FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "FUNCIONES EXPONENCIALES Y LOGARÍTMICAS"

Transcripción

1 CAPÍTULO 7 FUNCIONES EXPONENCIALES Y LOGARÍTMICAS 7. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS Una fnción eponencial es aqella en la qe la variable está en el eponente. Ejemplos e fnciones eponenciales son y y 4 5 y 8 + y 0 - Antes e entrar e lleno en el estio e las fnciones logarítmicas conviene repasar el concepto e logaritmo, ya qe es frecente qe los estiantes llegen a este momento sin recorar qé son los logaritmos o, en el caso más etremo, sin haberlos estiao nnca rante s carrera estiantil. En Matemáticas toa operación o too proceso tiene s inverso, s camino e retorno al pnto inicial. Por ejemplo, si a 4 se le sma se llega al 7; el retorno el 7 al 4 es restar. El retorno e la mltiplicación es la ivisión, etc. De manera qe si se tienen las sigientes potencias: ) 8 ) 9 07

2 Fnciones eponenciales y logarítmicas ) ) ) etc. si se pregnta Cál es el inverso (el camino e retorno) e caa na e ellas? por inercia el estiante respone conforme a la sigiente tabla: Potencia 8 Inverso lo cal es cierto. Sin embargo, obsérvese qe en caa potencia (primera colmna) se tienen os cantiaes, la base y el eponente, y en la tabla anterior el retorno se hizo hacia la base. No poría haber sio el retorno hacia el eponente? Dicho e otra forma: Cómo hacer para regresar al eponente, en vez e a la base? Allí es one aparece el concepto e logaritmo. Cano se tiene la potenciación a k c one a, k y c son calqier número (son tres cantiaes las qe intervienen: la base, el eponente y el resltao), a partir el resltao c eisten os posibiliaes e regreso, no hacia la 08

3 Fnciones eponenciales y logarítmicas base y otro hacia el eponente. Para regresar a la base se emplea la raíz k-ésima e c; para regresar al eponente se emplea el logaritmo base a e c. En ambos casos la operación raíz o la operación logaritmo se le aplica al resltao c e la potenciación; aemás, se ebe hacer intervenir a la tercera cantia, en el primer caso para señalar el ínice el raical, en el segno caso para señalar la base. Volvieno al ejemplo e la tabla anterior, eisten os caminos e retorno, no hacia la base y otro hacia el eponente. Cano es a la base, se emplea la raíz k-ésima, cano es al eponente se emplea el logaritmo base a: Potencia Regreso a la base Regreso al eponente 8 8 log log log log log De manera qe la efinición e logaritmo es: En el iioma Español, para enotar los números orinales se emplea la terminación ésimo. Así, el orinal e 0 es vigésimo; el e 70 es septagésimo; el e 00 es bicentésimo; el e 700 es septingentésimo, el e 84 es octingentésimo trigésimo carto, etc. Cano se habla en términos genéricos sele emplearse la letra k o la letra n para referirse a calqier número. De tal manera qe el orinal e n número genérico k es k-ésimo; el orinal e n número genérico n es n-ésimo. Es na grave incorrección ecir veinteavo en vez e vigésimo, o setentavo en vez e septagésimo. 09

4 Fnciones eponenciales y logarítmicas El logaritmo e n número n es el eponente al qe ebe elevarse la base para obtener icho número n. Como los logaritmos peen ser base e calqier número, habría n número infinito e iferentes logaritmos, por lo qe en algún momento los matemáticos acoraron emplear solamente os tipos e logaritmos: a) los logaritmos base iez (por tratarse e n sistema ecimal), llamaos logaritmos vlgares o logaritmos ecimales, representaos simplemente por el símbolo log sin especificar la base, qe se sobreentiene qe es 0. b) los logaritmos natrales, representaos por el símbolo ln y cya base es el número irracional.78888,. De manera semejante a como con π se representa el nú- mero e veces qe el iámetro cabe en s propia circnferencia (.46), la base e los logaritmos natrales se simboliza con la letra e, o sea qe e Para obtener el valor e e con la calclaora ebe oprimirse la tecla e qe en casi toos los moelos se localiza como segna fnción el logaritmo natral, y espés teclear el número. Con eso realmente se está ingresano e qe es e. Este número sale el límite lim 0 ( + ) / el cal, por no ser tema e este crso, no se va a etallar más. 0

5 Fnciones eponenciales y logarítmicas 7. PROPIEDADES DE LOS LOGARITMOS Los logaritmos, no importa cál sea s base, toos tienen las sigientes tres propieaes: ª: log A + log B log AB ª: log A log B log A log B ª: A log B log B A De éstas, la tercera será my útil para resolver algnas erivaas e logaritmos, como se eponrá en algnos e los ejemplos venieros. 7. FÓRMULAS (5) ln (6) e e La erivaa el logaritmo natral e, ( es el argmento) es na fracción: en el nmeraor, la erivaa el argmento; en el enominaor, el argmento tal cal. Ejemplo : Hallar la erivaa e y ln 9. Solción: En este caso, el argmento es 9, es ecir 9. Aplicano la fórmla (5):

6 Fnciones eponenciales y logarítmicas Ejemplo : Derivar y ln (7 + ). Solción: En este ejemplo, el argmento es 7 +, es ecir qe 7 +. Así qe aplicano la fórmla (5): 7 + ( 7 + ) 7 7 +

7 Fnciones eponenciales y logarítmicas Ejemplo : Obtener la erivaa e y ln ( - + 7). Solción: El argmento es - + 7, esto es qe Utilizano la fórmla (5): + ( + 7) Ejemplo 4: Calclar la erivaa e y ln Solción: El argmento el logaritmo es, por lo qe empleano la fórmla (5):

8 Fnciones eponenciales y logarítmicas Por la ley e la herrara: Otra forma: Como y ln es lo mismo qe y ln, se pee aplicar la tercera propiea e los logaritmos, página, qe leía e erecha a izqiera se tiene qe y (- ) ln, es ecir qe la fnción a erivar es y - ln. qe es el mismo resltao obtenio antes. 4

9 Fnciones eponenciales y logarítmicas Ejemplo 5: Hallar la erivaa e y ln Solción: El argmento es, e moo qe empleano la fórmla (5): ( ) / ( ) ( ) / ( ) ( ) Aplicano la ley e la herrara: ( ) 5

10 Fnciones eponenciales y logarítmicas Otra forma: Como y ln es lo mismo qe y ln, aplicano la ª propiea e los lo- / ( ) garitmos, página, leía e erecha a izqiera se tiene qe y ln, por lo qe: qe es el mismo resltao obtenio antes. Ejemplo 6: Calclar la erivaa e y ln 5 Solción: El argmento es. Empleano la fórmla (5): 5 6

11 Fnciones eponenciales y logarítmicas 5 5 ( 5 ) / ( ) ( ) / ( ) ( ) 5 0 ( ) 4 / 5 5 Por la ley e la herrara: ( ) / 7

12 Fnciones eponenciales y logarítmicas ( ) 4/ ( ) / Recorano qe para simplificar cano se tiene la misma base se restan los eponentes: 0 ( ) ( 5 ) 0 ( ) / 5 0 ( ) Simplificano nevamente: Ejemplo 7: Derivar y e. Solción: Empleano la fórmla (6), one : 8

13 Fnciones eponenciales y logarítmicas e e e Ejemplo 8: Obtener la erivaa e y e 5 - Solción: Aplicano la fórmla (6), one 5 - : e ( 5 ) 5 e 5 5 Ejemplo 9: Hallar la erivaa e y e Solción: Por la fórmla (6), en one : e 9

14 Fnciones eponenciales y logarítmicas e / e e Orenano conforme a las reglas e escritra matemática: e Ejemplo 0: Hallar la erivaa e y e 6 Solción: Como se trata e n procto, ebe emplearse la fórmla (7) e la página 77: ( v) v + v en one y v e e + e v v 0

15 Fnciones eponenciales y logarítmicas Para la primera erivaa peniente se emplea la fórmla (6) e e 6 ( ) e ( ) e 6 + e 6 6 Orenano conforme a las reglas e escritra matemática: 6 e e Ejemplo : Calclar la erivaa e y e ln Solción: Como se trata e n procto, ebe emplearse la fórmla e v: e ln + ln e v v Para la primera erivaa peniente se tiliza la fórmla (5) el logaritmo natral y para la segna erivaa peniente la fórmla (6) e e :

16 Fnciones eponenciales y logarítmicas e ln e + e + ln e Finalmente, orenano conforme a las reglas e escritra matemática: e + e ln Ejemplo : Derivar y sene Solción: La fnción es e la forma sen ; one el argmento es e. Por lo tanto, empleano la fórmla (9) e la página 9 se tiene qe sen e cos e e cos e e cos e e ( ) Finalmente, orenano conforme a las reglas e escritra matemática:

17 Fnciones eponenciales y logarítmicas e cos e Ejemplo : Hallar la erivaa e y ln sec Solción: La fnción tiene la forma e ln, one el argmento es sec, por lo tanto ebe tilizarse la fórmla (5) e la página : ln sec sec sec La erivaa peniente tiene la forma e sec, one el argmento e la secante es, por lo qe ahora ebe emplearse la fórmla () e la página 9: tan sec sec tan sec sec tan sec sec [ ] tan

18 Fnciones eponenciales y logarítmicas Ejemplos avanzaos: y ln Ejemplo 4: Obtener la erivaa e ( ) ( ) ( ) 4 Solción: Como ln 6 5 ln 6 5, la fnción tiene la forma e n, e manera qe empleano la fórmla (6) e la página 69: 4 ( ) 4 4 ln 6 5 ln( 6 5 ) n n - ( ) ( 6 5) ln ( 6 5) La erivaa peniente es e la forma n, por lo qe ebe emplearse nevamente la fórmla (6) e la página 69: ( ) ( ) ln ( 6 5) ( 6 5) ( ) ( ) ( 6 5) ln ( 6 5) 4

19 Fnciones eponenciales y logarítmicas Finalmente simplificano, mltiplicano 4 6 y orenano conforme a las reglas e escritra matemática, se llega a ( ) ( 6 5) ln ( 6 5) ( 6 5) ln Ejemplo 5: Derivar y ln( sen 5) Solción: El argmento el logaritmo natral es sen 5, por lo tanto sen 5. Utilizano la fórmla el logaritmo natral: sen 5 sen 5 La erivaa peniente sen 5 es n procto, o sea e la forma v, e manera qe aplicano la fórmla el procto se obtiene v v sen 5 + sen 5 sen 5 5

20 Fnciones eponenciales y logarítmicas Ahora, la primera erivaa peniente es e la forma sen : cos5 5 sen5 + sen 5 5 cos 5 + sen 5 sen 5 Ejemplo 6: Hallar la erivaa e y ln Solción: La fnción a erivar se pee escribir como y ln, qe toma la forma e n, one ln y n -. Utilizano entonces icha fórmla se llega a qe: ln ln n n - La erivaa peniente es e la forma ln, con : 6

21 Fnciones eponenciales y logarítmicas ln ln ln ( )( ) ln ln otra forma: Por las propieaes e los logaritmos, la fnción original se pee escribir como y ln ln ( ln ) y ( ln ) (El eponente el argmento pasa como coeficiente el logaritmo). 7

22 Fnciones eponenciales y logarítmicas La cal tiene la forma e n, con - ln y n -. ( ln ) ( ln ) n n - ( ln ) ( ln ) ln ( ) Nevamente, por las propieaes e los logaritmos, pasano el coeficiente el logaritmo como eponente el argmento: ( ) ln ln 8

23 Fnciones eponenciales y logarítmicas EJERCICIO Obtener la erivaa e las sigientes fnciones: y ln 6 ) ) ) 4) y ln ( + 7) y ln( ) y ln 8 5) y ln 8 6) 5 y ln 7 6 7) y ln 8) 7 ( ) 5 y ln 7 6 9) y ln 0) 4 y e ) y e ) y e / 7 ) 4) y 5e 6 5) 6) y y e 7 e / y e 5 8 7) y ( 5 ) ln( 5 ) 8) y ln Avanzaos: 5 9) y ln 9 0) y ln( 5 ) y senln( 7 6) 5 ) y tane ) y cosln( 6 ) ) y csce 6 4) 9

24 Fnciones eponenciales y logarítmicas 5) y cot4ln5 6) y ln 8 ( 8 9) ( ) 7) y ln 7 8) y 4 9 e ( ) ) y ln 5 0) y 5 4 ln y ln 5 ( 7) 6 ) y lncot ) y e y sen ) 4) e 6 0

LOGARITMOS página 147

LOGARITMOS página 147 LOGARITMOS página 147 página 148 INSTITUTO VALLADOLID PREPARATORIA 8 LOGARITMOS 8.1 CONCEPTOS Y DEFINICIONES Una función exponencial es aquella en la que la variable está en el exponente. Ejemplos de funciones

Más detalles

CALCULO DIFERENCIAL Escuela Colombiana de Ingeniería 5.1. DERIVADA DE LA FUNCIÓN EXPONENCIAL ( ) f ( x) = a Enunciado. x h x. x h.

CALCULO DIFERENCIAL Escuela Colombiana de Ingeniería 5.1. DERIVADA DE LA FUNCIÓN EXPONENCIAL ( ) f ( x) = a Enunciado. x h x. x h. Escela Colombiana e Ingeniería.. DERIVADA DE LA FUNCIÓN EXPONENCIAL Aplicano la efinición e la erivaa se tiene: f a Ennciao. + f + f a a f ' Lim Lim Aplicano la efinición e la erivaa. 0 0 a a a a ( a f

Más detalles

Derivadas de funciones trigonométricas

Derivadas de funciones trigonométricas MB0004_MAAL3_Trigonométricas Derivaas e fnciones trigonométricas por Oliverio Ramírez Debio a s comportamiento, no toos los fenómenos físicos peen estiarse y representarse e la misma manera. Algnos fenómenos

Más detalles

FUNCIONES TRIGONOMÉTRICAS

FUNCIONES TRIGONOMÉTRICAS CAPÍTULO 6 FUNCIONES TRIGONOMÉTRICAS 6.1 FUNCIONES TRASCENDENTES (Áreas 1, y ) Las funciones trascenentes se caracterizan por tener lo que se llama argumento. Un argumento es el número o letras que lo

Más detalles

LA DERIVADA POR FÓRMULAS

LA DERIVADA POR FÓRMULAS CAPÍTULO LA DERIVADA POR FÓRMULAS. FÓRMULAS Obtener la erivaa e cualquier función por alguno e los os métoos vistos anteriormente, el e tabulaciones y el e incrementos, resulta una tarea muy engorrosa,

Más detalles

2. Considere un duopolio de Cournot repetido dos veces (se juega dos veces). El juego de etapa puede ser representado por el siguiente árbol:

2. Considere un duopolio de Cournot repetido dos veces (se juega dos veces). El juego de etapa puede ser representado por el siguiente árbol: Teoría e Jegos Segno parcial. //. Consiere la sigiente versión el jego el ltimátm. Hay 3 moneas. J pee ofrecer qearse con o con. J acepta o rechaza. Si rechaza, los os jgaores obtienen. Sponga qe los jgaores

Más detalles

INTEGRAL INDEFINIDA. Una pregunta inicial para hacerse. Cuál es una función F(x), que al haber sido derivada se obtuvo f ( x) B?.

INTEGRAL INDEFINIDA. Una pregunta inicial para hacerse. Cuál es una función F(x), que al haber sido derivada se obtuvo f ( x) B?. es INTEGRAL INDEFINIDA UConcepto e antierivaau: Una pregunta inicial para hacerse. Cuál es una función F(), que al haber sio erivaa se obtuvo f ( ) =?. La repuesta es: F ( ) =. Una nueva pregunta. Es la

Más detalles

1. Hallar la derivada por definición de f ( x) x x 1. Solución: para resolver la derivada aplicaremos la definición de la derivada: f '( x)

1. Hallar la derivada por definición de f ( x) x x 1. Solución: para resolver la derivada aplicaremos la definición de la derivada: f '( x) . Hallar la erivaa por efinición e f ( ) Solución: para resolver la erivaa aplicaremos la efinición e la erivaa: f '( ) lim 0 f ( ) f ( ) f ( ) f '( ) lim 0 ara allar la erivaa meiante efinición ebemos

Más detalles

AUTOVALORES DE OPERADORES DIFERENCIALES. Los problemas de autovalores tienen su origen en el álgebra de matrices.

AUTOVALORES DE OPERADORES DIFERENCIALES. Los problemas de autovalores tienen su origen en el álgebra de matrices. AUTOVALORES DE OPERADORES DIFERENCIALES Los problemas e atovalores tienen s origen en el álgebra e matrices. En el caso el álgebra se parte e na matriz A y esencialmente se trata e bscar atovalores y los

Más detalles

Regla de la cadena. Ejemplo 1. y = f (g(x)) Como las funciones son diferenciables son suaves.

Regla de la cadena. Ejemplo 1. y = f (g(x)) Como las funciones son diferenciables son suaves. 1 Regla e la caena Hasta aquí hemos erivao funciones que no son compuestas. El problema surge cuano tenemos una función que es compuesta, por ejemplo, igamos que el precio e la gasolina epene el precio

Más detalles

FÓRMULAS DE DERIVACIÓN

FÓRMULAS DE DERIVACIÓN SESIÓN Nº 1 Derivaas e Funciones Trigonométricas, Eponenciales y Logarítmicas Ahora correspone revisar las fórmulas principales e erivación y algunos ejemplos e aplicación. FÓRMULAS DE DERIVACIÓN 1) (

Más detalles

LA DERIVADA UNIDAD III III.1 INCREMENTOS. y, esto es:

LA DERIVADA UNIDAD III III.1 INCREMENTOS. y, esto es: Página el Colegio e Matemáticas e la ENP-UNAM La erivaa Autor: Dr. José Manuel Becerra Espinosa LA DERIVADA UNIDAD III III. INCREMENTOS Se eine como incremento e la variable al aumento o isminución que

Más detalles

Facultad de Ciencias Sociales, Universidad de la República, Uruguay Teoría de Juegos 2012

Facultad de Ciencias Sociales, Universidad de la República, Uruguay Teoría de Juegos 2012 Segno parcial. 1. (1 pnto) Sponga qe el precio qe enfrentan os opolistas qe se comportan a lo Stackelberg es: + =12 y los costos qe enfrenta caa na e las empresas es: =4 con i=1,2. Sponga qe caa empresa

Más detalles

Derivación de funciones trascendentes.

Derivación de funciones trascendentes. 57 Derivación e funciones trascenentes. Como en el caso e las funciones algebraicas eisten teoremas para erivar las funciones trascenentes como se muestra a continuación: Teoremas e erivación: Sean u y

Más detalles

FUNCIONES IMPLÍCITAS. y= e tanx cos x. ln x. y= x x CAPÍTULO 10. 10.1 FUNCIONES IMPLÍCITAS (Áreas 1, 2 y 3)

FUNCIONES IMPLÍCITAS. y= e tanx cos x. ln x. y= x x CAPÍTULO 10. 10.1 FUNCIONES IMPLÍCITAS (Áreas 1, 2 y 3) CAPÍTULO 10 FUNCIONES IMPLÍCITAS 10.1 FUNCIONES IMPLÍCITAS (Áreas 1, 3) En el curso e Precálculo el 4º semestre se vieron iferentes clasificaciones e las funciones, entre ellas las funciones eplícitas

Más detalles

DERIVADA. Interpretación Geométrica Encontrar la pendiente de la recta tangente a una curva en un punto dado de ella.

DERIVADA. Interpretación Geométrica Encontrar la pendiente de la recta tangente a una curva en un punto dado de ella. DERIVADA Interpretación Geométrica Objetivo: Encontrar la peniente e la recta tangente a una curva en un punto ao e ella. Para precisar correctamente la iea e tangente a una curva en un punto, se utilizará

Más detalles

4.1 Antiderivadas o primitivas e integración indefinida

4.1 Antiderivadas o primitivas e integración indefinida 48 CAPÍTULO 4 Integración 4. Antierivaas o primitivas e integración inefinia Escribir la solución general e una ecuación iferencial. Usar la notación e la integral inefinia para las antierivaas o primitivas.

Más detalles

Cálculo I Derivadas de Funciones Trascendentes. Julio C. Carrillo E. * 1. Introducción Derivadas de funciones trigonométricas inversas 7

Cálculo I Derivadas de Funciones Trascendentes. Julio C. Carrillo E. * 1. Introducción Derivadas de funciones trigonométricas inversas 7 3.3. Derivaas e Funciones Trascenentes Julio C. Carrillo E. * Ínice. Introucción 2. Derivaas e funciones trigonométricas 3. Derivaas e funciones trigonométricas inversas 7 4. Derivaas e la función exponencial

Más detalles

DERIVADAS (1) (para los próximos días)

DERIVADAS (1) (para los próximos días) DERIVADAS (1) (para los próimos días) Derivada de una constante K K F ( ) 0 LA DERIVADA DE UNA CONSTANTE es cero. Ejercicio nº 1) Ejercicio nº 2) Ejercicio nº 3) Ejercicio nº 4) Ejercicio nº 5) Ejercicio

Más detalles

2.4 La regla de la cadena

2.4 La regla de la cadena 0 CAPÍTULO Derivación. La regla e la caena Encontrar la erivaa e una función compuesta por la regla e la caena. Encontrar la erivaa e una función por la regla general e la potencia. Simplificar la erivaa

Más detalles

MATEMÁTICAS BÁSICAS DERIVADA INCREMENTOS x = x - x y2 = f(x2) y = y - y y = f(x )

MATEMÁTICAS BÁSICAS DERIVADA INCREMENTOS x = x - x y2 = f(x2) y = y - y y = f(x ) Faculta e Contauría Aministración. UNAM Derivaa Autor: Dr. José Manuel Becerra Espinosa MATEMÁTICAS BÁSICAS DERIVADA INCREMENTOS Se eine como incremento e la variable al aumento o isminución que eperimenta,

Más detalles

DERIVADAS (1) Derivada de una constante. LA DERIVADA DE UNA CONSTANTE es cero. Derivada de una función potencial: Forma simple.

DERIVADAS (1) Derivada de una constante. LA DERIVADA DE UNA CONSTANTE es cero. Derivada de una función potencial: Forma simple. DERIVADAS (1) Derivada de una constante f ( ) K K F ( ) 0 LA DERIVADA DE UNA CONSTANTE es cero. nº 1) nº ) nº 3) nº 4) nº 5) nº 6) Derivada de una función potencial: Forma simple r f ( ) r f ( ) r. r 1

Más detalles

ADVERTENCIA: una respuesta sin fundamentación o explicación podrá ser calificada como insuficiente.

ADVERTENCIA: una respuesta sin fundamentación o explicación podrá ser calificada como insuficiente. Segno parcial. Es na preba con materiales a la vista ADVERTENCIA: na respesta sin fnamentación o explicación porá ser calificaa como insficiente. Ejercicio 1 Un gobierno fija la tasa e imposición al capital

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE--4-M---7 CURSO: Matemática Básica SEMESTRE: Primero CÓDIGO DEL CURSO: TIPO DE EXAMEN: Eamen Final FECHA DE

Más detalles

4.1 Antiderivadas o primitivas e integración indefinida

4.1 Antiderivadas o primitivas e integración indefinida 48 CAPÍTULO 4 Integración 4. Antierivaas o primitivas e integración inefinia Escribir la solución general e una ecuación iferencial. Usar la notación e la integral inefinia para las antierivaas o primitivas.

Más detalles

Prof. Enrique Mateus Nieves PhD In Advanced Mathematics. El Cálculo Integral

Prof. Enrique Mateus Nieves PhD In Advanced Mathematics. El Cálculo Integral Prof. Enriqe Mates Nieves El Cálclo Integral El cálclo integral, encarao en el cálclo infinitesimal, es na rama e las matemáticas avanzaas. Se tiliza principalmente para el cálclo e áreas y volúmenes e

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio A-09 - Incorporado a la Enseñanza Oficial COLEGIO SAN PATRICIO - 0 - Prof. Celia R. Sánchez MATEMÁTICA - TRABAJO PRÁCTICO Nº 8 AÑO FUNCIÓN EXPONENCIAL Y LOGARÍTMICA - ECUACIONES POTENCIACIÓN: Ejercicio

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-103-1-M--00-017 CURSO: Matemática Básica SEMESTRE: Seguno CÓDIGO DEL CURSO: 103 TIPO DE EXAMEN: Primer eamen

Más detalles

DERIVADA DE LA FUNCIÓN EXPONENCIAL DE CUALQUIER BASE Y DE LA FUNCIÓN LOGARÍTMO NATURAL

DERIVADA DE LA FUNCIÓN EXPONENCIAL DE CUALQUIER BASE Y DE LA FUNCIÓN LOGARÍTMO NATURAL DERIVADA DE LA FUNCIÓN EXPONENCIAL DE CUALQUIER BASE Y DE LA FUNCIÓN LOGARÍTMO NATURAL Sgerencias para qien imparte el crso: Se deberá concebir a la Matemática como na actividad social y cltral, en la

Más detalles

Macar lo que corresponda: Reglamentado Libre. Nombre C.I.

Macar lo que corresponda: Reglamentado Libre. Nombre C.I. Teoría e jegos Examen e iciembre e 06 Macar lo qe correspona: eglamentao Libre Nombre C.I. NOTA: Es na preba con materiales a la vista ADVETENCIA: na respesta sin fnamentación o explicación porá ser calificaa

Más detalles

INTEGRACIÓN POR PARTES EN FORMA TABULAR José A. Rangel M. 1

INTEGRACIÓN POR PARTES EN FORMA TABULAR José A. Rangel M. 1 1. Introdcción INTEGRACIÓN POR PARTES EN FORMA TABULAR José A. Rangel M. 1 Es conocida la dificltad qe encentra el estdiante al aplicar la fórmla de integración por partes: = v vd. Tal dificltad comienza

Más detalles

2.5 Derivación implícita

2.5 Derivación implícita SECCIÓN.5 Derivación implícita 4.5 Derivación implícita Distinguir entre funciones eplícitas e implícitas. Hallar la erivaa e una función por erivación implícita. E X P L O R A C I Ó N Representación gráfica

Más detalles

Fórmulas de Derivación. Fórmulas de Integración

Fórmulas de Derivación. Fórmulas de Integración Integrl Inefini A l operción e clclr l ntieriv (primitiv) e n fnción se le llm integrción se enot con el símbolo qe es l inicil e l plbr sm. Si F( es n fnción primitiv e f( se epres: f ( F( C si sólo si

Más detalles

Apuntes de Cálculo Diferencial para la asesoría en el área de matemáticas

Apuntes de Cálculo Diferencial para la asesoría en el área de matemáticas Universidad Atónoma del Estado de Méico Plantel Ignacio Ramírez Calzada Academia de Matemáticas Núcleo de formación: Matemáticas Apntes de Cálclo Diferencial para la asesoría en el área de matemáticas

Más detalles

Matemáticas CCSS LÍMITES DE FUNCIONES 1. INTRODUCCIÓN BÁSICA: A) LÍMITES SOBRE GRÁFICAS. Ejercicio nº 1.- Ejercicio nº 2.

Matemáticas CCSS LÍMITES DE FUNCIONES 1. INTRODUCCIÓN BÁSICA: A) LÍMITES SOBRE GRÁFICAS. Ejercicio nº 1.- Ejercicio nº 2. LÍMITES DE FUNCIONES. INTRODUCCIÓN BÁSICA: A) LÍMITES SOBRE GRÁFICAS Ejercicio nº.- Ejercicio nº.- Página B) LÍMITES APOYÁNDONOS EN LAS GRÁFICAS B.) FUNCIONES POLINÓMICAS De grado : a ) 3 + b ) 3 + c )

Más detalles

Derivadas algebraicas:

Derivadas algebraicas: 49 Derivaas algebraicas: El métoo e los cuatro pasos para hallar la erivaa e una función es en la mayoría e los casos laborioso y complicao, por lo que se han esarrollao teoremas e erivación que nos permiten

Más detalles

Tema 8: Derivación. José M. Salazar. Noviembre de 2016

Tema 8: Derivación. José M. Salazar. Noviembre de 2016 Tema 8: Derivación. José M. Salazar Noviembre e 2016 Tema 8: Derivación. Lección 9. Derivación: teoría funamental. Lección 10. Aplicaciones e la erivación. Ínice 1 Derivaas. Principales nociones y resultaos.

Más detalles

1.2 TÉCNICAS DE LA DERIVACIÓN.

1.2 TÉCNICAS DE LA DERIVACIÓN. . TÉCNICAS DE LA DERIVACIÓN... DERIVACIÓN DE FUNCIONES ALGEBRAICAS Generalmente la derivación se lleva acabo aplicando fórmlas obtenidas mediante la regla general de la derivación y qe calclaremos a continación,

Más detalles

Universidad Abierta y a Distancia de México. 2 cuatrimestre. Cálculo diferencial. Unidad 3. Derivación

Universidad Abierta y a Distancia de México. 2 cuatrimestre. Cálculo diferencial. Unidad 3. Derivación Universia Abierta y a Distancia e Méico cuatrimestre Cálculo iferencial Eucación Abierta y a Distancia * Ciencias Eactas, Ingenierías y Tecnologías Ínice Presentación e la unia 3 Propósitos 3 Competencia

Más detalles

DERIVADAS DE LAS FUNCIONES ELEMENTALES

DERIVADAS DE LAS FUNCIONES ELEMENTALES Universia Metropolitana Dpto. e Matemáticas Para Ingeniería Cálculo I (FBMI0) Proesora Aia Montezuma Revisión: Proesora Ana María Roríguez Semestre 08-09A DERIVADAS DE LAS FUNCIONES ELEMENTALES DERIVADAS

Más detalles

REVISIÓN DE ANÁLISIS MATEMÁTICO CONCEPTOS Y EJEMPLOS

REVISIÓN DE ANÁLISIS MATEMÁTICO CONCEPTOS Y EJEMPLOS E.T. Nº 7 - Brig. Gral. Apnte teórico TEORÍA DE LOS IRUITOS II REVISIÓN DE ANÁLISIS MATEMÁTIO ONEPTOS Y EJEMPLOS INDIE Página FUNIONES LÍMITES DERIVADAS oncepto definición Derivadas de las fnciones algeraicas

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS. S O L U C I Ó N y R Ú B R I C A

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS. S O L U C I Ó N y R Ú B R I C A ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS AÑO: 207 PERÍODO: PRIMER TÉRMINO MATERIA: Cálculo e una variable PROFESOR: EVALUACIÓN:

Más detalles

ADVERTENCIA: una respuesta sin fundamentación o explicación podrá ser calificada como insuficiente.

ADVERTENCIA: una respuesta sin fundamentación o explicación podrá ser calificada como insuficiente. Faclta e Ciencias Sociales, Universia e la República, Urgay Teoría e Jegos 24 Segno parcial. Es na preba con materiales a la vista ADVERTENCIA: na respesta sin fnamentación o explicación porá ser calificaa

Más detalles

( ) 2. Pendiente de una Recta Tangente. Sea f una función que es continua en x. 1. Para definir la pendiente de la recta tangente ( )

( ) 2. Pendiente de una Recta Tangente. Sea f una función que es continua en x. 1. Para definir la pendiente de la recta tangente ( ) Derivaa e una Función Ínice.. Introucción.. Peniente e una recta tangente.. Derivaa e una función. 4. Derivaas laterales. 5. Derivaa e una función compuesta (Regla e la Caena). 6. Tabla e erivaas usuales.

Más detalles

Semana 14-Derivadas I[1/29] Derivada. 7 de junio de Derivada

Semana 14-Derivadas I[1/29] Derivada. 7 de junio de Derivada Semana 14-s I[1/9] 7 e junio e 007 s Introucción Semana 14-s I[/9] Introucción P f Q Consieremos el gráfico e una función f con ominio R. Sea P = (x 0, y 0 ) un punto el gráfico e f y sea Q = (x 1, y 1

Más detalles

RELACIÓN DE EJERCICIOS LÍMITES Y ASÍNTOTAS

RELACIÓN DE EJERCICIOS LÍMITES Y ASÍNTOTAS RELACIÓN DE EJERCICIOS LÍMITES Y ASÍNTOTAS. Calcla los sigientes límites: sen() (a) cos() sen() (b) cos(). Calcla los sigientes límites a) e b) a) e e sen() e. Calcla los sigientes límites: tg() sen()

Más detalles

Derivación. (x c) que pasa por el punto fijo (c, f(c)) y el punto móvil (c + h, f(c + h)) cuando h tiende a 0.

Derivación. (x c) que pasa por el punto fijo (c, f(c)) y el punto móvil (c + h, f(c + h)) cuando h tiende a 0. Derivación Definición y propieaes básicas Definición. Una función f efinia en un entorno e un punto c R es erivable en c si y sólo si el ite f c = f fc + h fc f fc c := = h h c c eiste y toma un valor

Más detalles

Cálculo I. Índice Reglas Fundamentales para el Cálculo de Derivadas. Julio C. Carrillo E. * 1. Introducción 1. 2.

Cálculo I. Índice Reglas Fundamentales para el Cálculo de Derivadas. Julio C. Carrillo E. * 1. Introducción 1. 2. 3.2. Reglas Funamentales para el Cálculo e Derivaas Julio C. Carrillo E. * Ínice 1. Introucción 1 2. Reglas básicas 3 3. El Álgebra e funciones erivables 4 4. Regla e la caena 8 * Profesor Escuela e Matemáticas,

Más detalles

http://www.matematicaaplicaa.co.cc jezasoft@gmail.com e MATEMÁTICA APLICADA TECNOLOGIA EN ELECTRÓNICA CÁLCULO TALLER DE DERIVADAS Manizales, 26 e Marzo e 20 Solucionar los siguientes problemas referenciaos

Más detalles

UCLM - Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG)

UCLM - Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) PAEG Junio 03 Propuesta B Matemáticas aplicaas a las CCSS II º Bachillerato UCLM - Pruebas e Acceso a Enseñanzas Universitarias Oiciales e Grao (PAEG) Matemáticas aplicaas a las Ciencias Sociales II Junio

Más detalles

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden UNIDAD UNIDAD Ecaciones Diferenciales de Primer Orden Definición Clasificación de las Ecaciones Diferenciales Una ecación diferencial es aqélla qe contiene las derivadas o diferenciales de na o más variables

Más detalles

LA DERIVADA DE UNA CONSTANTE

LA DERIVADA DE UNA CONSTANTE DERIVADAS ( Derivada de una constante K K R F ( 0 LA DERIVADA DE UNA CONSTANTE es cero. nº nº nº nº 4 nº 5 nº 6 Derivada de una función potencial: Forma simple r r R r. r LA DERIVADA DE UNA FUNCIÓN POTENCIAL

Más detalles

La derivada de las funciones trascendentes

La derivada de las funciones trascendentes La erivaa e las funciones trascenentes Manuel Barahona, Eliseo Martínez Diciembre 205 Muchos fenómenos e la naturaleza son moelaos meiante funciones eponeciales, logarítimicas, trigonométricas y combinaciones

Más detalles

1. PRIMITIVA DE UNA FUNCIÓN 2. PROPIEDADES DE LA INTEGRAL INDEFINIDA 3. INTEGRALES INMEDIATAS Ejemplos de integrales inmediatas tipo potencia

1. PRIMITIVA DE UNA FUNCIÓN 2. PROPIEDADES DE LA INTEGRAL INDEFINIDA 3. INTEGRALES INMEDIATAS Ejemplos de integrales inmediatas tipo potencia Cálculo de primitivas MATEMÁTICAS II. PRIMITIVA DE UNA FUNCIÓN. PROPIEDADES DE LA INTEGRAL INDEFINIDA. INTEGRALES INMEDIATAS.. Ejemplos de integrales inmediatas tipo potencia.. Ejemplos de integrales inmediatas

Más detalles

UNIVERSIDAD DE CONCEPCION DEPARTAMENTO DE MATEMATICA Prof. Jorge Ruiz Castillo. 1.1 Repaso de propiedades de funciones inversas

UNIVERSIDAD DE CONCEPCION DEPARTAMENTO DE MATEMATICA Prof. Jorge Ruiz Castillo. 1.1 Repaso de propiedades de funciones inversas Funciones Inversas UNIVERSIDAD DE CONCEPCION DEPARTAMENTO DE MATEMATICA Prof Jorge Ruiz Castillo Repaso e propieaes e funciones inversas Sea f : A B una función biectiva sea f : B A su función inversa

Más detalles

DERIVADAS (1) LA DERIVADA DE UNA CONSTANTE es cero. Derivada de una función potencial: Forma simple

DERIVADAS (1) LA DERIVADA DE UNA CONSTANTE es cero. Derivada de una función potencial: Forma simple DERIVADAS Derivada de una constante K K F 0 LA DERIVADA DE UNA CONSTANTE es cero. nº nº nº nº nº 5 nº Derivada de una unción potencial Forma simple r r r. r LA DERIVADA DE UNA FUNCIÓN POTENCIAL es igual

Más detalles

Examen Final de Precálculo (Mate 3171) Nombre 14 de diciembre de 2001

Examen Final de Precálculo (Mate 3171) Nombre 14 de diciembre de 2001 Eamen Final e Precálculo (Mate 7) Nombre e iciembre e 00 Escriba la letra que correspone a la mejor alternativa en el espacio provisto. (os puntos caa uno) ) Si la gráfica e f es la e la erecha entonces

Más detalles

Universidad Antonio Nariño Matemáticas Especiales Guía N 3: Funciones elementales complejas: exponencial, logaritmo, trigonométricas e hiperbólicas

Universidad Antonio Nariño Matemáticas Especiales Guía N 3: Funciones elementales complejas: exponencial, logaritmo, trigonométricas e hiperbólicas Universia Antonio Nariño Matemáticas Especiales Guía N 3: Funciones elementales complejas: exponencial, logaritmo, trigonométricas e hiperbólicas Grupo e Matemáticas Especiales Resumen Se presenta la efinición

Más detalles

Ejercicios resueltos de cálculo integral. 13 de marzo del 2016

Ejercicios resueltos de cálculo integral. 13 de marzo del 2016 Ejercicios reseltos de cálclo integral Ciro Fabián Bermúez Márqez 3 de marzo del 06 Para todas esas personas qe sienten n profndo afecto por las matemáticas, me gstaría contarles na anécdota. En algna

Más detalles

1. Función exponencial y funciones definidas mediante la exponencial

1. Función exponencial y funciones definidas mediante la exponencial TEMA 3 FUNCIONES COMPLEJAS ELEMENTALES 1. Función exponencial funciones efinias meiante la exponencial 1.1 La función exponencial 1. Funciones trigonométricas 1.3 Funciones hiperbólicas. Función logaritmo

Más detalles

DERIVACIÓN. mtan. y x x. lim lim y ' f '( x) CAPÍTULO IV

DERIVACIÓN. mtan. y x x. lim lim y ' f '( x) CAPÍTULO IV 75 CAPÍTULO IV DERIVACIÓN. LA DERIVADA COMO PENDIENTE DE UNA CURVA La peniente e una curva en un punto ao, es iual a la peniente e la recta tanente a la curva en icho punto. Δ Q, Δ Q Q P, La peniente e

Más detalles

2.3 Reglas del producto, del cociente y derivadas de orden superior

2.3 Reglas del producto, del cociente y derivadas de orden superior SECCIÓN 2.3 Reglas el proucto, el cociente y erivaas e oren superior 119 2.3 Reglas el proucto, el cociente y erivaas e oren superior Encontrar la erivaa e una función por la regla el proucto. Encontrar

Más detalles

2.5 Derivación implícita

2.5 Derivación implícita SECCIÓN.5 Derivación implícita.5 Derivación implícita Distinguir entre funciones eplícitas e implícitas. Hallar la erivaa e una función por erivación implícita. EXPLORACIÓN Representación gráfica e una

Más detalles

Criterio de la segunda derivada para funciones de dos variables por Sergio Roberto Arzamendi Pérez

Criterio de la segunda derivada para funciones de dos variables por Sergio Roberto Arzamendi Pérez Criterio de la segnda derivada para fnciones de dos variables por Sergio Roberto Arzamendi Pérez Sea la fnción f de dos variables definida por f (, ) contina de primera segnda derivadas continas en s dominio,

Más detalles

Derivadas algebraicas

Derivadas algebraicas CDIN0_M1AAL1_Algebraicas Versión: Septiembre 01 Revisor: Sanra Elvia Pérez Derivaas algebraicas por Sanra Elvia Pérez Derivaa e una función El concepto e erivaa, base el cálculo iferencial, ha permitio

Más detalles

1 Composición de funciones

1 Composición de funciones Composición de fnciones La composición de fnciones o la fnción de fnción es na operación qe aparece natralmente en varias sitaciones. En esta nota, presentaremos (sin demostración) algnos de los resltados

Más detalles

Resolviendo la Ecuación de Schrodinger en 1-D

Resolviendo la Ecuación de Schrodinger en 1-D Resolvieno la Ecación e Schoinge en -D D. Hécto René VEGA-ARRILLO so e Física Moena Unia Acaémica e Ingenieía Eléctica Univesia Atónoma e Zacatecas Docmento: FM/Notas/RES/070309 Domingo/-Mazo/009 ontenio

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO EXAMEN DE MATEMATICAS II º ENSAYO (FUNCIONES) Apellidos: Nombre: Crso: º Grpo: Día: CURSO 056 Instrcciones: a) Dración: HORA y 30 MINUTOS. b) Debes elegir entre realizar únicamente los catro ejercicios

Más detalles

DERIVADAS (1) LA DERIVADA DE UNA CONSTANTE es cero. Sol: Sol: Sol: Sol: Derivada de una función potencial: Forma simple

DERIVADAS (1) LA DERIVADA DE UNA CONSTANTE es cero. Sol: Sol: Sol: Sol: Derivada de una función potencial: Forma simple DERIVADAS ( Derivada de una constante K K R F ( 0 LA DERIVADA DE UNA CONSTANTE es cero. nº nº nº nº 4 nº 5 nº 6 Derivada de una función potencial: Forma simple r r R r. r LA DERIVADA DE UNA FUNCIÓN POTENCIAL

Más detalles

Regla de la cadena. Regla de la cadena y. son diferenciables, entonces: w w u w v y u y v y. y g. donde F, w w u w v x u x v x

Regla de la cadena. Regla de la cadena y. son diferenciables, entonces: w w u w v y u y v y. y g. donde F, w w u w v x u x v x Regla de la cadena Una de las reglas qe en el cálclo de na variable reslta my útil es la regla de la cadena. Dicho grosso modo, esta regla sirve para derivar na composición de fnciones, esto es, na fnción

Más detalles

Tutorial MT-a2. Matemática Tutorial Nivel Avanzado. Función exponencial y logarítmica II

Tutorial MT-a2. Matemática Tutorial Nivel Avanzado. Función exponencial y logarítmica II 467890467890 M ate m ática Tutorial MT-a Matemática 006 Tutorial Nivel Avanzado Función eponencial y logarítmica II Matemática 006 Tutorial Función eponencial y logarítmica Marco Teórico. Función eponencial..

Más detalles

Información importante

Información importante Universia Técnica Feerico Santa María Departamento e Matemática Coorinación e Matemática I (MAT021) 1 er Semestre e 2010 Semana 9: Lunes 17 viernes 21 e Mayo Información importante El control Q2A es el

Más detalles

Regla de la cadena. f (x) 1 x 3. d dx x3 1 x 3. (3x 2 ) 3 x. f(x) 3 d dx ln x 3. 1 x. para x70, d dx ln x 1. para x60, d dx ln( x) 1x.

Regla de la cadena. f (x) 1 x 3. d dx x3 1 x 3. (3x 2 ) 3 x. f(x) 3 d dx ln x 3. 1 x. para x70, d dx ln x 1. para x60, d dx ln( x) 1x. 74 CAPÍTULO 3 La erivaa EJEMPLO 4 Diferencie f ()=ln 3. Regla e la caena Solución Debio a que 3 ebe ser positiva, se entiene que 70. Así, por (3), con u= 3, tenemos Solución alterna: Por iii) e las lees

Más detalles

REACTIVOS DE LA UNIDAD 4 FUNCIONES EXPONENCIALES Y LOGARITMICAS. Resuelve cada una de las preguntas siguiente y elige la respuesta correcta

REACTIVOS DE LA UNIDAD 4 FUNCIONES EXPONENCIALES Y LOGARITMICAS. Resuelve cada una de las preguntas siguiente y elige la respuesta correcta REACTIVOS DE LA UNIDAD 4 FUNCIONES EXPONENCIALES Y LOGARITMICAS Resuelve cada una de las preguntas siguiente y elige la respuesta correcta 1.-El punto común a todas las funciones eponenciales de la forma

Más detalles

() 25 de mayo de / 9

() 25 de mayo de / 9 DEFINICION. Una función es iferenciable en a si f (a) existe, y iremos que es iferenciable en un intervalo abierto si es iferenciable en caa uno e los puntos el intervalo. NOTA. Para las funciones que

Más detalles

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. en un intervalo al siguiente cociente:

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. en un intervalo al siguiente cociente: INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES Crecimiento de una Función en un Intervalo Tasa de Variación Media (T.V.M.) Se llama tasa de variación media (T.V.M.) de una función y f() en un intervalo

Más detalles

Parcial de Cálculo C 0

Parcial de Cálculo C 0 Parcial e Cálculo C 0 0 0 Funamentos e Matemáticas Usar los polinomios e Talor para averiguar si la función g = 7 alcanza o no un etremo local en = 0 sen ln Solución: El polinomio e Talor en = 0 e un polinomio

Más detalles

Logaritmo Natural. x I t dt = ln(x) = ln(x) > 0 para x (1, ) Observación 5. El primer teorema fundamental del Cálculo implica que

Logaritmo Natural. x I t dt = ln(x) = ln(x) > 0 para x (1, ) Observación 5. El primer teorema fundamental del Cálculo implica que Logaritmo Natural Si n ya sabemos que x t n t = n+ xn+ + C, con C una constante. Definición. La regla e corresponencia ln(x) = x t t = x I efine una función con ominio D ln = (0, ). A esta función se le

Más detalles

1. Idea intuitiva del concepto de derivada de una función en un punto.

1. Idea intuitiva del concepto de derivada de una función en un punto. Tema : Derivadas. Idea intitiva del concepto de derivada de na fnción en n pnto. Comencemos pensando en na fnción f () t, donde t represente el tiempo y f la evolción de na cantidad calqiera a lo largo

Más detalles

Concurso Nacional de Matemáticas Pierre Fermat Problemas

Concurso Nacional de Matemáticas Pierre Fermat Problemas Concrso Nacional de Matemáticas Pierre Fermat 014 Examen para Nivel Secndaria Etapa Eliminatoria Instrcciones: No tilizar cellar (éste deberá de estar apagado), ipod, notebook, calcladora ó calqier otro

Más detalles

5.2 La función logaritmo natural: integración

5.2 La función logaritmo natural: integración CAPÍTULO 5 Funciones logarítmica, eponencial otras funciones trascenentes 5. La función logaritmo natural: integración Usar la regla e logaritmo e integración para integrar una función racional. Integrar

Más detalles

1. Grafique la familia de curvas que representa la solución general de la ecuación diferencial: y ' + y = 0

1. Grafique la familia de curvas que representa la solución general de la ecuación diferencial: y ' + y = 0 Elaborao por: Jhonn Choquehuanca Lizarraga Ecuaciones Diferenciales e Primer oren Aplicaciones. Grafique la familia e curvas que representa la solución general e la ecuación iferencial: ' + = 0 Solución:

Más detalles

Fórmulas generales III FÓRMULA DE LA POTENCIA

Fórmulas generales III FÓRMULA DE LA POTENCIA III FÓRMULA DE LA POTENCIA Las fórmlas vistas en el capítlo anterior feron my específicas para integrales de x elevada a calqier potencia; sin embargo, no siempre, o más bien, pocas veces lo qe está elevado

Más detalles

ECUACIONES NO POLINÓMICAS CON UNA INCÓGNITA

ECUACIONES NO POLINÓMICAS CON UNA INCÓGNITA Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones ECUACIONES NO POLINÓMICAS CON UNA INCÓGNITA Una ecuación no polinómica es, en general, más difícil de resolver que una

Más detalles

Se define la derivada de una función f(x) en un punto "a" como el resultado, del siguiente límite:

Se define la derivada de una función f(x) en un punto a como el resultado, del siguiente límite: TEMA: DERIVADAS. Derivada de una función en un punto Se define la derivada de una función f() en un punto "a" como el resultado, del siguiente límite: f ( a + ) f ( a) f '( a) lim Si el límite eiste es

Más detalles

La regla de la constante. La derivada de una función constante es 0. Es decir, si c es un número real, entonces d c 0. dx (Ver la figura 2.

La regla de la constante. La derivada de una función constante es 0. Es decir, si c es un número real, entonces d c 0. dx (Ver la figura 2. SECCIÓN. Reglas básicas e erivación razón e cambio 07. Reglas básicas e erivación razón e cambio Encontrar la erivaa e una función por la regla e la constante. Encontrar la erivaa e una función por la

Más detalles

UNIDAD I CÁLCULO DIFERENCIAL

UNIDAD I CÁLCULO DIFERENCIAL Vicerrectorao Acaémico Faculta e Ciencias Aministrativas Licenciatura en Aministración Mención Gerencia y Mercaeo Unia Curricular: Matemática I UNIDAD I CÁLCULO DIFERENCIAL Elaborao por: Ing. Ronny Altuve

Más detalles

Decimos que f es derivable en dicho punto si existe y es finito: Lím. En tal

Decimos que f es derivable en dicho punto si existe y es finito: Lím. En tal UNIDAD : DERIVADAS Y APLICACIONES.- DERIVADA DE UNA FUNCIÓN EN UN PUNTO. Definición : Sea f una función definida en un a, b Dom f. Se llama tasa de intervalo [ ] variación media de f en dicho intervalo

Más detalles

3.1 Definiciones previas

3.1 Definiciones previas ÍNDICE 3.1 Definiciones previas............................... 1 3.2 Operaciones con funciones........................... 8 3.3 Límite e una función en un punto...................... 15 3.3.1 Operaciones

Más detalles

Solución: Utiliza la definición anterior, también llamada la "clave".

Solución: Utiliza la definición anterior, también llamada la clave. Materia: Matemáticas de 4to año Tema: Definición de Logaritmo Definición de logaritmo Marco Teórico Probablemente puedes adivinar que en y en. Pero, cuánto es si? Hasta ahora, no hemos tenido una relación

Más detalles

Tema 5: Ecuaciones diferenciales de primer orden homogéneas

Tema 5: Ecuaciones diferenciales de primer orden homogéneas Tema 5: Ecaciones diferenciales de primer orden homogéneas 5.1 Primer método de solción En la e.d. homogénea d (1) f (, ) d donde, de acerdo con lo visto en (.), f(t, t) f(, ), se sstite () v s correspondiente

Más detalles

3 DERIVADAS ALGEBRAICAS

3 DERIVADAS ALGEBRAICAS DERIVADAS ALGEBRAICAS DERIVADAS ALGEBRAICAS Entiénase la erivaa como la peniente e la recta tangente a la función en un punto ao, lo anterior implica que la función ebe eistir en ese punto para poer trazar

Más detalles

LA CICLOIDE, UNA CURVA DE MUCHO EMPAQUE

LA CICLOIDE, UNA CURVA DE MUCHO EMPAQUE LA CICLOIDE, UNA CUVA DE MUCHO EMPAQUE CALOS S CHINEA LA CICLOIDE UNA CUVA DE MUCHO EMPAQUE Una breve introucción 1 Ecuaciones paramétricas La tangente y la normal en un punto 3 Longitu e un arco 4 El

Más detalles

UNIVERSIDAD DIEGO PORTALES GUÍA N 11 CÁLCULO I. Profesor: Carlos Ruz Leiva DERIVADAS. Derivadas de orden superior. Ejemplos

UNIVERSIDAD DIEGO PORTALES GUÍA N 11 CÁLCULO I. Profesor: Carlos Ruz Leiva DERIVADAS. Derivadas de orden superior. Ejemplos UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS Profesor: Carlos Ruz Leiva GUÍA N CÁLCULO I DERIVADAS Derivaas e oren superior Ejemplos Hallar las siguientes

Más detalles

Curso Introductorio a las Matemáticas Universitarias

Curso Introductorio a las Matemáticas Universitarias Curso Introuctorio a las Matemáticas Universitarias Tema 8: Derivación Víctor M. Almeia Lozano Jorge J. García Melián Licencia Creative Commons 2013 8. DERIVACIÓN En este tema veremos el concepto e erivaa

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel Estimado alumno: Aquí encontrarás las claves de corrección, las habilidades y los procedimientos de resolución asociados a cada pregunta, no obstante, para reforzar tu aprendizaje es fundamental que asistas

Más detalles

INSTRUCTIVO PARA TUTORÍAS

INSTRUCTIVO PARA TUTORÍAS INSTRUCTIVO PARA TUTORÍAS Las tutorías corresponen a los espacios acaémicos en los que el estuiante el Politécnico Los Alpes puee profunizar y reforzar sus conocimientos en iferentes temas e cara al eamen

Más detalles