LA CICLOIDE, UNA CURVA DE MUCHO EMPAQUE

Tamaño: px
Comenzar la demostración a partir de la página:

Download "LA CICLOIDE, UNA CURVA DE MUCHO EMPAQUE"

Transcripción

1 LA CICLOIDE, UNA CUVA DE MUCHO EMPAQUE CALOS S CHINEA LA CICLOIDE UNA CUVA DE MUCHO EMPAQUE Una breve introucción 1 Ecuaciones paramétricas La tangente y la normal en un punto 3 Longitu e un arco 4 El área que barre un arco 5 Las curiosas propieaes e la cicloie 6 Documentación Una breve introucción: La Cicloie puee ser efinia como la curva plana que es escrita físicamente por la trayectoria e un punto e una circunferencia que, sin eslizarse, ruea sobre una recta horizontal Es inmeiato que si pensamos en el punto e contacto e la circunferencia con la recta en el instante inicial el comienzo el roamiento, este punto escribe un arco hasta volver a tocar e nuevo la recta horizontal sobre la cual se prouce la roaura e la circunferencia Este arco, pues, estará encerrano un área plana sobre icha recta horizontal en el intervalo [, p] Aun cuano parece ser que fue Galileo Galilei ( el primero en estuiar esta curiosa curva, sin embargo, la historia e la Cicloie como objeto el quehacer fisicomatemático en Europa arranca ese 1637, unos po años antes e la muerte e este gran científico Marín Mersenne ( , el monje amigo e Descartes, publicó en 1637, en su "Armonía Universal", el trabajo e Gilles P oberval (Senlis, 16- DIVULGACIÓN DE LA MATEMATICA EN LA ED ENEO 1

2 LA CICLOIDE, UNA CUVA DE MUCHO EMPAQUE CALOS S CHINEA París, 1675, en el que se había lograo, entre otras as, el cálculo exacto el área barria sobre la recta horizontal por un arco e Cicloie ené Descartes obtuvo, e una forma efectiva y elegante, la recta tangente en un punto el arco e cicloie con una técnica que ha sio seguia espués por el esarrollo e la geometría iferencial Ya en 1658 fue cuano Blas Pascal ( , en un famoso esafío a los científi europeos e la época, proponía eterminar la longitu e un arco e la Cicloie y también su centro e gravea, así como la superficie el volumen e revolución que engenra el área plana que barre el arco e cicloie al girar ya sea entorno al eje x, o entorno al eje y, o bien, entorno al eje e simetría el arco e Cicloie Fueron, en efinitiva, muchos los esfuerzos realizaos en el siglo XVII para tratar e comprener esta curva y sus propieaes, tanto geométricas como físicas, que han permitio esarrollar, espués, un gran número e aplicaciones 1 Ecuaciones paramétricas: Para obtener las ecuaciones paramétricas e la Cicloie bastará tener en cuenta en la figura que, puesto que la circunferencia no se esliza, sino que ruea, el arco PB y la istancia rectilínea OB coincien: OB arco(pb Así, pues, para un punto genérico cualquiera P(x,y e la Cicloie, se tiene, llamano al raio e la circunferencia y a al ángulo en el centro: x OA OB AB arco( PB PD sen sen ( sen y PA DB DC DB PD (1 En efinitiva, las ecuaciones paramétricas son: DIVULGACIÓN DE LA MATEMATICA EN LA ED ENEO

3 LA CICLOIDE, UNA CUVA DE MUCHO EMPAQUE CALOS S CHINEA x ( sen y (1 La tangente y la normal en un punto: La recta tangente a una curva plana cualquiera y f(x, en el punto P(x, y es e la forma y y y x ( x x Y la ecuación e la normal en icho punto: y y En el caso e la Cicloie, se tiene: 1 y x ( x x x (1, y sen y x sen (1 En efinitiva, al sustituir: Tangente a la Cicloie en P(x, y : 1 sen y y ( x x y (1 ( x ( sen sen (1 quitano enominaores y simplificano: sen x ( 1 y ( sen Normal a la Cicloie en P(x, y : sen 1 y y ( x x y (1 ( x ( sen 1 sen quitano enominaores y simplificano: ( 1 x sen y (1 DIVULGACIÓN DE LA MATEMATICA EN LA ED ENEO 3

4 LA CICLOIDE, UNA CUVA DE MUCHO EMPAQUE CALOS S CHINEA Estas son, por consiguiente, las ecuaciones el haz e tangentes y el haz e normales a la Cicloie Hay, evientemente, una tangente y una normal para caa valor el parámetro a el haz 3 Longitu e un arco: La longitu e un arco e curva entre os puntos, A y B, se puee calcular meiante la integral efinia L AB B A x y B A x y Por tanto, en el caso e la Cicloie, el arco entre los puntos (, y (p, es: L (1 sen (1 1 y, e la fórmula el ángulo mita: por tanto: sen 1 L sen ( ( ( 1 1 ( 8 En efinitiva, la longitu e un arco e Cicloie resulta ser 8 veces la longitu el raio el círculo generaor 4 El área que barre un arco: El área barria por un arco y f(x en el intervalo real (, p viene ao por la integral efinia: A y x (1 (1 (1 DIVULGACIÓN DE LA MATEMATICA EN LA ED ENEO 4

5 LA CICLOIDE, UNA CUVA DE MUCHO EMPAQUE CALOS S CHINEA 1 ( 1 ( ( 3 Es ecir, el área barria por un arco e Cicloie resulta ser tres veces el área el círculo que la genera 5 Las curiosas propieaes e la Cicloie: La Cicloie presenta algunas propieaes que no se encuentran en la generalia e las curvas planas Vamos a ver con cierto etalle una propiea geométrica, la propiea e la evoluta o envolvente el haz las normales, y, muy someramente, os propieaes físicas que han contribuio granemente a la fama e esta curva: la tautocronía y la braquistocronía 51 La envolvente e las normales: La envolvente e un haz e curvas efinio por un parámetro a se obtiene eliminano el parámetro entre el sistema e ecuaciones con os incógnitas formao por la ecuación e la expresión el haz y su erivaa con respecto a al parámetro En realia, las ecuaciones paramétricas e icha envolvente son icho sistema e os ecuaciones, que poemos explicitar espejano las variables x e y en función el parámetro a La envolvente el haz e las normales a una curva se llama evoluta e icha curva La evoluta e la Cicloie se poría eterminar, pues, eliminano el parámetro a entre la ecuación e haz e las normales y su erivaa con respecto al parámetro, o bien, explicitano sus ecuaciones paramétricas en función e a Puesto que la ecuación el haz e normales es e la forma: su erivaa con respecto al parámetro: ( 1 x sen y (1 sen x, y ( sen 1 Si eliminamos la y entre ambas ecuaciones meiante una simple reucción, multiplicano por ejemplo la primera por un eno y la seguna por un seno, se obtiene, al simplificar: x sen y, al sustituir esta expresión, se puee espejar la y: y DIVULGACIÓN DE LA MATEMATICA EN LA ED ENEO 5

6 LA CICLOIDE, UNA CUVA DE MUCHO EMPAQUE CALOS S CHINEA Se obtiene así, para las ecuaciones paramétricas e la evoluta: x y sen Lo curioso es que esta evoluta es, también, una Cicloie Las ecuaciones obtenias corresponen a una Cicloie cuano el origen se encuentra en el punto el plano (, Efectivamente, si en las ecuaciones paramétricas e la Cicloie, traslaamos el origen a icho punto, se tiene: x y x sen ( sen ( sen( y ( Y llamano, ', se tienen las ecuaciones e la evoluta: x y ' sen ' ' En efinitiva, si se representa gráficamente la cicloie y su evoluta se tenría: Existe un inesperao resultao en lo que respecta a las normales e la Cicloie: es constante, e igual a 4, la suma e la longitu el segmento e normal ese la curva hasta el punto e tangencia con la evoluta más el arco e evoluta que va ese icho punto e tangencia hasta su vértice Esto es, en la figura siguiente se verifica la relación DIVULGACIÓN DE LA MATEMATICA EN LA ED ENEO 6

7 LA CICLOIDE, UNA CUVA DE MUCHO EMPAQUE CALOS S CHINEA DIVULGACIÓN DE LA MATEMATICA EN LA ED ENEO 7 TV arco CT 4 ( Veamos el cálculo: a Cálculo e CT:, (,, ( sen T sen C ( ( (1 8 ( ( sen sen y y x x CT T C T C b Cálculo e arco(tv: sen y x sen y x y sen x Por tanto, es (1 y x Entonces: 4 4 ( 4 4 (1 4 (1 ( sen sen sen sen y x TV arco

8 LA CICLOIDE, UNA CUVA DE MUCHO EMPAQUE CALOS S CHINEA c Suma total: CT arco( TV 4 sen 4 4 sen 4 Esto quiere ecir que la longitu anterior es siempre constante, esto es, que si pensamos físicamente en un corel, e longitu 4, que esté sujeto al punto V e la figura y que se esplaza a moo e pénulo, apoyánose tangencialmente en los ar e la evoluta, el extremo el corel escribe, siempre, una Cicloie 5 La propiea e ser tautócrona: En el año 1673, Christian Huygens (La Haya, , matemático, físico y astrónomo, estuioso urante toa su via e iferentes curvas, escubrió un hecho que le pareció extraorinario en la Cicloie: si un punto se esplaza a lo largo e la curva invertia, en caía libre, llegará al punto mínimo e la Cicloie en un tiempo que no epene el punto ese one comenzó a caer El cálculo e ese tiempo t no es complicao Ecuaciones paramétricas: x ( sen, y ( 1 La velocia el esplazamiento el punto es la variación e arco e Cicloie con respecto al tiempo: s v t Y también se puee expresar, por ser el movimiento en caía libre: v gh DIVULGACIÓN DE LA MATEMATICA EN LA ED ENEO 8

9 LA CICLOIDE, UNA CUVA DE MUCHO EMPAQUE CALOS S CHINEA Por tanto, el tiempo se puee espejar resolvieno una integral: t s gh t s s s 1 gh Calculemos, por consiguiente, s y h, a fin e resolver la integral: s x y 4 sen sen (1 4 1 h y( φ y( (φ 1 ( 1 (φ φ ( 1 1 ( φ Por consiguiente, se tiene, integrano ese φ hasta : sen sen t φ gh φ φ g φ 4 g( φ x x g φ g φ g 1 φ x x 1 sen φ u u g one hemos hecho: 1 x x sen 53 La propiea e ser braquistócrona: La Cicloie tiene, aemás, la propiea e ser la curva e escenso más rápio Esto quiere ecir que si un punto se esplaza en caía libre ese un punto más alto, A, hasta otro más bajo, B, la curva por la llega antes al punto B es, precisamente, la Cicloie Este escubrimiento se hizo también en el siglo XVII, al haber planteao Johann Bernouilli el entonces llamao "Problema e la braquistócrona" DIVULGACIÓN DE LA MATEMATICA EN LA ED ENEO 9

10 LA CICLOIDE, UNA CUVA DE MUCHO EMPAQUE CALOS S CHINEA Se encontró la solución al problema por iferentes matemáti e la época, entre los que estaban Newton y Huygens 6 Documentación: - Por su buen nivel y amena exposición, recomenamos vivamente la lectura el trabajo "Ecuaciones y emostraciones e las propieaes e la cicloie", el profesor Miguel e Guzman Osamiz, en la irección e internet (El presente artículo está basao en algunos e sus resultaos - También es muy interesante: "La Cicloie", breve trabajo en Gacetilla Matemática Dirección: - Otra trabajo e lectura obligaa: "La Helena e la Geometría", en - Toas las páginas siguientes aportan ieas, información y métoos e tratamiento geométrico relacionao con la Cicloie y sus fabulosas propieaes: DIVULGACIÓN DE LA MATEMATICA EN LA ED ENEO 1

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-13-5-M-1--17 CURSO: Matemática Básica SEMESTRE: Primero CÓDIGO DEL CURSO: 13 TIPO DE EXAMEN: Primera Retrasaa

Más detalles

2.5 Derivación implícita

2.5 Derivación implícita SECCIÓN.5 Derivación implícita.5 Derivación implícita Distinguir entre funciones eplícitas e implícitas. Hallar la erivaa e una función por erivación implícita. EXPLORACIÓN Representación gráfica e una

Más detalles

2.4 La regla de la cadena

2.4 La regla de la cadena 0 CAPÍTULO Derivación. La regla e la caena Encontrar la erivaa e una función compuesta por la regla e la caena. Encontrar la erivaa e una función por la regla general e la potencia. Simplificar la erivaa

Más detalles

Información importante

Información importante Departamento e Matemática Coorinación e Matemática I (MAT01) 1 er Semestre e 010 Semana 1: Lunes 07 viernes 11 e Junio Información importante Durante esta semana se publicarán las notas el Certamen en

Más detalles

La regla de la constante. La derivada de una función constante es 0. Es decir, si c es un número real, entonces d c 0. dx (Ver la figura 2.

La regla de la constante. La derivada de una función constante es 0. Es decir, si c es un número real, entonces d c 0. dx (Ver la figura 2. SECCIÓN. Reglas básicas e erivación razón e cambio 07. Reglas básicas e erivación razón e cambio Encontrar la erivaa e una función por la regla e la constante. Encontrar la erivaa e una función por la

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE--4-M---7 CURSO: Matemática Básica SEMESTRE: Primero CÓDIGO DEL CURSO: TIPO DE EXAMEN: Eamen Final FECHA DE

Más detalles

Parcial de Cálculo C 0

Parcial de Cálculo C 0 Parcial e Cálculo C 0 0 0 Funamentos e Matemáticas Usar los polinomios e Talor para averiguar si la función g = 7 alcanza o no un etremo local en = 0 sen ln Solución: El polinomio e Talor en = 0 e un polinomio

Más detalles

Información importante

Información importante Universia Técnica Feerico Santa María Departamento e Matemática Coorinación e Matemática I (MAT021) 1 er Semestre e 2010 Semana 9: Lunes 17 viernes 21 e Mayo Información importante El control Q2A es el

Más detalles

La esfera. Haciendo los cuadrados y agrupando se obtiene la ecuación implícita:

La esfera. Haciendo los cuadrados y agrupando se obtiene la ecuación implícita: José María Martíne Meiano La esfera La superficie esférica la esfera es el conjunto e puntos el espacio que equiistan e otro punto fijo, llamao centro Si el centro es el punto Oa, b, c el raio vale r,

Más detalles

2.5 Derivación implícita

2.5 Derivación implícita SECCIÓN.5 Derivación implícita 4.5 Derivación implícita Distinguir entre funciones eplícitas e implícitas. Hallar la erivaa e una función por erivación implícita. E X P L O R A C I Ó N Representación gráfica

Más detalles

Derivación de funciones de una variable real

Derivación de funciones de una variable real Capítulo 4 Derivación e funciones e una variable real 4.1. Derivaa e una función 4.1.1. Introucción Definición 4.1.1. Sea f : (a, b) R R y x 0 (a, b). Se ice que la función f es erivable en el punto x

Más detalles

CLASE II Estática de las construcciones II

CLASE II Estática de las construcciones II ntroucción a las construcciones CLASE Estática e las construcciones lustración sobre la variación e los esfuerzos e estructuras simples. Galileo Galilei, en Discorsi e Dimostrazioni Matematiche, intorno

Más detalles

Semana 14-Derivadas I[1/29] Derivada. 7 de junio de Derivada

Semana 14-Derivadas I[1/29] Derivada. 7 de junio de Derivada Semana 14-s I[1/9] 7 e junio e 007 s Introucción Semana 14-s I[/9] Introucción P f Q Consieremos el gráfico e una función f con ominio R. Sea P = (x 0, y 0 ) un punto el gráfico e f y sea Q = (x 1, y 1

Más detalles

4.1 Antiderivadas o primitivas e integración indefinida

4.1 Antiderivadas o primitivas e integración indefinida 48 CAPÍTULO 4 Integración 4. Antierivaas o primitivas e integración inefinia Escribir la solución general e una ecuación iferencial. Usar la notación e la integral inefinia para las antierivaas o primitivas.

Más detalles

4.1 Antiderivadas o primitivas e integración indefinida

4.1 Antiderivadas o primitivas e integración indefinida 48 CAPÍTULO 4 Integración 4. Antierivaas o primitivas e integración inefinia Escribir la solución general e una ecuación iferencial. Usar la notación e la integral inefinia para las antierivaas o primitivas.

Más detalles

DERIVADA. Interpretación Geométrica Encontrar la pendiente de la recta tangente a una curva en un punto dado de ella.

DERIVADA. Interpretación Geométrica Encontrar la pendiente de la recta tangente a una curva en un punto dado de ella. DERIVADA Interpretación Geométrica Objetivo: Encontrar la peniente e la recta tangente a una curva en un punto ao e ella. Para precisar correctamente la iea e tangente a una curva en un punto, se utilizará

Más detalles

Cálculo I. Índice Reglas Fundamentales para el Cálculo de Derivadas. Julio C. Carrillo E. * 1. Introducción 1. 2.

Cálculo I. Índice Reglas Fundamentales para el Cálculo de Derivadas. Julio C. Carrillo E. * 1. Introducción 1. 2. 3.2. Reglas Funamentales para el Cálculo e Derivaas Julio C. Carrillo E. * Ínice 1. Introucción 1 2. Reglas básicas 3 3. El Álgebra e funciones erivables 4 4. Regla e la caena 8 * Profesor Escuela e Matemáticas,

Más detalles

Unidad 1 Ecuaciones Diferenciales de Primer Orden. 1.1 Definiciones (Ecuación Diferencial, Orden, Grado, Linealidad)

Unidad 1 Ecuaciones Diferenciales de Primer Orden. 1.1 Definiciones (Ecuación Diferencial, Orden, Grado, Linealidad) . Definiciones (Ecuación Diferencial, Oren, Grao, Linealia) Unia Ecuaciones Diferenciales e Primer Oren. Definiciones (Ecuación Diferencial, Oren, Grao, Linealia) En iversas áreas como son la ingeniería,

Más detalles

12. Funciones trigonométricas

12. Funciones trigonométricas . Funciones trigonométricas asfasfasfasfasf.. Funciones seno coseno En este móulo nos ocuparemos, en primer lugar, e las funciones trigonométricas. Wang Zheni (78-797) sen() cos() Son funciones one la

Más detalles

EXAMEN EXTRAORDINARIO DE FÍSICA I. CUESTIONES 30/01/2017

EXAMEN EXTRAORDINARIO DE FÍSICA I. CUESTIONES 30/01/2017 EXAME EXTRAORDIARIO DE FÍSICA I. CUESTIOES 30/0/07.- a) Defina el momento angular e una partícula. Demostrar que si la partícula se mueve en un plano, la irección el momento angular permanece constante.

Más detalles

Escuela Politécnica. Universidad de Alcalá

Escuela Politécnica. Universidad de Alcalá Escuela Politécnica. Universia e Alcalá Asignatura: PROPAGACIÓN Y ONDAS Grao en Ingenieria Electrónica e Comunicaciones (G37) Grao en Ingeniería Telemática (G38) Grao en Ingeniería en Sistemas e Telecomunicación

Más detalles

UCLM - Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG)

UCLM - Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) PAEG Junio 03 Propuesta B Matemáticas aplicaas a las CCSS II º Bachillerato UCLM - Pruebas e Acceso a Enseñanzas Universitarias Oiciales e Grao (PAEG) Matemáticas aplicaas a las Ciencias Sociales II Junio

Más detalles

Ecuaciones Diferenciales de primer Orden

Ecuaciones Diferenciales de primer Orden 4 Ecuaciones Diferenciales e primer Oren 1.1 1.1. Introucción Las palabras ecuaciones y iferenciales nos hacen pensar en la solución e cierto tipo e ecuación que contenga erivaas. Así como al estuiar álgebra

Más detalles

Funciones de Bessel. Dr. Héctor René Vega-Carrillo

Funciones de Bessel. Dr. Héctor René Vega-Carrillo Funciones e Bessel Dr. Héctor René Vega-Carrillo 1 2 Ínice 1. Introucción............................. 3 2. Solución e la Ecuación iferencial e Bessel........... 5 2.1. Caso n entero............................

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS. S O L U C I Ó N y R Ú B R I C A

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS. S O L U C I Ó N y R Ú B R I C A ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS AÑO: 207 PERÍODO: PRIMER TÉRMINO MATERIA: Cálculo e una variable PROFESOR: EVALUACIÓN:

Más detalles

Cada grado se divide en 60 minutos (60 ) y cada minuto en 60 segundos (60 ). Así, por ejemplo, un ángulo puede medir = 38º

Cada grado se divide en 60 minutos (60 ) y cada minuto en 60 segundos (60 ). Así, por ejemplo, un ángulo puede medir = 38º Sistemas e meición e ángulos Como en toos los elementos susceptibles a meiciones, en los ángulos se han establecio iversos sistemas e meición, entre ellos los más importantes son: El sistema seagesimal

Más detalles

A G R. Diédrico 18. Cuerpos 5. Cubo básico A 1

A G R. Diédrico 18. Cuerpos 5. Cubo básico A 1 1 1 ibujar los s, e igual longitu e arista, en las cuatro posiciones siguientes: 1. poyao por la cara en el P (la posición e la izquiera).. on la iagonal vertical; se a la posición e la recta one está

Más detalles

INTEGRAL INDEFINIDA. Una pregunta inicial para hacerse. Cuál es una función F(x), que al haber sido derivada se obtuvo f ( x) B?.

INTEGRAL INDEFINIDA. Una pregunta inicial para hacerse. Cuál es una función F(x), que al haber sido derivada se obtuvo f ( x) B?. es INTEGRAL INDEFINIDA UConcepto e antierivaau: Una pregunta inicial para hacerse. Cuál es una función F(), que al haber sio erivaa se obtuvo f ( ) =?. La repuesta es: F ( ) =. Una nueva pregunta. Es la

Más detalles

Matemticas V: Cálculo diferencial

Matemticas V: Cálculo diferencial Matemticas V: Cálculo iferencial Soluciones Tarea 8. Para caa una e las siguientes ecuaciones encuentra la ecuación e la recta tangente a la curva en el punto ao p. (a) x y + xy, p (, ). Suponemos que

Más detalles

1. Hallar la derivada por definición de f ( x) x x 1. Solución: para resolver la derivada aplicaremos la definición de la derivada: f '( x)

1. Hallar la derivada por definición de f ( x) x x 1. Solución: para resolver la derivada aplicaremos la definición de la derivada: f '( x) . Hallar la erivaa por efinición e f ( ) Solución: para resolver la erivaa aplicaremos la efinición e la erivaa: f '( ) lim 0 f ( ) f ( ) f ( ) f '( ) lim 0 ara allar la erivaa meiante efinición ebemos

Más detalles

Problema 1 (4 puntos)

Problema 1 (4 puntos) Problema 1 (4 puntos) A principios e siglo XX, Robert Millikan esarrolló un métoo para eterminar la carga eléctrica e gotas e aceite. El montaje experimental que utilizó está representao en la figura.

Más detalles

Seminario de problemas. Curso Hoja 5. Soluciones

Seminario de problemas. Curso Hoja 5. Soluciones Seminario e problemas. Curso 018-19. Hoja. Soluciones 49. Encuentra una expresión cerraa para la suma S m = 1 + 7 +... + 1 m+1 m 1 aplicano el cálculo e iferencias, o/y e otro moo. Solución. S n = 1 +

Más detalles

SISTEMAS DE COORDENADAS EN EL ESPACIO

SISTEMAS DE COORDENADAS EN EL ESPACIO Matemática Diseño Inustrial Coorenaas en el espacio Ing. vila Ing. Moll SISTEMS DE CRDENDS EN EL ESPCI De forma similar a la vista para el plano, se pueen efinir istintos sistemas e coorenaas. CRDENDS

Más detalles

http://www.matematicaaplicaa.co.cc jezasoft@gmail.com e MATEMÁTICA APLICADA TECNOLOGIA EN ELECTRÓNICA CÁLCULO TALLER DE DERIVADAS Manizales, 26 e Marzo e 20 Solucionar los siguientes problemas referenciaos

Más detalles

FORMULARIO V Introducción a la Física. Licenciatura en Física. f (z) = = lim = lim

FORMULARIO V Introducción a la Física. Licenciatura en Física. f (z) = = lim = lim FORMULARIO V1.00 - Introucción a la Física Licenciatura en Física 1 Operaor Derivaa 1.1 De nición formal f (z 0 ) lim lim z 0!z z z 0 4z!0 f (z + 4z) 4z (1) 1. Derivaas e algunas funciones elementales

Más detalles

( ) 2. Pendiente de una Recta Tangente. Sea f una función que es continua en x. 1. Para definir la pendiente de la recta tangente ( )

( ) 2. Pendiente de una Recta Tangente. Sea f una función que es continua en x. 1. Para definir la pendiente de la recta tangente ( ) Derivaa e una Función Ínice.. Introucción.. Peniente e una recta tangente.. Derivaa e una función. 4. Derivaas laterales. 5. Derivaa e una función compuesta (Regla e la Caena). 6. Tabla e erivaas usuales.

Más detalles

MATEMÁTICAS II Valores extremos Curso de funciones de varias variables

MATEMÁTICAS II Valores extremos Curso de funciones de varias variables MATEMÁTICAS II Valores etremos Curso - e unciones e varias variables EJERCICIOS ) Calcular el volumen e la caja rectangular más grane situaa en el primer octante con tres e sus caras en los planos coorenaos

Más detalles

irracionales (I) no existe ninguna fracción que pueda representarlos con exactitud. En este caso se cumple la aproximación I

irracionales (I) no existe ninguna fracción que pueda representarlos con exactitud. En este caso se cumple la aproximación I Métoo VIAL e cálculo e fracciones 8-7- evisao 6-9-. Introucción. Métoo viral paso a paso. jemplos 4. Métoo el común ivisor e simplificación e fracciones 5. Métoo clásico inverso Introucción n ciencia un

Más detalles

La Cicloide. Ecuaciones Paramétricas

La Cicloide. Ecuaciones Paramétricas La Cicloide. Ecuaciones Paramétricas La Cicloide es la curva trazada por un punto de una circunferencia cuando ésta gira sobre una línea sin deslizarse por ella. Es una curva con unas propiedades muy curiosas

Más detalles

Capitulo IV. IV.1 Síntesis dimensional de mecanismos. Generación de funciones

Capitulo IV. IV.1 Síntesis dimensional de mecanismos. Generación de funciones Capitulo IV IV. Síntesis imensional e mecanismos. Generación e funciones Cinemática y Dinámica e Máquinas. IV. Síntesis imensional e mecanismos. Generación e funciones Capítulo IV Síntesis imensional e

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2013 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2013 Problemas (Dos puntos por problema). Eamen e Física-1, 1 Ingeniería Química Eamen final. Septiembre e 2013 Problemas Dos puntos por problema). Problema 1 Primer parcial): Un cuerpo e masa m = 0, 5kg se lanza hacia abajo meiante un muelle

Más detalles

3.1. DERIVADAS DE SEGUNDO ORDEN

3.1. DERIVADAS DE SEGUNDO ORDEN .. DERIVADAS DE SEGUNDO ORDEN La erivaa y ' f ' es la primera erivaa e y con respecto a, pero igualmente es posible realizar la erivaa e la erivaa, y y '' f ''. Lo que se conoce como la seguna erivaa e

Más detalles

Derivación. (x c) que pasa por el punto fijo (c, f(c)) y el punto móvil (c + h, f(c + h)) cuando h tiende a 0.

Derivación. (x c) que pasa por el punto fijo (c, f(c)) y el punto móvil (c + h, f(c + h)) cuando h tiende a 0. Derivación Definición y propieaes básicas Definición. Una función f efinia en un entorno e un punto c R es erivable en c si y sólo si el ite f c = f fc + h fc f fc c := = h h c c eiste y toma un valor

Más detalles

TITULO. Estudio analítico para hallar un modelo matemático que optimiza un perfil de ojiva balístico (región subsónica, sónica y supersónica)

TITULO. Estudio analítico para hallar un modelo matemático que optimiza un perfil de ojiva balístico (región subsónica, sónica y supersónica) TITULO Estuio analítico para hallar un moelo matemático que optimiza un perfil e ojiva balístico (región subsónica, sónica supersónica) Por Alfreo R Garasini RESUMEN Partieno e una función e isipación

Más detalles

RESOLUCIÓN DE ACTIVIDADES

RESOLUCIÓN DE ACTIVIDADES RESOLUCIÓN DE ACTIVIDADES Activiaes iniciales 1. Calcula las matrices inversas e las siguientes matrices: 1 1 2-3 1 2 1 1 1 1 0 1 2 2 5 1 1 1 1 0 0 1 1 1 1 1 Las matrices buscaas son: 1/4 1/4 1/4 1/4 1

Más detalles

UNIDAD I CÁLCULO DIFERENCIAL

UNIDAD I CÁLCULO DIFERENCIAL Vicerrectorao Acaémico Faculta e Ciencias Aministrativas Licenciatura en Aministración Mención Gerencia y Mercaeo Unia Curricular: Matemática I UNIDAD I CÁLCULO DIFERENCIAL Elaborao por: Ing. Ronny Altuve

Más detalles

Tema 6: Derivadas, Técnicas de Derivación

Tema 6: Derivadas, Técnicas de Derivación Matemáticas º Bacillerato CCNN Tema 6: Derivaas, Técnicas e Derivación.- Introucción.- Tasa e Variación Meia.- Derivaa e una unción en un punto..- Derivaas Laterales...- Interpretación geométrica e la

Más detalles

3.1 Definiciones previas

3.1 Definiciones previas ÍNDICE 3.1 Definiciones previas............................... 1 3.2 Operaciones con funciones........................... 8 3.3 Límite e una función en un punto...................... 15 3.3.1 Operaciones

Más detalles

Ejercicio Práctico 1 Enunciado

Ejercicio Práctico 1 Enunciado Funamentos e Programación Grupo 5 Samuel Martín Ejercicio Práctico Enunciao Instrucciones generales El alumno eberá presentar los ejercicios planteaos en este ocumento. Aicionalmente, se han facilitao

Más detalles

1. Grafique la familia de curvas que representa la solución general de la ecuación diferencial: y ' + y = 0

1. Grafique la familia de curvas que representa la solución general de la ecuación diferencial: y ' + y = 0 Elaborao por: Jhonn Choquehuanca Lizarraga Ecuaciones Diferenciales e Primer oren Aplicaciones. Grafique la familia e curvas que representa la solución general e la ecuación iferencial: ' + = 0 Solución:

Más detalles

CAPÍTULO 1 EJEMPLOS DE MECANICA LAGRANGIANA

CAPÍTULO 1 EJEMPLOS DE MECANICA LAGRANGIANA CAPÍTULO EJEMPLOS DE MECANICA LAGRANGIANA Las ligauras a ser consieraas y las ecuaciones e Lagrange a ser usaas son las siguientes: Lagrangiano! L q i ; q i ; t T q i ; q i ; t U q i ; q i ; t (.) Coorenaas

Más detalles

Introducción a la Teoría Analítica de Números

Introducción a la Teoría Analítica de Números Introucción a la Teoría Analítica e Números Pablo De Nápoli clase. Introucción La teoría analítica e números es una rama e la matemática one se utilizan los métoos el análisis, tales como el análisis e

Más detalles

Derivadas algebraicas

Derivadas algebraicas CDIN0_M1AAL1_Algebraicas Versión: Septiembre 01 Revisor: Sanra Elvia Pérez Derivaas algebraicas por Sanra Elvia Pérez Derivaa e una función El concepto e erivaa, base el cálculo iferencial, ha permitio

Más detalles

ESPA ÑOLA DE FÍSICA O.E.F PRUEBAS DEL DISTRITO UNIVERSITARIO DE LA RIOJA REAL SOCIEDAD ESPAÑOLA DE FÍSICA

ESPA ÑOLA DE FÍSICA O.E.F PRUEBAS DEL DISTRITO UNIVERSITARIO DE LA RIOJA REAL SOCIEDAD ESPAÑOLA DE FÍSICA O.E.F. PRUES DEL DISRIO UNIVERSIRIO DE L RIOJ REL SOCIEDD ESPÑOL DE P.- Un moelo e frenao en las torres e caía libre. La atracción estrella e muchos parques es la torre e caía libre. En el simpático oole

Más detalles

La regla de la constante. DEMOSTRACIÓN Sea ƒ(x) c. Entonces, por la definición de derivada mediante el proceso de límite, se deduce que.

La regla de la constante. DEMOSTRACIÓN Sea ƒ(x) c. Entonces, por la definición de derivada mediante el proceso de límite, se deduce que. SECCIÓN. Reglas básicas e erivación razón e cambio 07. Reglas básicas e erivación razón e cambio Encontrar la erivaa e una función por la regla e la constante. Encontrar la erivaa e una función por la

Más detalles

UNIVERSIDAD DIEGO PORTALES GUÍA N 11 CÁLCULO I. Profesor: Carlos Ruz Leiva DERIVADAS. Derivadas de orden superior. Ejemplos

UNIVERSIDAD DIEGO PORTALES GUÍA N 11 CÁLCULO I. Profesor: Carlos Ruz Leiva DERIVADAS. Derivadas de orden superior. Ejemplos UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS Profesor: Carlos Ruz Leiva GUÍA N CÁLCULO I DERIVADAS Derivaas e oren superior Ejemplos Hallar las siguientes

Más detalles

UNIVERSIDAD SIMON BOLIVAR Departamento de Conversión y Transporte de Energía Sección de Máquinas Eléctricas Prof. E. Daron B.

UNIVERSIDAD SIMON BOLIVAR Departamento de Conversión y Transporte de Energía Sección de Máquinas Eléctricas Prof. E. Daron B. Departamento e Conversión y Transporte e Energía Sección e Máuinas Eléctricas Prof. E. Daron B. LA CURVA DE CARGA REACTIVA Hoja Nº II-091 La prueba e carga reactiva permite la obtención el triángulo e

Más detalles

DERIVADAS DERIVACIÓN DE FUNCIONES

DERIVADAS DERIVACIÓN DE FUNCIONES DERIVADAS DERIVACIÓN DE FUNCIONES Introucción: Después e haber aquirio los conocimientos e los temas anteriores e funciones límites se requiere establecer un proceimiento más eficiente que nos permita

Más detalles

La derivada de las funciones trascendentes

La derivada de las funciones trascendentes La erivaa e las funciones trascenentes Manuel Barahona, Eliseo Martínez Diciembre 205 Muchos fenómenos e la naturaleza son moelaos meiante funciones eponeciales, logarítimicas, trigonométricas y combinaciones

Más detalles

Ecuación paramétrica

Ecuación paramétrica Ecuación paramétrica Puede describirse una hélice con la ecuación paramétrica. Al variar el valor de t, se obtienen los distintos puntos de la curva. En matemáticas, un sistema de ecuaciones paramétricas

Más detalles

Ecuación de Schrödinger

Ecuación de Schrödinger Ecuación e Schröinger En cuanto a onas electromagnéticas, ya vimos que su comportamiento está regio por las ecuaciones e Maxwell. También hemos visto que a una partícula con masa se le puee asignar una

Más detalles

Universidad Distrital Francisco José de Caldas - Análisis de Señales y Sistemas - Marco A. Alzate 1

Universidad Distrital Francisco José de Caldas - Análisis de Señales y Sistemas - Marco A. Alzate 1 Universia Distrital Francisco José e Calas - Análisis e Señales y Sistemas - Marco A. Alzate Décimo-quinta clase. Respuesta al impulso. Implementación e sistemas LTI. Ecuaciones e iferencia y iferenciales

Más detalles

Explicación de la velocidad de rotación en galaxias espirales Interpretación Lagragiana (Yul Goncalves,

Explicación de la velocidad de rotación en galaxias espirales Interpretación Lagragiana (Yul Goncalves, Explicación e la velocia e rotación en galaxias espirales Interpretación Lagragiana (Yul Goncalves, yulalebran9@gmail.com) A continuación se presenta una emostración e la velocia e rotación en galaxias

Más detalles

ASIGNATURA: QUIMICA AGROPECUARIA (RB8002) TALLER N 6: EQUILIBRIO QUIMICO

ASIGNATURA: QUIMICA AGROPECUARIA (RB8002) TALLER N 6: EQUILIBRIO QUIMICO I. Presentación e la guía: ASIGNATURA: QUIMICA AGROPECUARIA (RB800) TALLER N 6: EQUILIBRIO QUIMICO Competencia: El alumno será capaz e escribir iferentes tipos e reacciones en equilibrio, el significao

Más detalles

Interferencia y difracción

Interferencia y difracción Interferencia ifracción 3 INTRODUCCIÓN TEÓRICA Los efensores e la teoría corpuscular e Newton argumentaban que si la luz era una ona, ebería manifestar fenómenos típicos e ésta. Thomas Young, en 1801,

Más detalles

TECNOLOGÍA EJERCICIOS SOBRE MECANISMOS II

TECNOLOGÍA EJERCICIOS SOBRE MECANISMOS II º. LA PALANCA. En una palanca e primer género colocamos en uno e sus extremos una peso e 0 N. Si la palanca tiene una longitu e 3 m, calcular la istancia e la resistencia al fulcro para poerla equilibrar

Más detalles

; deben llevarse las unidades de área a m 2 y distancia a m. V = 13215V = 13, 2kV

; deben llevarse las unidades de área a m 2 y distancia a m. V = 13215V = 13, 2kV Física II Guía e ejercicios 5 CAPACIDAD 5. Capacia 5.. Problema 5... Enunciao Las placas e un capacitor e placas paralelas están separaas por una istancia e, 8mm y caa una tiene un área e, cm. Caa placa

Más detalles

Ecuación vectorial de la recta en el plano y su ecuación cartesiana

Ecuación vectorial de la recta en el plano y su ecuación cartesiana iceo Técnico Aolfo Matthei ierano la Eucación Técnico Profesional Docente: Cristian Casas. GUIA MATEMATICA Departamento e Matemática Curso: 4 Meio Fecha : Puntos : NOMBRE: Nota : Ecuación vectorial e la

Más detalles

CARACTERÍSTICAS TÉCNICAS GENERALES

CARACTERÍSTICAS TÉCNICAS GENERALES CARACTERÍSTICAS TÉCNICAS GENERALES SELECCIÓN Y TRATAMIENTO EL ACERO IMENSIONES Y GEOMETRÍA E LOS ROAMIENTOS SISTEMA E OBTURACIONES CÁLCULO E URACIÓN E LOS ROAMIENTOS JUEGO RAIAL E LOS ROAMIENTOS A ROILLO

Más detalles

Derivadas de orden superior e implícitas

Derivadas de orden superior e implícitas CDIN06_MAAL_Implícitas Versión: Septiembre 0 Revisor: Sanra Elvia Pérez Derivaas e oren superior e implícitas por Sanra Elvia Pérez Derivación implícita Las funciones que has estuiao hasta este momento

Más detalles

Cálculo I Derivadas de Funciones Trascendentes. Julio C. Carrillo E. * 1. Introducción Derivadas de funciones trigonométricas inversas 7

Cálculo I Derivadas de Funciones Trascendentes. Julio C. Carrillo E. * 1. Introducción Derivadas de funciones trigonométricas inversas 7 3.3. Derivaas e Funciones Trascenentes Julio C. Carrillo E. * Ínice. Introucción 2. Derivaas e funciones trigonométricas 3. Derivaas e funciones trigonométricas inversas 7 4. Derivaas e la función exponencial

Más detalles

Cálculo matricial de pórticos biempotrados a dos aguas

Cálculo matricial de pórticos biempotrados a dos aguas Desplazamientos y solicitaciones e una barra Cálculo matricial e pórticos biempotraos a os aguas. Hipótesis e cálculo. e verifica la ley e Hooke, lo que significa que en las estructuras los esplazamientos

Más detalles

LA DERIVADA UNIDAD III III.1 INCREMENTOS. y, esto es:

LA DERIVADA UNIDAD III III.1 INCREMENTOS. y, esto es: Página el Colegio e Matemáticas e la ENP-UNAM La erivaa Autor: Dr. José Manuel Becerra Espinosa LA DERIVADA UNIDAD III III. INCREMENTOS Se eine como incremento e la variable al aumento o isminución que

Más detalles

EXAMEN DE FÍSICA. 24 DE JUNIO DE PROBLEMAS. GRUPOS 16(B) Y 17(C)

EXAMEN DE FÍSICA. 24 DE JUNIO DE PROBLEMAS. GRUPOS 16(B) Y 17(C) EXMEN DE FÍSIC. 4 DE JUNIO DE 999. TEORÍ. GRUPOS 6() Y 7(C) C. Tenemos una superficie cónica e raio r = 0.5 m y altura h = m (ver figura), entro e un campo eléctrico E uniforme y paralelo al eje el cono

Más detalles

[b] Aunque se puede calcular los índices de refracción, vamos a utilizar la expresión de la ley de

[b] Aunque se puede calcular los índices de refracción, vamos a utilizar la expresión de la ley de Opción A. Ejercicio [a] En qué consiste el fenómeno e la reflexión total e una ona? Qué circunstancias eben cumplirse para que ocurra? Defina el concepto e ángulo límite. ( punto) [b] Una ona sonora que

Más detalles

Tema 5 Cosmología. Gravitación Universal

Tema 5 Cosmología. Gravitación Universal Tema 5 Cosmología Gravitación Universal Profesor.- Juan J. Sanmartín Roríguez Curso 01/013 Ley e la Gravitación Universal La gravea es una fuerza atractiva, y e acuero con la Tercera Ley e Newton, las

Más detalles

= 3, electrones F = K

= 3, electrones F = K 6 Campo eléctrico Activiaes el interior e la unia. Con frecuencia, cuano os cuerpos se frotan, auieren cargas iguales e signo opuesto. Explica ué sucee en el proceso. La fricción hace ue pasen electrones

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS Solucionario 8 Electrostática EJERCICIOS PROPUESTOS 8. Calcula la carga eléctrica e los iones Ca, F y Al 3. Es posible comunicar a un cuerpo una carga eléctrica igual a un número fraccionario e electrones?

Más detalles

Cálculo de celosías planas de nudos articulados con el método de Ritter

Cálculo de celosías planas de nudos articulados con el método de Ritter álculo e celosías planas e nuos articulaos con el métoo e Ritter pellios, Nombre Departamento entro Pérez García, gustín (aperezg@mes.upv) Guariola Víllora, rianna (aguario@mes.upv) Mecánica el Meio ontinuo

Más detalles

FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

FUNCIONES EXPONENCIALES Y LOGARÍTMICAS CAPÍTULO 7 FUNCIONES EXPONENCIALES Y LOGARÍTMICAS 7. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS Una fnción eponencial es aqella en la qe la variable está en el eponente. Ejemplos e fnciones eponenciales son

Más detalles

MOVIMIENTO PARABÓLICO

MOVIMIENTO PARABÓLICO MOIMIENTO PARABÓLICO En la naturaleza no se presentan los movimientos aislaamente, sino combinaos ó superpuestos e os o más movimientos simples. Son movimientos simples : el Movimiento Rectilíneo Uniforme

Más detalles

08. Un cubo de lado 0,3 m está colocado con un vértice en el origen de coordenadas, como se muestra la figura. Se encuentra en el seno de un campo

08. Un cubo de lado 0,3 m está colocado con un vértice en el origen de coordenadas, como se muestra la figura. Se encuentra en el seno de un campo Campo Eléctrico U 01. Dos partículas e masa 10 g se encuentran suspenias ese un mismo punto por os hilos e 30 cm e longitu. Se suministra a ambas partículas la misma carga, separánose e moo ue los hilos

Más detalles

() 25 de mayo de / 9

() 25 de mayo de / 9 DEFINICION. Una función es iferenciable en a si f (a) existe, y iremos que es iferenciable en un intervalo abierto si es iferenciable en caa uno e los puntos el intervalo. NOTA. Para las funciones que

Más detalles

Teoría Tema 7 Circunferencia

Teoría Tema 7 Circunferencia página 1/9 Teoría Tema 7 Circunferencia Índice de contenido La circunferencia como superficie cónica...2 La circunferencia como lugar geométrico...3 Potencia de un punto respecto de una circunferencia...4

Más detalles

LA DERIVADA. Introducción:

LA DERIVADA. Introducción: LA DERIVADA Introucción: Fue Isaac Newton que estuiano las lees el movimiento e los planetas que Kepler había escubierto meio siglo antes, llegó a la iea e incremento e una función como se nos ofrece en

Más detalles

Ejemplo de aplicación práctica de dimensionado de un bulón

Ejemplo de aplicación práctica de dimensionado de un bulón Ejemplo e aplicación práctica e imensionao e un bulón Apellios, nombre Guariola Víllora, Arianna (aguario@mes.upv.es) Departamento Centro Mecánica el Meio continuo y Teoría e Estructuras Universitat Politècnica

Más detalles

Regla de la cadena. f (x) 1 x 3. d dx x3 1 x 3. (3x 2 ) 3 x. f(x) 3 d dx ln x 3. 1 x. para x70, d dx ln x 1. para x60, d dx ln( x) 1x.

Regla de la cadena. f (x) 1 x 3. d dx x3 1 x 3. (3x 2 ) 3 x. f(x) 3 d dx ln x 3. 1 x. para x70, d dx ln x 1. para x60, d dx ln( x) 1x. 74 CAPÍTULO 3 La erivaa EJEMPLO 4 Diferencie f ()=ln 3. Regla e la caena Solución Debio a que 3 ebe ser positiva, se entiene que 70. Así, por (3), con u= 3, tenemos Solución alterna: Por iii) e las lees

Más detalles

Derivación e vectorial

Derivación e vectorial 1. Vectores variables Derivación e vectorial Los vectores porán ser constantes o variables. Ahora bien, esa característica se verificará tanto en las componentes como en la base. Esto quiere ecir que cuano

Más detalles

Práctico 4: Funciones inversas

Práctico 4: Funciones inversas Práctico 4: Funciones inversas 1. Averiguar acerca e la inyectivia e las siguientes funciones en sus ominios naturales: 1.- y = ax + bx + c con a 6= 0.- y = x + ax + b con a>0.- y = x + ax + b con a

Más detalles

COMPARACIÓN DEL MOVIMIENTO DE TROMPOS

COMPARACIÓN DEL MOVIMIENTO DE TROMPOS COMPARACÓN DEL MOVMENTO DE TROMPOS K. A. Meza-Martínez a L. A. Peralta-Martínez a A. Gaona-Oroñez a a Departamento e Ciencias Básicas Universia Autónoma Metropolitana - Azcapotzalco México DF atzin_kammak@hotmail.com

Más detalles

2.3 Reglas del producto, del cociente y derivadas de orden superior

2.3 Reglas del producto, del cociente y derivadas de orden superior SECCIÓN 2.3 Reglas el proucto, el cociente y erivaas e oren superior 119 2.3 Reglas el proucto, el cociente y erivaas e oren superior Encontrar la erivaa e una función por la regla el proucto. Encontrar

Más detalles

d) Si tiene la siguiente función para la oferta de trabajo:

d) Si tiene la siguiente función para la oferta de trabajo: Capítulo MERCADO DE TRABAJO, FUNCIÓN DE RODUCCIÓN Y OFERTA AGREGADA DE ARGO AZO. Sea la función e proucción: Y = A0( f 0 f ) Done las uniaes en las que se expresa la cantia e trabajaores a emplear son

Más detalles

PAU Campo Magnético Ejercicios resueltos

PAU Campo Magnético Ejercicios resueltos PAU Campo Magnético jercicios resueltos 99-009 PAU CyL 99 Coeficiente e rozamiento en una arilla y trabajo rozamiento Una arilla, e masa 0 g y longitu 30 cm, escansa sobre una superficie horizontal y está

Más detalles

Universidad Abierta y a Distancia de México. 2 cuatrimestre. Cálculo diferencial. Unidad 3. Derivación

Universidad Abierta y a Distancia de México. 2 cuatrimestre. Cálculo diferencial. Unidad 3. Derivación Universia Abierta y a Distancia e Méico cuatrimestre Cálculo iferencial Eucación Abierta y a Distancia * Ciencias Eactas, Ingenierías y Tecnologías Ínice Presentación e la unia 3 Propósitos 3 Competencia

Más detalles

4. Mecánica en la Medicina Derivar e Integrar

4. Mecánica en la Medicina Derivar e Integrar 4. Mecánica en la Meicina Derivar e Integrar Teoría Dr. Willy H. Gerber Instituto e Ciencias Físicas y Matemáticas, Universia Austral, Valivia, Chile 17.04.2011 W. Gerber 4. Mecánica en la Meicina - Matemática

Más detalles

UNIDAD 5.- EMBRAGUES Y FRENOS.

UNIDAD 5.- EMBRAGUES Y FRENOS. UNIDAD 5.- EMBRAGUES Y FRENOS. 5..- INTRODUCCIÓN. Los sistemas mecánicos necesitan controlarse siempre que exista la necesia e cambiar el sentio el movimiento e uno o más e sus componentes. Los elementos

Más detalles

Tema 8: Derivación. José M. Salazar. Noviembre de 2016

Tema 8: Derivación. José M. Salazar. Noviembre de 2016 Tema 8: Derivación. José M. Salazar Noviembre e 2016 Tema 8: Derivación. Lección 9. Derivación: teoría funamental. Lección 10. Aplicaciones e la erivación. Ínice 1 Derivaas. Principales nociones y resultaos.

Más detalles

TEMA 4: Transformaciones 3D

TEMA 4: Transformaciones 3D TEMA 4: Transformaciones D Ínice. Sistemas e Coorenaas. Transformaciones Básicas. Traslación. Escalao. Rotación lana 4. Afilamiento 5. Deformaciones. Composición e Transformaciones 4. Rotación General

Más detalles