plano.

Unidad 5: Geometría analítica del plano. Geometría analítica del plano 1 Unidad 5: Geometría analítica del plano. 1.- Vectores. Operaciones con vectores. Un vector fijo es un segmento entre dos puntos, A y B del plano, al que se le da una orientación

Más detalles

EL ESPACIO AFÍN EUCLIDEO

EL ESPACIO AFÍN EUCLIDEO EL ESPACIO AFÍN EUCLIDEO DEFINICIÓN: Dado el Espacio Afín donde es el espacio ordinario, es el espacio de los vectores libres y f es la aplicación que a cada par de puntos (A,B) asocia el vector libre.

Más detalles

Vectores equipolentes. Vector libre. Componentes de un vector

Vectores equipolentes. Vector libre. Componentes de un vector 1.- VECTORES. OPERACIONES Vector fijo Un vector fijo AB es un segmento orientado con origen en el punto A y extremo en B Todo vector fijo AB tiene tres elementos: Módulo: Es la longitud del segmento AB.

Más detalles

TEMA 4 VECTORES VECTORES TEMA 4. 1.º BACHILLERATO - CIENCIAS VECTOR FIJO. VECTOR LIBRE. SUMA DE VECTORES LIBRES

TEMA 4 VECTORES VECTORES TEMA 4. 1.º BACHILLERATO - CIENCIAS VECTOR FIJO. VECTOR LIBRE. SUMA DE VECTORES LIBRES TEMA 4 VECTORES VECTOR FIJO. VECTOR LIBRE. Un ector fijo en IR 2 está determinado por dos puntos A y B, llamados respectiamente, origen y extremo del ector. Su representación gráfica es una flecha que

Más detalles

TEMA 11.- VECTORES EN EL ESPACIO

TEMA 11.- VECTORES EN EL ESPACIO TEMA 11.- VECTORES EN EL ESPACIO 1.- INTRODUCCIÓN Un vector fijo AB del espacio (también lo era en el plano) es un segmento orientado que tiene su origen en un punto A y su extremo en otro punto B. Estos

Más detalles

UNIVERSIDAD SIMON BOLIVAR MA1116 abril-julio de 2009 Departamento de Matemáticas Puras y Aplicadas. Ejercicios sugeridos para :

UNIVERSIDAD SIMON BOLIVAR MA1116 abril-julio de 2009 Departamento de Matemáticas Puras y Aplicadas. Ejercicios sugeridos para : IV 1 / 9 Ejercicios sugeridos para : los temas de las clases del 19 y 21 de mayo de 2009. Temas : Vectores en el plano y en el espacio. Producto escalar. Proyecciones. Producto vectorial. Rectas y planos

Más detalles

Ejercicio 1. Algebra de vectores. 1. Representar los puntos en el mismo sistema de coordenadas tridimensional: a) (2,1,3) b) (5, 2, 2) c) ( 3, 4, 2)

Ejercicio 1. Algebra de vectores. 1. Representar los puntos en el mismo sistema de coordenadas tridimensional: a) (2,1,3) b) (5, 2, 2) c) ( 3, 4, 2) Indicaciones: 1. Formar equipos de 4 personas. Realizar portada impresa. Escribir los siguientes datos: Nombres de los integrantes, hora de la clase, Fecha de entrega 3. Llevar el orden de la numeración

Más detalles

TEMA 11: VECTORES EN EL ESPACIO

TEMA 11: VECTORES EN EL ESPACIO Matemáticas º Bachillerato. Geometría Analítica TEMA : VECTORES EN EL ESPACIO. VECTORES EN EL ESPACIO OPERACIONES CON VECTORES. BASE DEL CONJUNTO DE VECTORES DEL ESPACIO. PRODUCTO ESCALAR DE DOS VECTORES

Más detalles

A. VECTORES 1. VECTORES FIJOS Y VECTORES LIBRES

A. VECTORES 1. VECTORES FIJOS Y VECTORES LIBRES RESUMEN DE GEOMETRÍA MATEMÁTICAS II A. VECTORES 1. VECTORES FIJOS Y VECTORES LIBRES Un vector fijo de origen A y extremo B, siendo A y B puntos del espacio, es un segmento orientado caracterizado por:

Más detalles

Tema 13: Espacio vectorial

Tema 13: Espacio vectorial Tema 1: Espacio vectorial 1. Vectores en el espacio Un vector fijo del espacio es un segmento AB ordenado donde A y B son puntos del espacio. Lo representaremos por AB, siendo A el origen y B el extremo.

Más detalles

Para poder desarrollar este tema, vamos a exponer inicialmente la teoría Recordaremos el Producto Escalar, Vectorial y Mixto. u, v, w V.

Para poder desarrollar este tema, vamos a exponer inicialmente la teoría Recordaremos el Producto Escalar, Vectorial y Mixto. u, v, w V. 1. Introducción. 1.1. Producto Escalar. 1.. Norma de un Vector. 1.3. Ángulos. 1.4. Ortogonalidad. 1.5. Particularización del Producto Escalar a V 3. 1.6. Producto Vectorial de dos Vectores de V 3. 1.7.

Más detalles

Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática.

Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática. Álgebra Geometría Analítica Vectores en R en R 3. Rectas planos en el espacio Prof. Gisela Saslavs Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática..

Más detalles

1. Si están situados en rectas paralelas: la recta que une los orígenes, deja sus extremos en un mismo semiplano.

1. Si están situados en rectas paralelas: la recta que une los orígenes, deja sus extremos en un mismo semiplano. CAPÍTULO 1 El plano vectorial Consideremos P como el plano intuitivo de puntos: A,B,C... 1.1. El espacio vectorial de los vectores Definición 1.1 Vectores fijos Dado dos puntos cualesquiera A e B del espacio

Más detalles

RESUMEN DE VECTORES. Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). ELEMENTOS DE UN VECTOR:

RESUMEN DE VECTORES. Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). ELEMENTOS DE UN VECTOR: RESUMEN DE VECTORES Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). Componentes de un vector Si las coordenadas de los puntos A y B son ELEMENTOS DE UN VECTOR:

Más detalles

1º Bachillerato Matemáticas I Tema 5: Vectores Ana Pascua García

1º Bachillerato Matemáticas I Tema 5: Vectores Ana Pascua García Página 1 de 13 Introducción Vectores: Algo más que números En este tema estudiaremos qué son los vectores en el plano real, R, sus propiedades, y a utilizarlos para entre otras cosas resolver problemas

Más detalles

Unidad 6: punto B. - Módulo de. equipolentes. a) Suma. u v. y v. Ejercicio: dee los números

Unidad 6: punto B. - Módulo de. equipolentes. a) Suma. u v. y v. Ejercicio: dee los números Unidad 6: GEOMETRÍA ANALÍTICA VECTORES EN EL PLANO 1. VECTORES LIBRES: ESTRUCTURA Un vector fijo AB es un segmento orientado que tienee su origen en e el punto A y su extremo en el punto B. - Módulo de

Más detalles

VECTORES EN EL ESPACIO

VECTORES EN EL ESPACIO VECTORES EN EL ESPACIO ACTIVIDADES 1 Dados los puntos del espacio: 7 Calcula el área del triángulo cuyos vértices son los P(1, 1, ) siguientes puntos: A(1, 0, ), B(,, ) y C(, 1, ) 6 Q(,,) R(, 0, 1) S(,,

Más detalles

Espacio vectorial MATEMÁTICAS II 1

Espacio vectorial MATEMÁTICAS II 1 Espacio vectorial MATEMÁTICAS II 1 1 VECTORES EN EL ESPACIO. ESPACIO VECTORIAL V 3 1.1. VECTORES FIJOS Definición: Un vector fijo es un segmento orientado determinado por dos puntos. El primero de sus

Más detalles

Producto Escalar. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31

Producto Escalar. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31 Producto Escalar AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31 Objetivos Al finalizar este tema tendrás que: Saber usar el producto escalar. Calcular

Más detalles

CANTIDAD ESCALAR Es aquella que sólo posee magnitud.

CANTIDAD ESCALAR Es aquella que sólo posee magnitud. 6.-ÁLGEBRA VECTORIAL CANTIDAD ESCALAR Es aquella que sólo posee magnitud. CANTIDAD VECTORIAL Es aquella que posee magnitud, dirección y sentido. A los vectores se les representa con una línea arriba de

Más detalles

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1, 0, [1,5 puntos]

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1, 0, [1,5 puntos] Matemáticas II Pruebas de Acceso a la Universidad GEOMETRÍA Junio 94 1 Sin resolver el sistema, determina si la recta x y + 1 = 0 es exterior, secante ó tangente a la circunferencia (x 1) (y ) 1 Razónalo

Más detalles

a) Como mucho puede haber 3 vectores linealmente independientes. 1 2 = 3 x = 1, y = 2 3 No tiene solución, luego no se puede.

a) Como mucho puede haber 3 vectores linealmente independientes. 1 2 = 3 x = 1, y = 2 3 No tiene solución, luego no se puede. Ejercicios y problemas propuestos Página Para practicar Dependencia e independencia lineal. Base y coordenadas Dados estos vectores: u(,, ), v (,, ), w (,, ), z (,, ) a) Cuántos de ellos son linealmente

Más detalles

4 Vectores en el espacio

4 Vectores en el espacio 4 Vectores en el espacio ACTIVIDADES INICIALES 4.I. Efectúa las siguientes operaciones en R³ a) 1 + 1 5,, 4, 7, 2 2 3 b) 3 3 2, 1, c) 6(2, 3, 1) + 4(1, 5, 2) 4 4.II. Calcula los valores de a, b y c para

Más detalles

RESUMEN DE VECTORES. representa por AB El módulo de un vector es un número siempre positivo o cero.

RESUMEN DE VECTORES. representa por AB El módulo de un vector es un número siempre positivo o cero. RESUMEN DE VECTORES Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). ELEMENTOS DE UN VECTOR: Dirección de un vector: La dirección del vector es la dirección

Más detalles

Espacios vectoriales. Vectores del espacio.

Espacios vectoriales. Vectores del espacio. Espacios vectoriales. Vectores del espacio. Consideremos un paralelepípedo de bases ABCD y EFGH, siendo A(1,1,1), B(2,1,1), C(2,4,1) y E(1,2,7). Halla: a) el área de una de las bases; b) el volumen del

Más detalles

Matemáticas II. d) Perpendicular al plano π: 2x y + 3z 1 = 0, paralelo a la recta r : x 1 2 = y 3 = z 8

Matemáticas II. d) Perpendicular al plano π: 2x y + 3z 1 = 0, paralelo a la recta r : x 1 2 = y 3 = z 8 I.E.S. Juan Carlos I Ciempozuelos (Madrid) Matemáticas II * Geometría analítica en R 3 * 1. Determina cuáles de las siguientes ternas de puntos son puntos alineados. Encuentra la ecuación de la recta que

Más detalles

TEMA 6 VECTORES Y GEOMETRÍA ANALÍTICA EN EL PLANO 6.1 LOS VECTORES Y SUS OPERACIONES

TEMA 6 VECTORES Y GEOMETRÍA ANALÍTICA EN EL PLANO 6.1 LOS VECTORES Y SUS OPERACIONES TEMA 6 VECTORES Y GEOMETRÍA ANALÍTICA EN EL PLANO 4--7 6. LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vector es un segmento orientado. Un vector AB queda determinado por dos puntos, origen A y extremo

Más detalles

TEMA 4. VECTORES EN EL ESPACIO

TEMA 4. VECTORES EN EL ESPACIO TEMA 4. VECTORES EN EL ESPACIO Dados dos puntos y, se define el vector como el segmento orientado caracterizado por su módulo, su dirección y su sentido. En coordenadas: Dos vectores son equipolentes si

Más detalles

Departamento de matemáticas

Departamento de matemáticas Geometría con solución Problema 1: Sea r y s las rectas dadas por: a) Hállese el valor de m para que ambas rectas se corten. b) Para m = 1, hállese la ecuación del plano que contiene a r y s Problema 2:

Más detalles

Resuelve. Unidad 4. Vectores en el espacio. BACHILLERATO Matemáticas II. Diagonal de un ortoedro y volumen de un paralelepípedo.

Resuelve. Unidad 4. Vectores en el espacio. BACHILLERATO Matemáticas II. Diagonal de un ortoedro y volumen de un paralelepípedo. Resuelve Página Diagonal de un ortoedro y volumen de un paralelepípedo. Expresa la diagonal de un ortoedro en función de sus dimensiones, a, b y c. c b a c c b b a Diagonal = a + b + c. Calcula el volumen

Más detalles

Tema 9: Vectores en el Espacio

Tema 9: Vectores en el Espacio 9..- Vectores Fijos: Un vector fijo del plano y su extremo en el punto B. Tema 9: Vectores en el Espacio AB es un segmento orientado que tiene su origen en punto A Un vector viene caracterizado por su

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura Índice Paralelismo Ángulos Otras figuras d Triángulos

Más detalles

190. Dado el paralelepípedo OADBFCEG en el espacio afín ordinario, se considera el sistema de referencia afín R = ( O, OA, OB, OC ).

190. Dado el paralelepípedo OADBFCEG en el espacio afín ordinario, se considera el sistema de referencia afín R = ( O, OA, OB, OC ). Hoja de Problemas Geometría VIII 90. Dado el paralelepípedo OADBFCEG en el espacio afín ordinario, se considera el sistema de referencia afín R O, Sean: OA, OB, OC ). OG la recta determinada por los puntos

Más detalles

RESOLUCIÓN DE ACTIVIDADES

RESOLUCIÓN DE ACTIVIDADES RESOLUCIÓN DE ACTIVIDADES Actividades iniciales 1. Comprueba que el segmento que une los puntos medios de los lados AC y BC del triángulo A (3, 5); B( 1, 1); C(6, 0) es paralelo al lado AB y de módulo

Más detalles

TEMA 6. Geometría Analítica(1) Nombre CURSO: 1 BACH CCNN. Vectores (1) y E de los correspondientes extremos.

TEMA 6. Geometría Analítica(1) Nombre CURSO: 1 BACH CCNN. Vectores (1) y E de los correspondientes extremos. TEMA 6. Geometría Analítica(1) Nombre CURSO: 1 BACH CCNN Vectores (1) 1.- Sea el vector AB, en el que el punto A(3, 2) es el origen y B(5, 6) el extremo. a) Si cada uno de los puntos C(9, 3), D( 4,4) y

Más detalles

Ejercicio 5: Dados los vectores u = -2i+j+4k y v = -i+j-3k, encuentre a) u.v y v.u b) u v y v u c) Un versor perpendicular a u y v

Ejercicio 5: Dados los vectores u = -2i+j+4k y v = -i+j-3k, encuentre a) u.v y v.u b) u v y v u c) Un versor perpendicular a u y v Trabajo Práctico N 4: I) VECTORES EN R 2 Y R 3 Ejercicio 1: Las fuerzas que actúan en un cuerpo se localizan en un plano, por lo que pueden ser representadas mediante elementos de R 2. Considere un cuerpo

Más detalles

Geometría (Selectividad) 1. Dados los puntos A(1,3,5) y B(-2,4,1), hallar las coordenadas del punto C, perteneciente

Geometría (Selectividad) 1. Dados los puntos A(1,3,5) y B(-2,4,1), hallar las coordenadas del punto C, perteneciente Geometría (Selectividad) 1. Dados los puntos A(1,3,5) y B(-2,4,1), hallar las coordenadas del punto C, perteneciente al plano OXY de forma que A, B y C estén alineados. Sol: 2. Considera la recta de ecuaciones.

Más detalles

Unidad 7 Producto vectorial y mixto. Aplicaciones.

Unidad 7 Producto vectorial y mixto. Aplicaciones. Unidad 7 Producto vectorial y mixto. Aplicaciones. 5 SOLUCIONES 1. Al ser u v =(,5,11), se tiene que ( u v) w = ( 17,13, 9 ). Como v w =( 3,, 7), por tanto u ( v w) = ( 19,11, 5).. Se tiene que: 3. Queda:

Más detalles

R 3 = { ( x, y, z ) / x R, y R, z R }

R 3 = { ( x, y, z ) / x R, y R, z R } El conjunto R 3 Es un conjunto de ternas ordenadas de números reales R 3 = { ( x, y, z ) / x R, y R, z R } Primera componente Segunda componente Tercera componente Igualdad de ternas: (x, y, z) = (x',

Más detalles

Vectores en el espacio

Vectores en el espacio 1. El concepto, características y operaciones de los vectores en el espacio son una generalización de los vectores del plano, que ya se conocen de cursos pasados. Es conveniente por tanto repasar conceptos

Más detalles

1. Producto escalar. Propiedades Norma de un vector. Espacio normado. 1.2.Ortogonalidad. Ángulos. 1.4.Producto escalar en V 3.

1. Producto escalar. Propiedades Norma de un vector. Espacio normado. 1.2.Ortogonalidad. Ángulos. 1.4.Producto escalar en V 3. . Producto escalar. Propiedades... Norma de un vector. Espacio normado...ortogonalidad. Ángulos..3.Producto escalar en V..4.Producto escalar en V 3.. Producto vectorial de dos vectores de V 3...Expresión

Más detalles

EL ESPACIO EUCLÍDEO. 1.- Sean (R 3,R 3,f) el espacio afín usual tridimensional real, R ={P 0, P 1, P 2, P 3 } y R,

EL ESPACIO EUCLÍDEO. 1.- Sean (R 3,R 3,f) el espacio afín usual tridimensional real, R ={P 0, P 1, P 2, P 3 } y R, EL ESPACIO EUCLÍDEO 1.- Sean (R,R,f) el espacio afín usual tridimensional real, R {P 0, P 1, P, P } y R, {Q 0, Q 1, Q,Q } dos referencias afines de (R,R,f) de bases asociadas B{ P 0 P 1 P 0 P, P0 P } y

Más detalles

TEMA 11. VECTORES EN EL ESPACIO

TEMA 11. VECTORES EN EL ESPACIO TEMA 11. VECTORES EN EL ESPACIO Dados dos puntos y, se define el vector como el segmento orientado caracterizado por su módulo, su dirección y su sentido. Dos vectores son equipolentes si tienen el mismo

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 005 MATEMÁTICAS II TEMA : ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

Teoría Tema 5. Vector: longitud, dirección y sentido

Teoría Tema 5. Vector: longitud, dirección y sentido página 1/17 Vector: longitud, dirección y sentido Teoría Tema 5 Un vector es una flecha contenida entre un punto de inicio (A) y un punto de fin (B). Se denota con los nombres de los puntos de inicio y

Más detalles

EJERCICIOS PAU MATEMÁTICAS II ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU MATEMÁTICAS II ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com GEOMETRÍA 1- Dados el punto P(1,-1,0) y la recta : 1 0 3 3 0 a) Determine la ecuación general del plano (Ax+By+Cz+D=0) que contiene al punto P y a la recta s. b) Determine el ángulo que forman el plano

Más detalles

Solución: I.T.I. 96, 98, 02, 05, I.T.T. 96, 99, 01, curso cero de física

Solución: I.T.I. 96, 98, 02, 05, I.T.T. 96, 99, 01, curso cero de física VECTORES: TRIÁNGULOS Demostrar que en una semicircunferencia cualquier triángulo inscrito con el diámetro como uno de sus lados es un triángulo rectángulo. Solución: I.T.I. 96, 98, 02, 05, I.T.T. 96, 99,

Más detalles

VECTORES EN EL ESPACIO

VECTORES EN EL ESPACIO UNIDAD VECTORES EN EL ESPACIO Página 13 Problema 1 Halla el área de este paralelogramo en función del ángulo α: cm Área = 8 sen α = 40 sen α cm α 8 cm Halla el área de este triángulo en función del ángulo

Más detalles

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES MATEMÁTICASII Curso académico 2015-2016 BLOQUE GEOMETRÍA. TEMA 1: VECTORES 1.1 VECTORES DEL ESPACIO. VECTORES LIBRES DEL ESPACIO Sean y dos puntos del espacio. Llamaremos vector (fijo) a un segmento orientado

Más detalles

G E O M E T R Í A M É T R I C A P L A N A

G E O M E T R Í A M É T R I C A P L A N A G E O M E T R Í A M É T R I C A P L A N A. PUNTO MEDIO D E UN SEGME NTO. S IMÉTRICO DE U N PUNTO Sean A y a,a b B,b las coordenadas de dos puntos del plano que determinan el segmento AB. Las coordenadas

Más detalles

GEOMETRÍA EN EL ESPACIO.

GEOMETRÍA EN EL ESPACIO. GEOMETRÍA EN EL ESPACIO.. ESPACIOS VECTORIALES VECTOR FIJO Segmento orientado. Queda determinado por Origen A(a, a, a ); extremo B(b, b, b ) Módulo: Longitud del AB ( b a) ( b a) ( b a) segmento AB Características:

Más detalles

vv = ( vi+ v j+ vk)( v i+ v j+ v k) = v v + v v + vv

vv = ( vi+ v j+ vk)( v i+ v j+ v k) = v v + v v + vv CÁLCULO VECTORIAL. INTRODUCCIÓN Cálculo de las componentes de un ector Dado un ector cuyo origen es el punto A ( x A,y A,z A ) y su extremo el punto B A ( x B,y B,z B ), las componentes del ector se calculan

Más detalles

Colegio Internacional Torrequebrada. Departamento de Matemáticas

Colegio Internacional Torrequebrada. Departamento de Matemáticas Geometría. Problema 1: Calcula la distancia del punto P(1, 1, 1) a la recta Problema 2: Dadas las rectas, se pide: a) Analiza su posición relativa. b) Halla la ecuación general del plano π que contiene

Más detalles

ACTIVIDADES. 001 Dados los siguientes vectores, calcula. a) Wu + Wv b) Wv Ww c) Wu + Ww. Wu + Wv - Ww. f) Wu + 2Wv Ww. g) (Wu + Wv ) + (Wv Ww )

ACTIVIDADES. 001 Dados los siguientes vectores, calcula. a) Wu + Wv b) Wv Ww c) Wu + Ww. Wu + Wv - Ww. f) Wu + 2Wv Ww. g) (Wu + Wv ) + (Wv Ww ) Solucionario 4 ACTIVIDADES 00 Dados los siguientes vectores, calcula. a) + Wv b) Wv Ww c) + Ww d) + Wv + Ww e) + Wv Ww f) + Wv Ww g) ( + Wv ) + (Wv Ww ) Wv Ww a) Wv + Wv Ww b) Wv - Ww Wv Ww c) Wv Ww +

Más detalles

Análisis Matemático II Curso 2018 Práctica introductoria

Análisis Matemático II Curso 2018 Práctica introductoria Análisis Matemático II Curso 018 Práctica introductoria Cónicas - Sus ecuaciones y gráficas 1. Encontrar la forma estándar de cada cónica y graficar. a) x + y 6y = 0 b) x + y 1 = 0 c) x(x + 1) y = 4 d)

Más detalles

MATEMÁTICAS II. Problemas

MATEMÁTICAS II. Problemas MATEMÁTICAS II. Problemas Curso preparatorio para el acceso a la universidad para mayores de 5 años Tema 4 Arturo de Pablo Elena Romera Open Course Ware, UC3M http://ocw.uc3m.es/matematicas 4 GEOMETRÍA

Más detalles

VECTORES EN EL ESPACIO

VECTORES EN EL ESPACIO VECTORES EN EL ESPACIO DEF.- Se llama vector fijo de extremos A y B al segmento orientado AB, y se representa por Todo vector fijo queda caracterizado por { Dos vectores fijos se dice que son equivalentes,

Más detalles

5. Determina el valor o los valores del parámetro m para que la recta r : x= y = z y el plano π: x z=0 formen un ángulo de 30º.

5. Determina el valor o los valores del parámetro m para que la recta r : x= y = z y el plano π: x z=0 formen un ángulo de 30º. EJERCICIOS: GEOMETRÍA EUCLÍDEA. PRODUCTO ESCALAR. 1. Considera las rectas que se cortan en el punto P(1,0,-1) y cuyos vectores directores son u=(,1, ) y v=(,, 1 ), respectivamente. Escribe las ecuaciones

Más detalles

Teoría Tema 9 Vectores, ángulos, vector normal de un plano y simetrías

Teoría Tema 9 Vectores, ángulos, vector normal de un plano y simetrías página 1/13 Teoría Tema 9 Vectores, ángulos, vector normal de un plano y simetrías Índice de contenido Propiedades de los vectores...2 Ángulo entre dos rectas...4 Bisectriz de dos rectas que se cortan...6

Más detalles

Dado un vector fijo, existen infinitos vectores fijos que tienen igual módulo, dirección y sentido

Dado un vector fijo, existen infinitos vectores fijos que tienen igual módulo, dirección y sentido 1. VECTORES. DEFINICIONES. OPERACIONES Un vector fijo AB queda determinado por dos puntos, el origen A y el extremo B Se llama módulo del vector AB a la distancia que hay entre A y B. Se designa por AB

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 7 MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio 4,

Más detalles

EJERCICIOS PARA RESOLVER

EJERCICIOS PARA RESOLVER EJERIIOS PR RESOLVER NLISIS VETORIL 1. Hallar el módulo del vector resultante. a) 1u b) u c) u d) 5u e) u. Dado el conjunto de vectores mostrados en la siguiente figura. a) b) 9 c) d) 5 e). Dado el siguiente

Más detalles

y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy).

y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy). UNIDAD II: VECTORES EN DOS Y TRES DIMENSIONES Un espacio vectorial (o espacio lineal) es el objeto básico de estudio en la rama de la matemática llamada álgebra lineal. A los elementos de los espacios

Más detalles

Producto escalar. Bases ortonormales. Producto vectorial y producto mixto.

Producto escalar. Bases ortonormales. Producto vectorial y producto mixto. Capítulo Producto escalar. Bases ortonormales. Producto vectorial y producto mixto. DEFINICIÓN DE PRODUCTO ESCALAR Dados dos vectores x = (x 1 x 2...x n ) e y = (y 1 y 2...y n ) de R n definimos su producto

Más detalles

Un vector es un segmento orientado que consta de los siguientes elementos:

Un vector es un segmento orientado que consta de los siguientes elementos: El conjunto R 3 : Conjunto formado por todas las ternas de números reales. Un vector es un segmento orientado que consta de los siguientes elementos: - Módulo: Es la longitud del vector. - Dirección: es

Más detalles

Bloque 2. Geometría. 3. La recta. 1. Definición de recta

Bloque 2. Geometría. 3. La recta. 1. Definición de recta Bloque 2. Geometría 3. La recta 1. Definición de recta Para representar puntos en un plano (superficie de dos dimensiones) utilizamos dos rectas graduadas y perpendiculares, cuyo corte es el punto 0 de

Más detalles

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo.

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo. GEOMETRÍA 1. (Junio, 1994) Sin resolver el sistema, determina si la recta x +3y +1= 0 es exterior, secante o tangente a la circunferencia (x 1) +(y ) =1. Razónalo.. (Junio, 1994) Dadas las ecuaciones de

Más detalles

MATEMÁTICAS 1º BACH. C. N. Y S. 25 de enero de 2010 Geometría y Logaritmos

MATEMÁTICAS 1º BACH. C. N. Y S. 25 de enero de 2010 Geometría y Logaritmos MATEMÁTICAS 1º BACH. C. N. Y S. 5 de enero de 010 Geometría y Logaritmos x yz 1) Tomar logaritmos, y desarrollar, en la siguiente expresión: A 4 ab log x log b 4log a log y ) Quitar logaritmos: log A )

Más detalles

Vectores en. Definición: Un vector tridimensional es una terna ordenada de números reales, esto es: llamado vector con componentes

Vectores en. Definición: Un vector tridimensional es una terna ordenada de números reales, esto es: llamado vector con componentes Vectores en Definición: Un vector tridimensional es una terna ordenada de números reales, esto es: llamado vector con componentes Interpretación geométrica: Sea un vector en el espacio, al cual lo representaremos

Más detalles

Capítulo 1 Vectores. 26 Problemas de selección - página 13 (soluciones en la página 99)

Capítulo 1 Vectores. 26 Problemas de selección - página 13 (soluciones en la página 99) Capítulo 1 Vectores 26 Problemas de selección - página 13 (soluciones en la página 99) 21 Problemas de desarrollo - página 22 (soluciones en la página 100) 11 1.A PROBLEMAS DE SELECCIÓN Sección 1.A Problemas

Más detalles

Vectores. 2)Coordenadas y base Combinación lineal Vectores linealmente dependiente Bases. Bases canónica

Vectores. 2)Coordenadas y base Combinación lineal Vectores linealmente dependiente Bases. Bases canónica Vectores 1) Vectores en R 2 Vector fijo en el plano Elementos de un vector fijo ( módulo, dirección, sentido, origen y extremo) Vectores equipolentes Vector libres Propiedad fundamental de los vectores

Más detalles

TEMA 8. GEOMETRÍA ANALÍTICA.

TEMA 8. GEOMETRÍA ANALÍTICA. TEMA 8. GEOMETRÍA ANALÍTICA. 8..- El plano. Definimos el plano euclideo como el conjunto de puntos ( x, y) R. Así, cada punto del plano posee dos coordenadas. Para representar puntos del plano utilizaremos

Más detalles

Trabajo Práctico N 4: I) VECTORES EN R 2 Y R 3

Trabajo Práctico N 4: I) VECTORES EN R 2 Y R 3 Trabajo Práctico N 4: I) VECTORES EN R Y R Ejercicio 1: Las fuerzas que actúan en un cuerpo se localizan en un plano, entonces se pueden representar mediante elementos de R. Determine la fuerza que hay

Más detalles

Seminario de problemas. Curso Hoja 7

Seminario de problemas. Curso Hoja 7 Seminario de problemas. Curso 015-16. Hoja 7 37. Determinar un número de cinco cifras tal que su cuadrado termine en las mismas cinco cifras colocadas en el mismo orden. La forma más simple de resolver

Más detalles

ÁLGEBRA VECTORIAL MAGNITUDES ESCALARES Y VECTORIALES:

ÁLGEBRA VECTORIAL MAGNITUDES ESCALARES Y VECTORIALES: MAGNITUDES ESCALARES Y VECTORIALES: Una magnitud es escalar cuando el conjunto de sus valores se puede poner en correspondencia biunívoca y continua con el conjunto de los números reales o una parte del

Más detalles

Física I CIBEX enviar correcciones a:

Física I CIBEX enviar correcciones a: Física I CIBEX - 2017 enviar correcciones a: Departamento de Física - UNLP silva@fisica.unlp.edu.ar Práctica 0: Vectores Figura 1: Componentes de un vector en coordenadas cartesianas Dado un sistema cartesiano

Más detalles

b) Halle el punto de corte del plano π con la recta que pasa por P y P.

b) Halle el punto de corte del plano π con la recta que pasa por P y P. GEOMETRÍA 1- Considere los puntos A(1,2,3) y O(0,0,0). a) Dé la ecuación de un plano π 1 que pase por A y O, y sea perpendicular a π 2 : 3x-5y+2z=11. b) Encuentre la distancia del punto medio de A y O

Más detalles

UNIVERSIDAD JOSE CARLOS MARIATEGUI CAPITULO 2 VECTORES

UNIVERSIDAD JOSE CARLOS MARIATEGUI CAPITULO 2 VECTORES CAPITULO 2 VECTORES 2.1 Escalares y Vectores Una cantidad física que pueda ser completamente descrita por un número real, en términos de alguna unidad de medida de ella, se denomina una cantidad física

Más detalles

Tema 4: Vectores en el espacio.

Tema 4: Vectores en el espacio. Tema 4: Vectores en el espacio. Producto escalar, vectorial y mixto January 9, 2017 1 Vectores en el espacio Un vector jo en el espacio, AB, es un segmento orientado de origen A, y extremo B. Los vectores

Más detalles

TEMA 5 GEOMETRÍA ANALÍTICA

TEMA 5 GEOMETRÍA ANALÍTICA TEMA 5 GEOMETRÍA ANALÍTICA Ecuación general de la recta. Una recta queda determinada por un vector que tenga su dirección (llamado vector director) y un punto que pertenezca a esa recta. Tipos de ecuaciones

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre

Más detalles

Teoría Tema 9 Distancias, producto vectorial y producto mixto. Recta perpendicular a dos rectas cruzadas. Áreas y volúmenes

Teoría Tema 9 Distancias, producto vectorial y producto mixto. Recta perpendicular a dos rectas cruzadas. Áreas y volúmenes página 1/24 Teoría Tema 9 Distancias, producto vectorial y producto mixto. Recta perpendicular a dos rectas cruzadas. Áreas y volúmenes Índice de contenido Distancias entre dos puntos...2 Producto vectorial...3

Más detalles