Universidad Distrital Francisco José de Caldas - Análisis de Señales y Sistemas - Marco A. Alzate 1

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Universidad Distrital Francisco José de Caldas - Análisis de Señales y Sistemas - Marco A. Alzate 1"

Transcripción

1 Universia Distrital Francisco José e Calas - Análisis e Señales y Sistemas - Marco A. Alzate Décimo-quinta clase. Respuesta al impulso. Implementación e sistemas LTI. Ecuaciones e iferencia y iferenciales lineales con coeficientes constantes. De otro lao, cuano ecimos que conocieno la respuesta al impulso e un sistema LTI conocemos su respuesta a cualquier otra entraa gracias a la convolución, queremos ecir que la respuesta al impulso nos ice too lo que necesitamos saber e un sistema LTI. En efecto, toas las propieaes que vimos para los sistemas en general, epenen exclusivamente e la respuesta al impulso cuano se trata e sistemas LTI, como se muestra a continuación. Sistema estático o inámico: Un sistema LTI en tiempo iscreto es estático si y sólo si h[n]= n, ó {h[n], nz} = h[]{[n], nz} En efecto, en ese caso {y[n], nz} = h[]{x[n], nz}, que es la única manera en que un sistema LTI en tiempo iscreto puea exhibir falta e memoria pues, si algún otro valor h[] es iferente e cero para iferente e cero, la salia en el instante n epenerá e la entraa en el instante n- meiante el término aitivo h[]x[n-]. En tiempo continuo, la respuesta al impulso e un sistema LTI estático ebe ser otro impulso en el mismo instante, {h(t), tr} = h {(t), tr}, pues ésta es la única manera e que la salia en el instante t sólo epena e la entraa en el mismo instante, y( t) x( ) h( t ) h x( ) ( t ) h x( t). Sistema causal o no-causal: Si queremos que en la expresión y[ n] h[ ] x[ n ] no participen valores futuros e x[], es necesario y suficiente con tener h[n]= n<. En efecto, en este caso la suma e convolución, y[ n] h[ ] x[ n ] h[ n ] x[ ] n, sólo incluye valores pasaos y presentes e la señal e entraa. De la misma manera, para que un sistema LTI en tiempo continuo sea causal es necesario y suficiente que h(t)= t<, pues entonces t y( t) x( ) h( t ). Sistema BIBO-estable o BIBO-inestable: Si la entraa es acotaa, x[ n] M, n, la salia acotaa requiere y[ n] x[ ] h[ n ] x[ ] h[ n ] M h[ ] h[ ], e x manera que si la respuesta al impulso es absolutamente sumable, se puee garantizar la estabilia BIBO el sistema LTI. Sin embargo, esta conición no sólo es suficiente sino también necesaria: Sea x[n]=signo(h[-n]), acotaa meiante x[n]. Entonces y[] = h(-), lo cual hace que la conición propuesta sea necesaria. De igual manera, un sistema LTI en tiempo continuo es BIBOestable si y sólo si h() t. x

2 Universia Distrital Francisco José e Calas - Análisis e Señales y Sistemas - Marco A. Alzate 2 Sistema invertible o no-invertible: Un sistema LTI con respuesta al impulso h es invertible si existe otro sistema h - tal que h*h - =. En este caso, e acuero con la asociativia e la convolución, si y=x*h, x=y*h -. Evientemente, la existencia e un h - tal que h*h - = es una propiea e la respuesta al impulso h. 2 2 Quiz: Consiérese el siguiente sistema no lineal: y[ n] x [ n] x [ n ]. Cuál es la respuesta al impulso? Cómo respone a una señal e entraa que vale 2 cuano n=, vale cuano n= y vale para cualquier otro instante n? Cuál sería la corresponiente respuesta e un sistema LTI con la misma respuesta al impulso? Concluya sobre cuánta información ofrece la respuesta al impulso para sistemas lineales y no lineales. Nótese que la respuesta al impulso e un sistema LTI causal en tiempo iscreto puee urar un tiempo finito o infinito. Si la respuesta al impulso es finita (FIR Finite Impulse Response-), esto es, si MN: h[n] nm, la suma e convolución ofrece una forma irecta e implementación el sistema: h[] M y[ n] h[ ] x[ n ] Retaro h[] xn [ 2] Retaro Retaro h[2] x[ n M ] Retaro hm [ ] Figura. La suma e convolución es una manera irecta e implementar un sistema FIR En esta estructura, los términos e la respuesta al impulso se usan como coeficientes para ponerar M muestras e la señal e entraa, por lo que a los sistemas así implementaos se les enomina e "promeios móviles" (MA Moving Average-). Sin embargo, en sistemas con respuesta infinita al impulso (IIR Infinite Impulse Response-), la suma e convolución no poría ser un algoritmo e implementación válio porque se necesitaría un número infinito e términos en la "escalera" e la figura anterior. Por esta razón, no es posible implementar cualquier respuesta IIR arbitraria, aunque muchas respuestas al impulso se pueen implementar inirectamente meiante estructuras recursivas. En estas estructuras recursivas la respuesta al impulso no está explícitamente efinia, pero sí se representa e manera implícita a través e los coeficientes e la recursión. Por ejemplo, el acumulaor n y[ n] x[ ] x[ n ] tiene una respuesta al impulso infinita, h[n]=u[n], lo cual imposibilita su implementación irectamente meiante la suma e convolución, esto es, meiante una estructura MA. Sin embargo, no es necesario consierar una memoria infinita, pues el mismo sistema se puee expresar recursivamente:

3 Universia Distrital Francisco José e Calas - Análisis e Señales y Sistemas - Marco A. Alzate 3 y[ n] x[ n ] x[ n] x[ n ] x[ n] x[( n ) ] x[ n] y[ n ] y[ n] x[ n] y[ n ] Retaro Figura 2. Algunos sistemas IIR, como el acumulaor, se pueen implementar recursivamente Generalizano el ejemplo anterior, un sistema recursivo puee ponerar e iferentes maneras caa uno e los términos e la recursión, N a y[ n ] x[ n] Bajo la suposición e que a =, con la cual no se piere generalia, icho sistema recursivo se puee implementar así: yn [ ] N y[ n] x[ n] a y[ n ] a a 2 Retaro Retaro Retaro yn [ ] yn [ 2] an Figura 3. Forma general e un sistema puramente recursivo En este caso, como la salia se calcula a través e muestras anteriores e la misma salia que se realimentan a la entraa, esta estructura se conoce como Auto-Regresiva (AR autoregressive-). Aunque la respuesta al impulso no está explícitamente escrita, como en el caso e los sistemas MA one la respuesta FIR está en los coeficientes, es fácil calcularla meiante la relación N a h[ n ] [ n] Retaro y[ n M ] La forma más general que toma un sistema LTI causal en tiempo iscreto que se puea implementar es la e una Ecuación Lineal e Diferencias con Coeficientes Constantes: N M a y[ n ] b x[ n ] Suponieno, sin perer generalia, que a =, la forma anterior sugiere una forma irecta e implementación:

4 Universia Distrital Francisco José e Calas - Análisis e Señales y Sistemas - Marco A. Alzate 4 b M N y[ n] b x[ n ] a y[ n ] Retaro b a Retaro yn [ ] xn [ 2] Retaro b 2 a 2 Retaro yn [ 2] Retaro Retaro Retaro x[ n M ] bm an Retaro y[ n N ] Figura 4. Forma general e un sistema IIR En el sistema anterior simplemente pusimos en serie un sistema AR espués e un sistema MA, por lo que este tipo e sistemas se conoce como sistema ARMA (Auto-Regressive, Moving-Average). En este caso, los coeficientes e la parte MA ya no son la respuesta al impulso, pues ahora se trata e un sistema IIR. Nótese que, en tiempo iscreto, la suma e convolución es un algoritmo irecto e implementación e los sistemas FIR. Esto no ocurre con sistemas en tiempo continuo, pues en ellos la misma respuesta al impulso casi nunca se escribe e manera explícita. De hecho, generalmente se expresan las tasas e cambio e algunas variables en términos e los valores actuales e las mismas variables. Por ejemplo, recoremos el circuito RC y la masa sometia a fuerzas e empuje y e fricción que se mostraron en la tercera clase, los cuales se moelaban meiante el mismo sistema lineal e primer oren: v i (t) i(t) v o (t) F(t) M v(t) - - v(t) vi( t) v( t) vr( t) F( t) v( t) M v( t) vi ( t) v( t) R i( t) M F( t) v( t) v( t) vi( t) v( t) RC vo( t) Figura 5. Dos sistemas iferentes que conucen a una misma forma e abstracción matemática x(t) / x( t) y( t) y( t) y(t) _ x( t) y( t) y( t) Figura 6. Abstracción matemática para los os sistemas anteriores

5 Universia Distrital Francisco José e Calas - Análisis e Señales y Sistemas - Marco A. Alzate 5 Ese tipo e expresiones son típicos al escribir sistemas naturales en tiempo continuo. Por ejemplo, si una población e iniviuos e alguna especie, y(t), crece según una tasa e natalia por iniviuo, a>, y ecrece según una tasa e mortalia por iniviuo, b>, poríamos escribir y ( t ) ay ( t ) by ( t ) y ( t ) ab Si, aemás, hay un flujo neto e inmigración o emigración con respecto al ecosistema que se esté consierano, x(t), el sistema se moificaría así: y ( t ) y ( t ) x ( t ) que es, funamentalmente, el mismo sistema lineal e primer oren: x(t) y(t) Figura 7. Moelo simple e crecimiento poblacional. Es un sistema LTI, pero la respuesta al impulso, h(t)=e t, no aparece explícitamente en la escripción el sistema Nótese que otro iagrama e bloques para el mismo sistema, que implementa más irectamente el anterior moelo, incluiría la evaluación e la erivaa, como se muestra en la siguiente figura. Sin embargo, se suele preferir utilizar integraores para hacer los sistemas más inmunes al ruio, como se muestra a continuación. / - x(t) y(t) Figura 8. El mismo moelo e crecimiento poblacional, pero usano un iferenciaos. Esta implementación no es común por su sensibilia al ruio / Figura 9. Derivar es una operación mucho más sensible al ruio que integrar 5

6 Universia Distrital Francisco José e Calas - Análisis e Señales y Sistemas - Marco A. Alzate 6 En general, una forma típica en que se representan los sistemas en tiempo continuo es meiante relaciones puramente autoregresivas, iferenciaores así, xt () N ( ) x( t) a y( t), que se pueen implementar meiante ( ) /a yt () a/ a / yt () a2 / a / / 2 () 2 yt / an / a N yt () N Figura. Sistema lineal, invariante en el tiempo y causal en tiempo continuo aunque se prefiera el uso e integraores, así: / N x(t) a y(t) a / a N2 N a / a N3 N a/ an a / an Figura. El mismo sistema lineal, invariante en el tiempo y causal en tiempo continuo e la figura anterior Generalizano, una clase importante e sistemas LTI en tiempo continuo obeecen a una Ecuación Lineal Diferencial con Coeficientes Constantes, a y( t) b x( t) N ( ) M ( ) ( ) ( ) Que se poría implementar, al menos teóricamente, como se muestra a continuación: xt () b M N y( t) b x( t) a y( t) xt () / b a / yt () 2 () 2 xt / / b 2 a 2 / / 2 () 2 yt M M xt () / bm a N Figura 2. Forma general e un sistema lineal, invariante en el tiempo y causal en tiempo continuo escrito meiante una ecuación iferencial lineal con coeficientes constantes / N yt () N

7 Universia Distrital Francisco José e Calas - Análisis e Señales y Sistemas - Marco A. Alzate 7 Tanto en tiempo continuo como en tiempo iscreto, las ecuaciones lineales con coeficientes constantes proporcionan una especificación completa el sistema sin especificar explícitamente su respuesta al impulso, pues permiten eterminar la señal e salia a partir e la señal e entraa, aas unas coniciones iniciales suficientes. Aunque la búsquea e una expresión cerraa para la señal e salia es un tema ya estuiao en cursos e ecuaciones iferenciales y matemáticas especiales, en muchas ocasiones nos interesa es la solución numérica a través el computaor o e un circuito que implemente la ecuación misma. Para el análisis y iseño, utilizaremos técnicas basaas en transformaciones que cambian la base e los impulsos unitarios a las exponenciales complejas, en one el problema e encontrar la solución cerraa se vuelve un problema algebraíco. En consecuencia, es hora e empezar el estuio e ese tipo e transformaciones.

Tercera clase. Definición de sistema

Tercera clase. Definición de sistema Universia Distrital Francisco José e Calas - Análisis e Señales y Sistemas - Marco A. Alzate Tercera clase. Definición e sistema Veíamos que una señal es una cantia física que varía en el tiempo, en el

Más detalles

TEORÍA DE CONTROL MODELO DE ESTADO DISCRETO

TEORÍA DE CONTROL MODELO DE ESTADO DISCRETO TEORÍA DE CONTROL MODELO DE ESTADO DISCRETO Moelo e estao. De la misma forma que se planteó para sistemas continuos, existe la posibilia e moelar un sistema iscreto meiante un moelo e estaos. El sistema

Más detalles

Unidad 1 Ecuaciones Diferenciales de Primer Orden. 1.1 Definiciones (Ecuación Diferencial, Orden, Grado, Linealidad)

Unidad 1 Ecuaciones Diferenciales de Primer Orden. 1.1 Definiciones (Ecuación Diferencial, Orden, Grado, Linealidad) . Definiciones (Ecuación Diferencial, Oren, Grao, Linealia) Unia Ecuaciones Diferenciales e Primer Oren. Definiciones (Ecuación Diferencial, Oren, Grao, Linealia) En iversas áreas como son la ingeniería,

Más detalles

Sistemas LTI discretos

Sistemas LTI discretos Procesamiento Digital de Señales Licenciatura en Bioinformática FI-UNER discretos Setiembre de 2010 Procesamiento Digital de Señales discretos Septiembre de 2010 1 / 21 Organización Definición criterios

Más detalles

Sistemas LTI discretos

Sistemas LTI discretos Procesamiento Digital de Señales Licenciatura en Bioinformática FI-UNER discretos 15 de setiembre de 2011 Procesamiento Digital de Señales discretos Septiembre de 2011 1 / 21 Organización Definición criterios

Más detalles

Tema 2. Sistemas Lineales e Invariantes en el Tiempo (Sesión 2)

Tema 2. Sistemas Lineales e Invariantes en el Tiempo (Sesión 2) SISTEMAS LINEALES Tema. Sistemas Lineales e Invariantes en el Tiempo (Sesión ) 4 de octubre de 00 F. JAVIER ACEVEDO javier.acevedo@uah.es TEMA Contenidos. Representación de señales discretas en términos

Más detalles

Seminario de Procesamiento Digital de Señales

Seminario de Procesamiento Digital de Señales Seminario de Procesamiento Digital de Señales Unidad 5: Diseño de Filtros Digitales - Parte I Marcelo A. Pérez Departamento Electrónica Universidad Técnica Federico Santa María Contenidos 1 Conceptos Básicos

Más detalles

En la Clase 3, se demostró que cualquier señal discreta x[n] puede escribirse en términos de impulsos como sigue:

En la Clase 3, se demostró que cualquier señal discreta x[n] puede escribirse en términos de impulsos como sigue: SISTEMAS LINEALES INVARIANTES EN EL TIEMPO (SISTEMAS LTI) Un sistema lineal invariante en el tiempo, el cual será referido en adelante por la abreviatura en inglés de Linear Time Invariant Systems como

Más detalles

Funciones de Bessel. Dr. Héctor René Vega-Carrillo

Funciones de Bessel. Dr. Héctor René Vega-Carrillo Funciones e Bessel Dr. Héctor René Vega-Carrillo 1 2 Ínice 1. Introucción............................. 3 2. Solución e la Ecuación iferencial e Bessel........... 5 2.1. Caso n entero............................

Más detalles

Sistemas Discretos LTI

Sistemas Discretos LTI Sistemas Discretos LTI MSc. Bioing Rubén Acevedo racevedo@bioingenieria.edu.ar Bioingeniería I Carrera: Bioingeniería Facultad de Ingeniería - UNER 06 de Abril de 2009 Bioingeniería I Sistemas discretos

Más detalles

Escuela Politécnica. Universidad de Alcalá

Escuela Politécnica. Universidad de Alcalá Escuela Politécnica. Universia e Alcalá Asignatura: PROPAGACIÓN Y ONDAS Grao en Ingenieria Electrónica e Comunicaciones (G37) Grao en Ingeniería Telemática (G38) Grao en Ingeniería en Sistemas e Telecomunicación

Más detalles

3. Señales. Introducción y outline

3. Señales. Introducción y outline 3. Señales Introducción y outline Outline Señales y Sistemas Discretos: SLIT, Muestreo, análisis tiempo-frecuencia, autocorrelación, espectro, transformada Z, DTFT, DFT, FFT Filtros y Estimación: Filtros

Más detalles

Cálculo I. Índice Reglas Fundamentales para el Cálculo de Derivadas. Julio C. Carrillo E. * 1. Introducción 1. 2.

Cálculo I. Índice Reglas Fundamentales para el Cálculo de Derivadas. Julio C. Carrillo E. * 1. Introducción 1. 2. 3.2. Reglas Funamentales para el Cálculo e Derivaas Julio C. Carrillo E. * Ínice 1. Introucción 1 2. Reglas básicas 3 3. El Álgebra e funciones erivables 4 4. Regla e la caena 8 * Profesor Escuela e Matemáticas,

Más detalles

Sistemas Lineales. Sistemas

Sistemas Lineales. Sistemas Sistemas Lineales Sistemas Un sistema opera con señales en una ó más entradas para producir señales en una ó más salidas. Los representamos mediante diagrama en bloques Señal de entrada ó excitación Señal

Más detalles

4. Mecánica en la Medicina Derivar e Integrar

4. Mecánica en la Medicina Derivar e Integrar 4. Mecánica en la Meicina Derivar e Integrar Teoría Dr. Willy H. Gerber Instituto e Ciencias Físicas y Matemáticas, Universia Austral, Valivia, Chile 17.04.2011 W. Gerber 4. Mecánica en la Meicina - Matemática

Más detalles

Seminario de problemas. Curso Hoja 5. Soluciones

Seminario de problemas. Curso Hoja 5. Soluciones Seminario e problemas. Curso 018-19. Hoja. Soluciones 49. Encuentra una expresión cerraa para la suma S m = 1 + 7 +... + 1 m+1 m 1 aplicano el cálculo e iferencias, o/y e otro moo. Solución. S n = 1 +

Más detalles

4.1 Antiderivadas o primitivas e integración indefinida

4.1 Antiderivadas o primitivas e integración indefinida 48 CAPÍTULO 4 Integración 4. Antierivaas o primitivas e integración inefinia Escribir la solución general e una ecuación iferencial. Usar la notación e la integral inefinia para las antierivaas o primitivas.

Más detalles

TEMA 1 INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES

TEMA 1 INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES TEMA 1 INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES 7 INTRODUCCIÓN El propósito e este tema es introucir a los alumnos en la terminología básica e las Ecuaciones Diferenciales eaminar brevemente como se

Más detalles

Cálculo Diferencial en una variable

Cálculo Diferencial en una variable Tema 3 Cálculo Diferencial en una variable 3.1 Introucción Analizaremos en este Tema los conceptos funamentales acerca e las erivaas e las funciones reales e variable real. En el tema siguiente estuiaremos

Más detalles

Dar una breve semblanza sobre los Filtros Digitales, sus fundamentos y su principales características.

Dar una breve semblanza sobre los Filtros Digitales, sus fundamentos y su principales características. Filtros Digitales Objetivo Dar una breve semblanza sobre los Filtros Digitales, sus fundamentos y su principales características. Revisar la convolución como fundamentos de los filtros digitales junto

Más detalles

4.1 Antiderivadas o primitivas e integración indefinida

4.1 Antiderivadas o primitivas e integración indefinida 48 CAPÍTULO 4 Integración 4. Antierivaas o primitivas e integración inefinia Escribir la solución general e una ecuación iferencial. Usar la notación e la integral inefinia para las antierivaas o primitivas.

Más detalles

Información importante

Información importante Departamento e Matemática Coorinación e Matemática I (MAT01) 1 er Semestre e 010 Semana 1: Lunes 07 viernes 11 e Junio Información importante Durante esta semana se publicarán las notas el Certamen en

Más detalles

Propiedades de los Sistemas Lineales e Invariantes en el Tiempo

Propiedades de los Sistemas Lineales e Invariantes en el Tiempo Propiedades de los Sistemas Lineales e Invariantes en el Tiempo La respuesta al impulso de un sistema LTIC (h(t)), representa una descripción completa de las características del sistema. Es decir la caracterización

Más detalles

Instituto Tecnológico Autónomo de México Maestría en Economía Microeconomía Aplicada II, 2015 Dominancia estocástica

Instituto Tecnológico Autónomo de México Maestría en Economía Microeconomía Aplicada II, 2015 Dominancia estocástica Instituto Tecnológico Autónomo e México Maestría en Economía Microeconomía Aplicaa II, 215 Dominancia estocástica Ricar Torres Ínice general 1 Introucción: ominación estao a estao 1 2 Dominancia estocástica

Más detalles

Convolución: Un proceso natural en los sistemas lineales e invariantes en el tiempo.

Convolución: Un proceso natural en los sistemas lineales e invariantes en el tiempo. Convolución: Un proceso natural en los sistemas lineales e invariantes en el tiempo. Introducción. En este documento se describe como el proceso de convolución aparece en forma natural cuando se trata

Más detalles

Electrónica Analógica

Electrónica Analógica Electrónica Analógica Conferencia #2 Moelos y parámetros e la unión P-N. iferentes moelos el ioo. Resistencia inámica e la unión P-N. Efectos capacitivos. iempos e conmutación. Bibliografía: Microelectrónica.

Más detalles

EJERCICIOS Sustituyendo x 5, el nivel de producción actual, obtenemos. dc dt (0.7) 1.05

EJERCICIOS Sustituyendo x 5, el nivel de producción actual, obtenemos. dc dt (0.7) 1.05 Sustituyeno 5, el nivel e proucción actual, obtenemos 0. Repita el ejemplo 6 para la función e costo C() 5 3 C t 5 0 (0.7).05 Así que los costos e proucción se están incrementano a una tasa e.05 por año.

Más detalles

UNIDAD I CÁLCULO DIFERENCIAL

UNIDAD I CÁLCULO DIFERENCIAL Vicerrectorao Acaémico Faculta e Ciencias Aministrativas Licenciatura en Aministración Mención Gerencia y Mercaeo Unia Curricular: Matemática I UNIDAD I CÁLCULO DIFERENCIAL Elaborao por: Ing. Ronny Altuve

Más detalles

2.4 La regla de la cadena

2.4 La regla de la cadena 0 CAPÍTULO Derivación. La regla e la caena Encontrar la erivaa e una función compuesta por la regla e la caena. Encontrar la erivaa e una función por la regla general e la potencia. Simplificar la erivaa

Más detalles

Control de Robots Manipuladores: Análisis de Estabilidad vía Perturbaciones Singulares

Control de Robots Manipuladores: Análisis de Estabilidad vía Perturbaciones Singulares Congreso Anual 2009 e la Asociación e México e Control Automático. Zacatecas, México. Control e Robots Manipulaores: Análisis e Estabilia vía Perturbaciones Singulares Antonio Yarza 1, Víctor Santibáñez

Más detalles

MMII_CV_c1 CÁLCULO VARIACIONAL: Introducción y modelo básico.

MMII_CV_c1 CÁLCULO VARIACIONAL: Introducción y modelo básico. MMII_CV_c CÁLCULO VARIACIONAL: Introucción moelo básico. Guión Esta es una clase e introucción al Cálculo e Variaciones (CV). Por un lao, se establece su relación con otros campos e la Optimización en

Más detalles

DEFINICIONES DE HUMEDAD Y SU EQUIVALENCIA

DEFINICIONES DE HUMEDAD Y SU EQUIVALENCIA ENME007 DEFINICIONES DE HUMEDAD Y SU EQUIVALENCIA Enrique Martines L. Centro Nacional e Metrología División e Termometría km 45 Carretera a Los Cués El Marquez Qro. México 110500 ext. 340emartine@cenam.mx

Más detalles

XII. OTROS ESQUEMAS DE CONTROL

XII. OTROS ESQUEMAS DE CONTROL XII. OTROS ESQUEMAS DE CONTROL Para mejorar el control e un proceso puee ser necesario incluir iferentes tipos e esquemas e control, los cuales logran efectos iferentes, sobre las variables a controlar,

Más detalles

SEÑALES Y SISTEMAS Clase 10

SEÑALES Y SISTEMAS Clase 10 SEÑALES Y SISTEMAS Clase 1 Carlos H. Muravchi 9 de Abril de 18 1 / 6 Habíamos visto: Sistemas en general Generalidades. Propiedades. Invariancia. Linealidad. Y se vienen hoy: Sistemas grales: Causalidad.

Más detalles

Sistemas Lineales e Invariantes en el Tiempo (LTI)

Sistemas Lineales e Invariantes en el Tiempo (LTI) Sistemas Lineales e Invariantes en el Tiempo (LTI) Dr. Ing. Leonardo Rey Vega Señales y Sistemas (66.74 y 86.05) Facultad de Ingeniería Universidad de Buenos Aires Agosto 2013 Señales y Sistemas (66.74

Más detalles

Simulación numérica. Modelo Malthusiano. Modelo simplificado de pesca. Modelo de Verhulst. Ecuación logística. dp dt = rp, P(0) = P 0

Simulación numérica. Modelo Malthusiano. Modelo simplificado de pesca. Modelo de Verhulst. Ecuación logística. dp dt = rp, P(0) = P 0 Moelo Malthusiano Simulación numérica Aner Murua Donostia, UPV/EHU P = rp, P(0) = P 0 one r es la iferencia entre la tasa e natalia y la tasa e mortana por unia e tiempo. La solución exacta es P(t) =P

Más detalles

Derivación de funciones de una variable real

Derivación de funciones de una variable real Capítulo 4 Derivación e funciones e una variable real 4.1. Derivaa e una función 4.1.1. Introucción Definición 4.1.1. Sea f : (a, b) R R y x 0 (a, b). Se ice que la función f es erivable en el punto x

Más detalles

UNIDAD IV.- CÁLCULO INTEGRAL

UNIDAD IV.- CÁLCULO INTEGRAL UNIDAD IV.- CÁLCULO INTEGRAL En la práctica e cualquier campo científico es frecuente que se presenten prolemas relacionaos con el cálculo e áreas, algunas veces e figuras regulares y muchas otras, con

Más detalles

Preguntas Más Frecuentes Tema 3

Preguntas Más Frecuentes Tema 3 Preguntas Más Frecuentes Tema 3 Contenio P.3.1: Los terminales e los circuitos están efinios claramente como entraas y salias o se pueen usar e forma iniferente?... 2 P.3.2: Las entraas e las señales e

Más detalles

SEÑALES Y SISTEMAS. PROBLEMAS PROPUESTOS. CAPITULO III

SEÑALES Y SISTEMAS. PROBLEMAS PROPUESTOS. CAPITULO III SEÑALES Y SISTEMAS. PROBLEMAS PROPUESTOS. CAPITULO III Problema 1: Dado el siguiente sistema: a) Determine x1(n) cuando x(n) = u(n) - u(n-4) b) Determine x2(n+1) cuando x(n) = Cos0.5nπ 2º Se define z(n)=

Más detalles

Tema 7. Propagación por onda de superficie

Tema 7. Propagación por onda de superficie Tema 7. Propagación por ona e superficie 1 Introucción...2 1.1 Características e la propagación...2 2 Antena monopolo corto...2 2.1 Ganancia respecto a la antena isótropa y al ipolo...3 2.2 Campo raiao

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS. S O L U C I Ó N y R Ú B R I C A

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS. S O L U C I Ó N y R Ú B R I C A ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS AÑO: 207 PERÍODO: PRIMER TÉRMINO MATERIA: Cálculo e una variable PROFESOR: EVALUACIÓN:

Más detalles

ESTRUCTURA DE LA MATERIA

ESTRUCTURA DE LA MATERIA /4/8 ESTRUCTURA DE LA MATERIA ESTRUCTURA DE LA MATERIA ESTRUCTURA DE LA MATERIA /4/8 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA /4/8 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA /4/8 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA

Más detalles

Sistemas lineales invariantes en el tiempo

Sistemas lineales invariantes en el tiempo Sistemas lineales invariantes en el tiempo Modulación y Procesamiento de Señales Ernesto López Pablo Zinemanas, Mauricio Ramos {pzinemanas, mramos}@fing.edu.uy Centro Universitario Regional Este Sede Rocha

Más detalles

Manual de la Práctica 2: Análisis de sistemas discretos

Manual de la Práctica 2: Análisis de sistemas discretos Control por computaor Manual e la Práctica : Análisis e sistemas iscretos Jorge Pomares Baeza Fracisco Anrés Canelas Herías Grupo e Innovación Eucativa en Automática 009 GITE IEA - - Introucción En la

Más detalles

Principio de incertidumbre de Heisenberg

Principio de incertidumbre de Heisenberg Principio e incertiumbre e Heisenberg n un átomo e irógeno, nos se pueen meir simultáneamente la cantia e movimiento mv y la posición e su electrón. a cantia e movimiento e una partícula se enomina momento,

Más detalles

Logaritmo Natural. x I t dt = ln(x) = ln(x) > 0 para x (1, ) Observación 5. El primer teorema fundamental del Cálculo implica que

Logaritmo Natural. x I t dt = ln(x) = ln(x) > 0 para x (1, ) Observación 5. El primer teorema fundamental del Cálculo implica que Logaritmo Natural Si n ya sabemos que x t n t = n+ xn+ + C, con C una constante. Definición. La regla e corresponencia ln(x) = x t t = x I efine una función con ominio D ln = (0, ). A esta función se le

Más detalles

SEÑALES Y SISTEMAS Clase 11

SEÑALES Y SISTEMAS Clase 11 SEÑALES Y SISTEMAS Clase 11 Carlos H. Muravchik 12 de Abril de 218 1 / 36 Habíamos visto: Sistemas Lineales. Convolución. Y se vienen: Repaso: Convolución - Propiedades. Estabilidad. Representacion de

Más detalles

Capitulo IV. IV.1 Síntesis dimensional de mecanismos. Generación de funciones

Capitulo IV. IV.1 Síntesis dimensional de mecanismos. Generación de funciones Capitulo IV IV. Síntesis imensional e mecanismos. Generación e funciones Cinemática y Dinámica e Máquinas. IV. Síntesis imensional e mecanismos. Generación e funciones Capítulo IV Síntesis imensional e

Más detalles

Sistemas continuos. Francisco Carlos Calderón PUJ 2010

Sistemas continuos. Francisco Carlos Calderón PUJ 2010 Sistemas continuos Francisco Carlos Calderón PUJ 2010 Objetivos Definir las propiedades básicas de los sistemas continuos Analizar la respuesta en el tiempo de un SLIT continuo Definición y clasificación

Más detalles

CLASE II Estática de las construcciones II

CLASE II Estática de las construcciones II ntroucción a las construcciones CLASE Estática e las construcciones lustración sobre la variación e los esfuerzos e estructuras simples. Galileo Galilei, en Discorsi e Dimostrazioni Matematiche, intorno

Más detalles

Regla de la cadena. Ejemplo 1. y = f (g(x)) Como las funciones son diferenciables son suaves.

Regla de la cadena. Ejemplo 1. y = f (g(x)) Como las funciones son diferenciables son suaves. 1 Regla e la caena Hasta aquí hemos erivao funciones que no son compuestas. El problema surge cuano tenemos una función que es compuesta, por ejemplo, igamos que el precio e la gasolina epene el precio

Más detalles

Procesamiento de Señales 1D. 2.1 El mundo análogo de sistemas LIT. Se tiene un sistema H. se puede descomponer

Procesamiento de Señales 1D. 2.1 El mundo análogo de sistemas LIT. Se tiene un sistema H. se puede descomponer 2. Procesamiento de Señales 1D Generalizando, para sistemas lineales e Inv. a la traslación 2.1 El mundo análogo de sistemas LIT Se tiene un sistema H usando.:. En general la salida Si tenemos x 0(t),

Más detalles

Seminario 12: Condensadores.

Seminario 12: Condensadores. Seminario 2: Conensaores. Fabián Anrés Torres Ruiz Departamento e Física, Universia e Concepción, Chile 30 e Mayo e 2007. Problemas. (Desarrollo) Deucción el tiempo e escarga e un conensaor 2. (Problema

Más detalles

Tema 2. Análisis de Sistemas en Tiempo Continuo. Indice:

Tema 2. Análisis de Sistemas en Tiempo Continuo. Indice: Indice: 1. Clasificación de Sistemas en tiempo continuo Lineales y no Lineales Invariante y Variantes en el tiempo Causal y no Causal Estable e Inestables Con y sin Memoria 2. La Convolución La Integral

Más detalles

La regla de la constante. La derivada de una función constante es 0. Es decir, si c es un número real, entonces d c 0. dx (Ver la figura 2.

La regla de la constante. La derivada de una función constante es 0. Es decir, si c es un número real, entonces d c 0. dx (Ver la figura 2. SECCIÓN. Reglas básicas e erivación razón e cambio 07. Reglas básicas e erivación razón e cambio Encontrar la erivaa e una función por la regla e la constante. Encontrar la erivaa e una función por la

Más detalles

Taller 4 Ecuaciones Diofánticas Lineales Profesor Manuel O Ryan

Taller 4 Ecuaciones Diofánticas Lineales Profesor Manuel O Ryan Taller 4 Ecuaciones Diofánticas Lineales Profesor Manuel O Ryan En general una Ecuación Diofántica es una ecuación polinomial en una o más variables para la que buscamos soluciones en los números enteros,

Más detalles

Propiedades de los sistemas (con ecuaciones)

Propiedades de los sistemas (con ecuaciones) Propiedades de los sistemas (con ecuaciones) Linealidad: Para verificar si un sistema es lineal requerimos que le sistema sea homogéneo y aditivo es decir, cumplir con la superposición. Método: Dada una

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2013 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2013 Problemas (Dos puntos por problema). Eamen e Física-1, 1 Ingeniería Química Eamen final. Septiembre e 2013 Problemas Dos puntos por problema). Problema 1 Primer parcial): Un cuerpo e masa m = 0, 5kg se lanza hacia abajo meiante un muelle

Más detalles

Derivación. (x c) que pasa por el punto fijo (c, f(c)) y el punto móvil (c + h, f(c + h)) cuando h tiende a 0.

Derivación. (x c) que pasa por el punto fijo (c, f(c)) y el punto móvil (c + h, f(c + h)) cuando h tiende a 0. Derivación Definición y propieaes básicas Definición. Una función f efinia en un entorno e un punto c R es erivable en c si y sólo si el ite f c = f fc + h fc f fc c := = h h c c eiste y toma un valor

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-13-5-M-1--17 CURSO: Matemática Básica SEMESTRE: Primero CÓDIGO DEL CURSO: 13 TIPO DE EXAMEN: Primera Retrasaa

Más detalles

Figura 1. Sistema de control del problema 6. = K (sin compensar) no pasa por la ubicación deseada. ( s)

Figura 1. Sistema de control del problema 6. = K (sin compensar) no pasa por la ubicación deseada. ( s) TEORÍA DEL ONTROL. SEGUNDO EXAMEN PARIAL MODELO DE SOLUIÓN. M. EN. RUBÉN VELÁZQUEZ UEVAS Problema 6. onsiere le sistema e la figura. Diseñe un compensaor e aelanto tal que los polos ominantes e lazo cerrao

Más detalles

Transformada Z. Temas a tratar. Papel de la TZ. Objetivos. Notas históricas. Repaso conceptos generales

Transformada Z. Temas a tratar. Papel de la TZ. Objetivos. Notas históricas. Repaso conceptos generales Temas a tratar Transformada Z Definición. Relación entre TL y TZ. Relación entre TF y TZ. Mapeos s-. Representación de sistemas de tiempo discreto. Función de transferencia en. Respuesta en frecuencia

Más detalles

Filtrado Digital. Lectura 2: Estructuras Básicas de Filtros Digitales

Filtrado Digital. Lectura 2: Estructuras Básicas de Filtros Digitales Lectura 2: Estructuras Básicas de Filtros Digitales Filtros FIR sencillos Filtro de promedio móvil de 2 puntos (M=1 1er orden): Es el filtro FIR más simple. Note que H(z) tiene un cero en z=-1, y un polo

Más detalles

Universidad Antonio Nariño Matemáticas Especiales Guía N 3: Funciones elementales complejas: exponencial, logaritmo, trigonométricas e hiperbólicas

Universidad Antonio Nariño Matemáticas Especiales Guía N 3: Funciones elementales complejas: exponencial, logaritmo, trigonométricas e hiperbólicas Universia Antonio Nariño Matemáticas Especiales Guía N 3: Funciones elementales complejas: exponencial, logaritmo, trigonométricas e hiperbólicas Grupo e Matemáticas Especiales Resumen Se presenta la efinición

Más detalles

Ecuación de Schrödinger

Ecuación de Schrödinger Ecuación e Schröinger En cuanto a onas electromagnéticas, ya vimos que su comportamiento está regio por las ecuaciones e Maxwell. También hemos visto que a una partícula con masa se le puee asignar una

Más detalles

q = p El conjunto de todas las fracciones racionales se designará en este caso por R(X) y se considerará R[X] R(X).

q = p El conjunto de todas las fracciones racionales se designará en este caso por R(X) y se considerará R[X] R(X). Fracciones Racionales. Introucción. El conjunto R[X] e los olinomios con coeficientes reales, rovisto e la aición y multilicación ue ya conocemos, es un anillo conmutativo con elemento unia. Es ecir, ambas

Más detalles

2.5 Derivación implícita

2.5 Derivación implícita SECCIÓN.5 Derivación implícita.5 Derivación implícita Distinguir entre funciones eplícitas e implícitas. Hallar la erivaa e una función por erivación implícita. EXPLORACIÓN Representación gráfica e una

Más detalles

Principio de Superposición

Principio de Superposición 1 Sistemas en tiempo continuo discreto Un sistema en tiempo continuo discreto e puede ver como una transformación que se aplica a una señal de entrada en tiempo continuo discreto y produce una señal de

Más detalles

Información importante

Información importante Universia Técnica Feerico Santa María Departamento e Matemática Coorinación e Matemática I (MAT021) 1 er Semestre e 2010 Semana 9: Lunes 17 viernes 21 e Mayo Información importante El control Q2A es el

Más detalles

Respuesta en Frecuencia de Sistemas Continuos

Respuesta en Frecuencia de Sistemas Continuos espuesta en Frecuencia e Sisteas Continuos UeC - DIE Problea Caso Ilustrar el Diagraa e Boe a partir e una F. e T. y/o e una representación {A, b, c, }. Masa suspenia. Paráetros l o :=.5 :=.5 k:= x(t k

Más detalles

5. PROPUESTA DE INVERSOR BIDIRECCIONAL MULTINIVEL CON AISLAMIENTO EN ALTA FRECUENCIA UTILIZANDO LAS TOPOLOGÍAS PUSH-PULL/PUENTE COMPLETO

5. PROPUESTA DE INVERSOR BIDIRECCIONAL MULTINIVEL CON AISLAMIENTO EN ALTA FRECUENCIA UTILIZANDO LAS TOPOLOGÍAS PUSH-PULL/PUENTE COMPLETO CAPÍTUO 5 5. PROPUESTA DE INVERSOR BIDIRECCIONA MUTINIVE CON AISAMIENTO EN ATA FRECUENCIA UTIIZANDO AS TOPOOGÍAS PUSHPU/PUENTE COMPETO 5.. DESCRIPCIÓN DE INVERSOR BIDIRECCIONA MUTINIVE CON AISAMIENTO EN

Más detalles

CONCEPTOS BÁSICOS DE CONFIABILIDAD

CONCEPTOS BÁSICOS DE CONFIABILIDAD CAPÍTULO II CONCEPTOS BÁSICOS DE CONFIABILIDAD El iseño e sistemas, comprene los aspectos más amplios e la organización e equipo complejo, turnos e operación, turnos e mantenimiento y e las habiliaes necesarias

Más detalles

CONGRESO ANUAL DE LA AMCA 2004 CONTROLADOR LQG EXPERIMENTAL DE PROPÓSITO DIDÁCTICO

CONGRESO ANUAL DE LA AMCA 2004 CONTROLADOR LQG EXPERIMENTAL DE PROPÓSITO DIDÁCTICO CONROLADOR LQG EXPERIMENAL DE PROPÓSIO DIDÁCICO M. en I. Ricaro Garibay Jiménez, Ing. Roberto Iniestra González Departamento e Ingeniería e Control, Faculta e Ingeniería, UNAM Fa: 52-55-566855; e-mail:

Más detalles

3.1. DERIVADAS DE SEGUNDO ORDEN

3.1. DERIVADAS DE SEGUNDO ORDEN .. DERIVADAS DE SEGUNDO ORDEN La erivaa y ' f ' es la primera erivaa e y con respecto a, pero igualmente es posible realizar la erivaa e la erivaa, y y '' f ''. Lo que se conoce como la seguna erivaa e

Más detalles

Tema 2. Análisis de Sistemas en Tiempo Continuo

Tema 2. Análisis de Sistemas en Tiempo Continuo Por definición la convolución es el producto integral de dos funciones desde hasta +. Para hallar la convolución de dos funciones gráficamente, se debe dejar una de ellas fija, transponer la otra y desplazarla

Más detalles

El Problema del Chattering

El Problema del Chattering CAPITULO OCHO El Problema el Chattering Casi siempre que las ieas en moos eslizantes son implementaas, el ruio que provocan los controlaores han irritao a los ingenieros iseñaores casi hasta el punto e

Más detalles

Procesamiento digital de la señal Señales y sistemas de tiempo discreto

Procesamiento digital de la señal Señales y sistemas de tiempo discreto Procesamiento digital de la señal Señales y sistemas de tiempo discreto Alfonso Zozaya Universidad de Carabobo (UC) Departamento de Electrónica y Comunicaciones Valencia, Venezuela, febrero de 2004 A.

Más detalles

Autor: Sergio Gil Villalba. Impreso: Digitalhouse. Guatemala, Tiraje: 12 ejemplares CITA BIBLIOGRÁFICA

Autor: Sergio Gil Villalba. Impreso: Digitalhouse. Guatemala, Tiraje: 12 ejemplares CITA BIBLIOGRÁFICA Autor: Sergio Gil Villalba Impreso: Digitalhouse Guatemala, 22 Tiraje: 2 ejemplares CITA BIBLIOGRÁFICA ICC (Instituto Privao e Investigación sobre Cambio Climático). Estuio e intensia e precipitación en

Más detalles

Parcial de Cálculo C 0

Parcial de Cálculo C 0 Parcial e Cálculo C 0 0 0 Funamentos e Matemáticas Usar los polinomios e Talor para averiguar si la función g = 7 alcanza o no un etremo local en = 0 sen ln Solución: El polinomio e Talor en = 0 e un polinomio

Más detalles

SISTEMAS ELECTRÓNICOS DE CONTROL

SISTEMAS ELECTRÓNICOS DE CONTROL SISTEMAS ELECTÓNICOS DE CONTOL EL AMPLIFICADO OPEACIONAL:. Introucción. Características generales. Configuraciones básicas el amplificaor operacional. El comparaor 6 B ELECTÓNICA 0 E.E.T Nº 60 GUILLEMO

Más detalles

UNIDAD 1: SEÑALES Y SISTEMAS CONTINUOS - TEORÍA

UNIDAD 1: SEÑALES Y SISTEMAS CONTINUOS - TEORÍA CURSO: SEÑALES Y SISTEMAS UNIDAD 1: SEÑALES Y SISTEMAS CONTINUOS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA P. 1. DEFINICIONES SEÑAL: Matemáticamente es una variable que contiene información y representa

Más detalles

Cinemática y Dinámica de Fluidos: Fundamentos Básicos

Cinemática y Dinámica de Fluidos: Fundamentos Básicos Cinemática y Dinámica e Fluios: Funamentos Básicos Santiago López Algunas Definiciones Antes e empezar con el tema central e éste capítulo, se eben introucir unos conceptos que son útiles a la hora e e

Más detalles

MODELOS DE SERIES DE TIEMPO 1. Modelos capaces de predecir, interpretar y evaluar hipótesis con datos económicos y financieros.

MODELOS DE SERIES DE TIEMPO 1. Modelos capaces de predecir, interpretar y evaluar hipótesis con datos económicos y financieros. MODELOS DE SERIES DE TIEMPO 1 Introducción Modelos capaces de predecir, interpretar y evaluar hipótesis con datos económicos y financieros. Originalmente tuvieron como objetivo hacer predicciones. Descomposición

Más detalles

Solucionario - Ejercicios para la PC#2

Solucionario - Ejercicios para la PC#2 UNIVERSIDAD TENOÓGIA DE PERÚ Faculta e Ingeniería Electrónica y ecátronica S235 Teoría e ontrol II Solucionario - Ejercicios para la P#2 ayo 202 Prob#: Oscilaor Van er Pol onsiere elcircuito simple R,,

Más detalles

Derivadas de orden superior e implícitas

Derivadas de orden superior e implícitas CDIN06_MAAL_Implícitas Versión: Septiembre 0 Revisor: Sanra Elvia Pérez Derivaas e oren superior e implícitas por Sanra Elvia Pérez Derivación implícita Las funciones que has estuiao hasta este momento

Más detalles

Semana 14-Derivadas I[1/29] Derivada. 7 de junio de Derivada

Semana 14-Derivadas I[1/29] Derivada. 7 de junio de Derivada Semana 14-s I[1/9] 7 e junio e 007 s Introucción Semana 14-s I[/9] Introucción P f Q Consieremos el gráfico e una función f con ominio R. Sea P = (x 0, y 0 ) un punto el gráfico e f y sea Q = (x 1, y 1

Más detalles

Ecuaciones Diferenciales de primer Orden

Ecuaciones Diferenciales de primer Orden 4 Ecuaciones Diferenciales e primer Oren 1.1 1.1. Introucción Las palabras ecuaciones y iferenciales nos hacen pensar en la solución e cierto tipo e ecuación que contenga erivaas. Así como al estuiar álgebra

Más detalles

Segunda parte (2h 30 ):

Segunda parte (2h 30 ): TRATAMIENTO DIGITAL DE SEÑALES EXAMEN FINAL SEPTIEMBRE 2008 05/09/2008 APELLIDOS NOMBRE DNI NO DE LA VUELTA A ESTA HOJA HASTA QUE SE LO INDIQUE EL PROFESOR MIENTRAS TANTO, LEA ATENTAMENTE LAS INSTRUCCIONES

Más detalles

LA CICLOIDE, UNA CURVA DE MUCHO EMPAQUE

LA CICLOIDE, UNA CURVA DE MUCHO EMPAQUE LA CICLOIDE, UNA CUVA DE MUCHO EMPAQUE CALOS S CHINEA LA CICLOIDE UNA CUVA DE MUCHO EMPAQUE Una breve introucción 1 Ecuaciones paramétricas La tangente y la normal en un punto 3 Longitu e un arco 4 El

Más detalles

Procesamiento Digital de Señales: Ecuaciones Diferenciales y en Diferencias

Procesamiento Digital de Señales: Ecuaciones Diferenciales y en Diferencias Procesamiento Digital de Señales: Ecuaciones Diferenciales y en Diferencias Objetivo Exponer las relaciones de la transformada de Laplace con las ecuaciones diferenciales y lineales de orden n junto con

Más detalles

TEMA 9 Electrostática

TEMA 9 Electrostática Bases Físicas y Químicas el Meio Ambiente TMA 9 lectrostática Cargas eléctricas ntre os cuerpos hay siempre fuerzas atractivas ebio a sus respectivas masas y pueen existir otras fuerzas entre ellos si

Más detalles

( ) 2. Pendiente de una Recta Tangente. Sea f una función que es continua en x. 1. Para definir la pendiente de la recta tangente ( )

( ) 2. Pendiente de una Recta Tangente. Sea f una función que es continua en x. 1. Para definir la pendiente de la recta tangente ( ) Derivaa e una Función Ínice.. Introucción.. Peniente e una recta tangente.. Derivaa e una función. 4. Derivaas laterales. 5. Derivaa e una función compuesta (Regla e la Caena). 6. Tabla e erivaas usuales.

Más detalles

Problemas de Estructuras de Filtros Digitales.

Problemas de Estructuras de Filtros Digitales. Problemas de Estructuras de Filtros Digitales. Estructuras de Filtros Digitales 1.- En la figura siguiente se representa una realización en la forma acoplada de una función del sistema que presenta una

Más detalles

Nombre de la asignatura: PROCESAMIENTO DIGITAL DE SEÑALES. Horas teoría - horas práctica créditos: 3 2 8

Nombre de la asignatura: PROCESAMIENTO DIGITAL DE SEÑALES. Horas teoría - horas práctica créditos: 3 2 8 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: PROCESAMIENTO DIGITAL DE SEÑALES Carrera: INGENIERÍA ELECTRÓNICA Clave de la asignatura: Horas teoría - horas práctica créditos: 3 2 8 2.- HISTORIA DEL

Más detalles

FUNDAMENTOS TEÓRICOS

FUNDAMENTOS TEÓRICOS FUNDAMENTOS TEÓRICOS 7 FUNDAMENTOS TEÓRICOS 1.1. FUNDAMENTOS TEÓRICOS: FILTROS La primera pregunta que debemos de hacernos es, qué es un filtro?, pues bien, un filtro es un dispositivo (bien realizado

Más detalles

UNIDAD 5.- EMBRAGUES Y FRENOS.

UNIDAD 5.- EMBRAGUES Y FRENOS. UNIDAD 5.- EMBRAGUES Y FRENOS. 5..- INTRODUCCIÓN. Los sistemas mecánicos necesitan controlarse siempre que exista la necesia e cambiar el sentio el movimiento e uno o más e sus componentes. Los elementos

Más detalles

CUESTIONES DEL TEMA - III

CUESTIONES DEL TEMA - III Presentación En el tema 3 se analiza la influencia que ejerce la realimentación negativa sobre los parámetros e un amplificaor. También se analiza el concepto e Estabilia e un amplificaor, y se presenta

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Departamento e Física Aplicaa III Escuela Superior e Ingeniería Camino e los Descubrimientos s/n 49 Sevilla Física II Grupos y 4 Primer Curso el Grao en Ingeniería e Tecnologías Inustriales Primera prueba

Más detalles