1. Función exponencial y funciones definidas mediante la exponencial

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1. Función exponencial y funciones definidas mediante la exponencial"

Transcripción

1 TEMA 3 FUNCIONES COMPLEJAS ELEMENTALES 1. Función exponencial funciones efinias meiante la exponencial 1.1 La función exponencial 1. Funciones trigonométricas 1.3 Funciones hiperbólicas. Función logaritmo funciones efinias meiante el logaritmo.1 Función logaritmo sus ramas. Exponentes complejos: funciones potenciales exponenciales.3 Funciones inversas trigonométricas e hiperbólicas 1 / Función exponencial funciones efinias meiante la exponencial 1.1 La función exponencial 1. Función exponencial funciones efinias meiante la exponencial 1.1 La función exponencial Definición. La función exponencial compleja es aquélla que a caa z = x + i C le asigna el número complejo e x (cos + i sen ) que se enota e z ó exp(z). Propieaes e la función exponencial 1. Para too z C, se verifica e z = e Re(z) arg(e z ) = {Im z + kπ : k Z}.. exp(c) = {e z : z C} = C {\ {0}. e z 1+z = e z 1 e z, 3. Daos z 1, z C, se cumple e z 1 z = e z 1 /e z. 4. exp es perióica e perioo πi se verifica: i) e z 1 = e z z 1 = z + kπi con k Z. En particular, e z = 1 z = kπi, k Z. ii) exp ({x + i : x R α < α + π}) = C \ {0} α R. 5. exp es entera sieno ez z = ez para too z C. 1. Función exponencial funciones efinias meiante la exponencial 1.1 La función exponencial Geometría e la función exponencial 1. Sean x 0, α R, si L x0,α ={x 0 +i : (α, α+π]} exp (L x0,α) = C(0, e x 0 ) α R, one C(0, e x 0 ) enota la circunferencia e centro el origen raio e x 0.. Dao 0 R, si R 0 = {x + i 0 : x R} = exp(r 0 ) = {re i 0 : r > 0}. / 16 Z W (α+π)i. exp(l x0,α) L x0,α exp(r 0 ) αi R 0 e x 0 x 0 3 / 16

2 1. Función exponencial funciones efinias meiante la exponencial 1. Funciones trigonométricas 1. Funciones trigonométricas Dao x R: { e ix = cos x + i sen x e ix = cos x i sen x = cos x = eix + e ix sen x = eix e ix i Definición. Las funciones seno coseno complejas se efinen para caa z C como sen z = eiz e iz i cos z = eiz + e iz Propieaes e las funciones complejas seno coseno 1. sen( z) = sen z cos( z) = cos z.. Ientiaes trigonométricas: i) sen(z 1 + z ) = sen z 1 cos z + cos z 1 sen z ; e one sen (z + π/) = cos z. ii) cos(z 1 + z ) = cos z 1 cos z sen z 1 sen z. iii) sen z + cos z = Perioicia: sen(z + π) = sen z cos(z + π) = cos z. 4 / Función exponencial funciones efinias meiante la exponencial 1. Funciones trigonométricas 4. Relación con las funciones hiperbólicas reales senh = e e cosh = e +e Si z = x + i entonces i) sen z = sen x cosh + i cos x senh. ii) cos z = cos x cosh i sen x senh. 5. Conjugaas e las funciones trigonométricas: sen z = sen z cos z = cos z. 6. Las funciones seno coseno no son acotaas en móulo. Se euce e las relaciones: i) sen z = sen x + senh. ii) cos z = cos x + senh. 7. Ceros e las funciones seno coseno: i) sen z = 0 si sólo si z = kπ con k Z. ii) cos z = 0 si sólo si z = π + kπ con k Z. 8. Las funciones seno coseno son enteras, verificánose que sen z = cos z z : z cos z = sen z 5 / Función exponencial funciones efinias meiante la exponencial 1. Funciones trigonométricas Otras funciones trigonométricas Función tangente: tan z = sen z cos z Función secante: sec z = 1 Propieaes cos z 1. tan z sec z son holomorfas en C \ Función cotangente: cot z = cos z sen z Función cosecante: csc z = 1 sen z { π + kπ; k Z }. Sieno z tan z = sec z sec z = sec z tan z z. cot z csc z son holomorfas en C \ {kπ; k Z}. Sieno z cot z = csc z csc z = csc z cot z z 3. Perioicia: tan z cot z son perióicas e perioo π sec z csc z e perioo π. 6 / 16

3 1. Función exponencial funciones efinias meiante la exponencial 1.3 Funciones hiperbólicas 1.3 Funciones hiperbólicas Definición. Se efinen las funciones complejas seno coseno hiperbólicos para caa z C como senh z = ez e z cosh z = ez + e z Propieaes e las funciones hiperbólicas complejas 1. senh( z) = senh z cosh( z) = cosh z.. Relación con las funciones trigonométricas complejas: i) senh z = i sen(iz) cosh z = cos(iz). ii) sen z = i senh(iz) cos z = cosh(iz). 3. Ientiaes i) senh(z 1 + z ) = senh z 1 cosh z + cosh z 1 senh z. ii) cosh(z 1 + z ) = cosh z 1 cosh z + senh z 1 senh z. iii) cosh z senh z = Perioicia: senh(z + πi) = senh z cosh(z + πi) = cosh z. 7 / Función exponencial funciones efinias meiante la exponencial 1.3 Funciones hiperbólicas 5. Relación con las funciones hiperbólicas reales: Si z = x + i entonces i) senh z = senh x cos + i cosh x sen. ii) cosh z = cosh x cos + i senh x sen. 6. Conjugaas e las funciones hiperbólicas: senh z = senh z cosh z = cosh z. 7. Las funciones seno coseno hiperbólicas no son acotaas en móulo, obviamente pues restringias a R no son acotaas. Aemás, se verifican las siguientes relaciones: i) senh z = senh x + sen. ii) cosh z = senh x + cos. 8. Ceros e las funciones seno coseno hiperbólicos: i) senh z = 0 si sólo si z = ( kπi con k Z. π ) ii) cosh z = 0 si sólo si z = + kπ i con k Z. 9. Las funciones seno coseno hiperbólicos son enteras, verificánose que senh z = cosh z z z cosh z = senh z 8 / Función exponencial funciones efinias meiante la exponencial 1.3 Funciones hiperbólicas Otras funciones hiperbólicas Tangente hiperbólica: tanh z = senh z cosh z Secante hiperbólica: sech z = 1 Propieaes cosh z 1. tanh z sech z son holomorfas en C \ Cotangente hiperbólica: coth z = cosh z senh z Cosecante hiperbólica: csch z = 1 senh z {( π ) } + kπ i; k Z. Sieno z tanh z = sech z sech z = sech z tanh z z. coth z csch z son holomorfas en C \ {kπi; k Z}. Sieno z coth z = csch z csch z = csch z coth z z 3. Perioicia: tanh z coth z son perióicas e perioo πi sech z csch z e perioo πi. 9 / 16

4 . Función logaritmo funciones efinias meiante el logaritmo.1 La función logaritmo sus ramas.1 La función logaritmo sus ramas Para efinir una función compleja inversa e la exponencial ha que tener en cuenta: 1) e w 0, w C ) e w = z 0 w = ln z + i(arg z + kπ), k Z Definición. Dao z C\{0} se efine { logaritmo e z: log z = {ln z + i(arg z + kπ) : k Z} logaritmo principal e z: Log z = ln z + i Arg z De la función multivaluaa log se efine para α R la rama o eterminación el logaritmo log α z = ln z + i arg α z, one arg α es la rama e arg con valores en (α, α + π). Por tanto, Dominio e efinición e log α es Ω α = C \ {re iα : r 0}. El conjunto C α = {re iα : r 0} se enomina corte e ramificación e la rama log α. La imagen e log α es {w C : α < Im w < α + π}. Si α = π = log α = Log es la rama principal el logaritmo. Si C α semirrecta que parte el origen con peniente α [0, π), existen infinitas ramas el logaritmo istintas con corte e ramificación C α : f k (z) = ln z + i(arg α z + kπ) con k Z 10 / 16. Función logaritmo funciones efinias meiante el logaritmo.1 La función logaritmo sus ramas Propieaes 1. e log α z = z z Ω α α R.. log α (e z ) z se verifica log α (e z ) = z + kπi, sieno k Z. log α (e z ) = z si sólo si α < Im z < α + π. log(e z ) = {z + kπi : k Z}. 3. Daos z 1, z C \ {0}, log α (z 1 z ) log α z 1 + log α z, se verifica: i) log α (z 1 z ) = log α z 1 + log α z + kπi sieno k Z. ii) Fijaas os ramas el logaritmo, existe una tercera verificano log α0 (z 1 z ) = log α1 z 1 + log α z. 4. Daos z 1, z C \ {0}, log α (z 1 /z ) log α z 1 log α z, se verifica: i) log α (z 1 /z ) = log α z 1 log α z + kπi sieno k Z epeniente e z 1 z. ii) Fijaas os ramas el logaritmo, existe una tercera verificano log α0 (z 1 /z ) = log α1 z 1 log α z. 5. Para caa α R, log α H(Ω α ) sieno log α z z = 1 z z Ω α. 11 / 16. Función logaritmo funciones efinias meiante el logaritmo. Exponentes complejos: funciones potenciales exponenciales. Exponentes complejos: funciones potenciales exponenciales Definición. Daos z, w C, sieno z 0, la potencia e base z exponente w es z w = {e w(log z+kπi)) : k Z} = {e w(ln z +i(arg z+kπ)) : k Z}. Para un valor el logaritmo, log α z, se tiene el único valor 1 z w = e w log α z = e w(ln z +i arg α z). Propieaes 1. Daos z, w C, con z 0, e e w(log z+kπi)) = e w Log z e wkπi se sigue i) Si w Q z w conjunto finito pues: - Dao n N z n = {z. n).. z} z n = {z 1. n).. z 1 } - si w = 1/n z w es el conjunto e las n raíces n-ésimas e z. ii) Si w / Q z w es infinito sus elementos ifieren entre sí en un factor e la forma e wkπi, k Z.. Si z C \ {0} w 1, w C, fijaas las eterminaciones e os potencias e las 3 que involucra la fórmula e los siguientes casos, existe una e la tercera potencia verificano: i) z w 1+w = z w 1 z w. ii) z w 1 w = z w 1 z w. 1 Se utiliza la misma notación que para el conjunto e infinitos valores, por lo que en el contexto se ebe especificar 1 / 16

5 . Función logaritmo funciones efinias meiante el logaritmo. Exponentes complejos: funciones potenciales exponenciales Funciones potenciales Dao w C, la función potencial multivaluaa C \ {0} P(C) z z w etermina, para caa α R, la rama o eterminación e la función potencial e potencia w o α-rama e z w : Ω α = C \ {re iα : r 0} C z e w log α z =: z w que es holomorfa en Ω α sieno z w z = wz w 1 z Ω α, one z w 1 = e (w 1) log α z. Observación: Sea w Z. a) Para w = n N = N {0}, la función entera efinia para caa z C por z n = z. n).. z restringia a Ω α coincie con la α-rama e z w, para cualquier α R. b) Para w = n, con n N, la función efinia por z n = 1, que es holomorfa en z n C \ {0}, restringia a Ω α coincie con la α-rama e z w, para cualquier α R. 13 / 16. Función logaritmo funciones efinias meiante el logaritmo. Exponentes complejos: funciones potenciales exponenciales Funciones exponenciales Dao w C \ {0}, la función exponencial multivaluaa C z P(C) etermina, para caa k Z, la rama o eterminación e la función exponencial e base w C C z que es entera cua erivaa es e z(log w+ikπ) =: w z w z z = w z (Log w + ikπ) z C. w z 14 / 16. Función logaritmo funciones efinias meiante el logaritmo.3 Funciones inversas trigonométricas e hiperbólicas.3 Funciones inversas trigonométricas e hiperbólicas Funciones inversas trigonométricas Las funciones inversas e las funciones trigonométricas e hiperbólicas son multivaluaas pues vienen efinias a través el logaritmo. Por ejemplo, ao w C, w puee ser consierao un valor e arcsen z si verifica sen w = z z = eiw e iw ( e iw) ize iw 1 = 0 i Resolvieno esta ecuación se llega a { arcsen z = i ( ln iz ± 1 z + i ( Arg(iz ± )) } 1 z ) + kπ : k Z, one 1 z enota uno e los os valores e la raíz. Abreviaamente arcsen z = i log ( iz + (1 z ) 1/), one la raíz el logaritmo inican las funciones multivaluaas. Fijaa una rama el logaritmo otra e la raíz se obtiene una función arco seno cuo ominio e holomorfía quea eterminao por ambas ramas sieno su erivaa z arcsen z = 1 (1 z ). 1/ 15 / 16

6 . Función logaritmo funciones efinias meiante el logaritmo.3 Funciones inversas trigonométricas e hiperbólicas De forma análoga se obtienen las funciones arco coseno arco tangente. En el siguiente cuaro, one las erivaas eben entenerse referias a las ramas efinias en el corresponiente ominio e holomorfía, se reúnen estas funciones: arcsen z = i log ( iz + (1 z ) 1/) arccos z = i log(z + (z 1) 1/ ) arctan z = i ( ) i + z log, z ±i i z z arcsen z = 1 (1 z ) 1/ z arccos z = 1 (1 z ) 1/ z arctan z = z. 16 / 16. Función logaritmo funciones efinias meiante el logaritmo.3 Funciones inversas trigonométricas e hiperbólicas Funciones inversas hiperbólicas De forma similar al caso e las funciones trigonométricas se obtienen las inversas e las funciones hiperbólicas, recogias en el siguiente cuaro, one nuevamente las erivaas eben entenerse referias a las ramas en el corresponiente ominio e holomorfía: arcsenh z = log(z + (z + 1) 1/ ) arccosh z = log(z + (z 1) 1/ ) arctanh z = 1 ( ) 1 + z log, z ±1 1 z z arcsenh z = 1 (z + 1) 1/ z arccosh z = 1 (z 1) 1/ z arctanh z = 1 1 z 17 / 16

Universidad Antonio Nariño Matemáticas Especiales Guía N 3: Funciones elementales complejas: exponencial, logaritmo, trigonométricas e hiperbólicas

Universidad Antonio Nariño Matemáticas Especiales Guía N 3: Funciones elementales complejas: exponencial, logaritmo, trigonométricas e hiperbólicas Universia Antonio Nariño Matemáticas Especiales Guía N 3: Funciones elementales complejas: exponencial, logaritmo, trigonométricas e hiperbólicas Grupo e Matemáticas Especiales Resumen Se presenta la efinición

Más detalles

Tema 3: Funciones elementales. Ejemplos. Marisa Serrano, José Ángel Huidobro. 15 de octubre de Ejemplo 3.1

Tema 3: Funciones elementales. Ejemplos. Marisa Serrano, José Ángel Huidobro. 15 de octubre de Ejemplo 3.1 Índice Marisa Serrano, José Ángel Huidobro 1 2 Universidad de Oviedo 15 de octubre de 2009 3 4 email: mlserrano@uniovi.es email: jahuidobro@uniovi.es 5 Ejemplo 3.1 Definición 3.1 Dado z = x + iy C se define

Más detalles

Variable Compleja I Tema 5: Funciones elementales

Variable Compleja I Tema 5: Funciones elementales Variable Compleja I Tema 5: Funciones elementales 1 La exponencial 2 Logaritmos El conjunto de los logaritmos El problema del logaritmo holomorfo Ejemplos de logaritmos holomorfos Desarrollos en serie

Más detalles

Funciones de Variable Compleja

Funciones de Variable Compleja U Contenido Facultad de Ingeniería Escuela de Ingeniería Eléctrica Departamento de Electrónica, Computación y Control Variable Compleja y Cálculo Operacional Funciones de Variable Compleja (Continuidad,

Más detalles

UNIVERSIDAD DE CONCEPCION DEPARTAMENTO DE MATEMATICA Prof. Jorge Ruiz Castillo. 1.1 Repaso de propiedades de funciones inversas

UNIVERSIDAD DE CONCEPCION DEPARTAMENTO DE MATEMATICA Prof. Jorge Ruiz Castillo. 1.1 Repaso de propiedades de funciones inversas Funciones Inversas UNIVERSIDAD DE CONCEPCION DEPARTAMENTO DE MATEMATICA Prof Jorge Ruiz Castillo Repaso e propieaes e funciones inversas Sea f : A B una función biectiva sea f : B A su función inversa

Más detalles

Funciones elementales

Funciones elementales Funciones elementales 3.1. Función exponencial Ya hemos introducido la exponencial compleja definiéndola como e z = e x (cosy + i sen y) para todo z = x + iy C. Dicha definición fue propuesta por Euler

Más detalles

GLOSARIO DE REGLAS DE DERIVACIÓN

GLOSARIO DE REGLAS DE DERIVACIÓN CÁLCULO GLOSARIO DE REGLAS DE DERIVACIÓN RESUMEN 1. Derivadas de funciones elementales o Derivada de una constante o Derivada de una función potencial (monomio) o Derivada de una raíz cuadrada (caso particular

Más detalles

FORMULARIO MATEMÁTICO

FORMULARIO MATEMÁTICO Formulario matemático L. Gámez, B. Gámez FORMULARIO MATEMÁTICO Ientiaes trigonométricas tg a sen a cos a, cot a tg a sec a csc a cos a sen a sen a + cos a, + tg a sec a sen(a ± b) sen a cos b ± cos a sen

Más detalles

DERIVADAS DE LAS FUNCIONES ELEMENTALES

DERIVADAS DE LAS FUNCIONES ELEMENTALES Universia Metropolitana Dpto. e Matemáticas Para Ingeniería Cálculo I (FBMI0) Proesora Aia Montezuma Revisión: Proesora Ana María Roríguez Semestre 08-09A DERIVADAS DE LAS FUNCIONES ELEMENTALES DERIVADAS

Más detalles

DERIVADA. Interpretación Geométrica Encontrar la pendiente de la recta tangente a una curva en un punto dado de ella.

DERIVADA. Interpretación Geométrica Encontrar la pendiente de la recta tangente a una curva en un punto dado de ella. DERIVADA Interpretación Geométrica Objetivo: Encontrar la peniente e la recta tangente a una curva en un punto ao e ella. Para precisar correctamente la iea e tangente a una curva en un punto, se utilizará

Más detalles

Funciones elementales. A.1 Funciones potenciales. A.2 Función exponencial

Funciones elementales. A.1 Funciones potenciales. A.2 Función exponencial Funciones potenciales A A. Funciones potenciales La función potencial f : R + R definida como f (x) = x b tiene sentido para cualquier exponente b real. En el caso particular de potencias naturales, se

Más detalles

( ) 2. Pendiente de una Recta Tangente. Sea f una función que es continua en x. 1. Para definir la pendiente de la recta tangente ( )

( ) 2. Pendiente de una Recta Tangente. Sea f una función que es continua en x. 1. Para definir la pendiente de la recta tangente ( ) Derivaa e una Función Ínice.. Introucción.. Peniente e una recta tangente.. Derivaa e una función. 4. Derivaas laterales. 5. Derivaa e una función compuesta (Regla e la Caena). 6. Tabla e erivaas usuales.

Más detalles

Definición 3.1 Dado z = x + iy lc se define la función exponencial compleja como. exp(z) = e x (cos(y) + i sen(y))

Definición 3.1 Dado z = x + iy lc se define la función exponencial compleja como. exp(z) = e x (cos(y) + i sen(y)) Capítulo 3 Funciones elementales En este capítulo se introducen la funciones elementales variable compleja: la exponencial, el logaritmo y las funciones trigonométricas e hiperbólicas. Como veremos, muchas

Más detalles

Coordinación de Matemática II (MAT022)

Coordinación de Matemática II (MAT022) Coorinación e Matemática II (MAT0) Primer semestre e 03 Semana 6: Lunes e Abril Viernes 6 e Abril CÁLCULO Contenios Clase : Funciones Trascenentales: Función logaritmo natural y eponencial. Propieaes algebraicas

Más detalles

Función Logaritmo y exponencial. Función logaritmo natural

Función Logaritmo y exponencial. Función logaritmo natural Función Logaritmo y exponencial Función logaritmo natural En términos matemáticos la función logaritmo natural es una herramienta de mayor utilidad que el logaritmo del álgebra elemental, el cual está

Más detalles

Cálculo I Derivadas de Funciones Trascendentes. Julio C. Carrillo E. * 1. Introducción Derivadas de funciones trigonométricas inversas 7

Cálculo I Derivadas de Funciones Trascendentes. Julio C. Carrillo E. * 1. Introducción Derivadas de funciones trigonométricas inversas 7 3.3. Derivaas e Funciones Trascenentes Julio C. Carrillo E. * Ínice. Introucción 2. Derivaas e funciones trigonométricas 3. Derivaas e funciones trigonométricas inversas 7 4. Derivaas e la función exponencial

Más detalles

Cuadro de derivadas. Cuadro de Derivadas. y = k La derivada de una cte es igual a cero. Es decir: y = 0

Cuadro de derivadas. Cuadro de Derivadas. y = k La derivada de una cte es igual a cero. Es decir: y = 0 Cuadro de derivadas y = k La derivada de una cte es igual a cero. Es decir: 0 y = x y = + g(x) y = g(x) y = k y = g(x) La derivada de la función identidad es igual a. Es decir: La derivada de una suma

Más detalles

ISBN ª edición

ISBN ª edición ISBN 978-84-9048-593-4 3ª edición Luis Manuel Sánchez Ruiz Matilde Pilar Legua Fernández Fundamentos de variable compleja y aplicaciones 3ª edición 017 EDITORIAL UNIVERSITAT POLITÈCNICA DE VALÈNCIA Primera

Más detalles

Cada grado se divide en 60 minutos (60 ) y cada minuto en 60 segundos (60 ). Así, por ejemplo, un ángulo puede medir = 38º

Cada grado se divide en 60 minutos (60 ) y cada minuto en 60 segundos (60 ). Así, por ejemplo, un ángulo puede medir = 38º Sistemas e meición e ángulos Como en toos los elementos susceptibles a meiciones, en los ángulos se han establecio iversos sistemas e meición, entre ellos los más importantes son: El sistema seagesimal

Más detalles

3.1 Definiciones previas

3.1 Definiciones previas ÍNDICE 3.1 Definiciones previas............................... 1 3.2 Operaciones con funciones........................... 8 3.3 Límite e una función en un punto...................... 15 3.3.1 Operaciones

Más detalles

Contenido. Números Complejos 3

Contenido. Números Complejos 3 Números Complejos Universidad Central de Venezuela Facultad de Ingeniería Escuela de Ingeniería Eléctrica Departamento de Electrónica, Computación y Control Variable Compleja y Cálculo Operacional Marzo,

Más detalles

Contenidos. Concepto de aplicación Dominio e Imagen Igualdad Función Compuesta Función Inversa Crecimiento. Decrecimiento Función Acotada

Contenidos. Concepto de aplicación Dominio e Imagen Igualdad Función Compuesta Función Inversa Crecimiento. Decrecimiento Función Acotada Contenidos Concepto de aplicación Dominio e Imagen Igualdad Función Compuesta Función Inversa Crecimiento. Decrecimiento Función Acotada Máximo, mínimo Función par o impar Función periódica Función Potencial

Más detalles

Regla de la cadena. f (x) 1 x 3. d dx x3 1 x 3. (3x 2 ) 3 x. f(x) 3 d dx ln x 3. 1 x. para x70, d dx ln x 1. para x60, d dx ln( x) 1x.

Regla de la cadena. f (x) 1 x 3. d dx x3 1 x 3. (3x 2 ) 3 x. f(x) 3 d dx ln x 3. 1 x. para x70, d dx ln x 1. para x60, d dx ln( x) 1x. 74 CAPÍTULO 3 La erivaa EJEMPLO 4 Diferencie f ()=ln 3. Regla e la caena Solución Debio a que 3 ebe ser positiva, se entiene que 70. Así, por (3), con u= 3, tenemos Solución alterna: Por iii) e las lees

Más detalles

Tema 8: Derivación. José M. Salazar. Noviembre de 2016

Tema 8: Derivación. José M. Salazar. Noviembre de 2016 Tema 8: Derivación. José M. Salazar Noviembre e 2016 Tema 8: Derivación. Lección 9. Derivación: teoría funamental. Lección 10. Aplicaciones e la erivación. Ínice 1 Derivaas. Principales nociones y resultaos.

Más detalles

Semana 14-Derivadas I[1/29] Derivada. 7 de junio de Derivada

Semana 14-Derivadas I[1/29] Derivada. 7 de junio de Derivada Semana 14-s I[1/9] 7 e junio e 007 s Introucción Semana 14-s I[/9] Introucción P f Q Consieremos el gráfico e una función f con ominio R. Sea P = (x 0, y 0 ) un punto el gráfico e f y sea Q = (x 1, y 1

Más detalles

4.1. DERIVADAS DE LAS FUNCIONES TRIGONOMETRICAS

4.1. DERIVADAS DE LAS FUNCIONES TRIGONOMETRICAS Escuela Colombiana e Ingeniería 4.. DERIVADAS DE LAS FUNCIONES TRIGONOMETRICAS Derivaa e y La erivaa e y se puee obtener como: y + Lim 0 Para calcular este límite se utilizan los siguientes conceptos previamente

Más detalles

12. Funciones trigonométricas

12. Funciones trigonométricas . Funciones trigonométricas asfasfasfasfasf.. Funciones seno coseno En este móulo nos ocuparemos, en primer lugar, e las funciones trigonométricas. Wang Zheni (78-797) sen() cos() Son funciones one la

Más detalles

Funciones de Variable Compleja

Funciones de Variable Compleja Capítulo 2 Funciones de Variable Compleja Se estudian en este tema las relaciones que se puedan establecer entre conjuntos de números complejos, extendiendo a C el concepto de función, como aplicación

Más detalles

Derivación. (x c) que pasa por el punto fijo (c, f(c)) y el punto móvil (c + h, f(c + h)) cuando h tiende a 0.

Derivación. (x c) que pasa por el punto fijo (c, f(c)) y el punto móvil (c + h, f(c + h)) cuando h tiende a 0. Derivación Definición y propieaes básicas Definición. Una función f efinia en un entorno e un punto c R es erivable en c si y sólo si el ite f c = f fc + h fc f fc c := = h h c c eiste y toma un valor

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS. S O L U C I Ó N y R Ú B R I C A

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS. S O L U C I Ó N y R Ú B R I C A ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS AÑO: 207 PERÍODO: PRIMER TÉRMINO MATERIA: Cálculo e una variable PROFESOR: EVALUACIÓN:

Más detalles

2. FUNCIONES REALES DE UNA VARIABLE REAL 2.1. FUNCIONES ELEMENTALES

2. FUNCIONES REALES DE UNA VARIABLE REAL 2.1. FUNCIONES ELEMENTALES Águeda Mata Miguel Rees, Dpto. de Matemática Aplicada, FI-UPM.... Definición. FUNCINES REALES DE UNA VARIABLE REAL.. FUNCINES ELEMENTALES Se llama función real de una variable real a cualquier aplicación

Más detalles

Funciones de Variable Compleja

Funciones de Variable Compleja Capítulo 2 Funciones de Variable Compleja Se trata en este capítulo de estudiar las relaciones que se establecen entre conjuntos de números complejos a través de funciones entre ambos. Se definirá el concepto

Más detalles

Principios de graficación

Principios de graficación Graicación Principios de graicación En algunas oportunidades tenemos que graicar una unción que es casi igual a las que a sabemos graicar, llamadas básicas, sólo que estas presentan elementos adicionales

Más detalles

Matemáticas Avanzadas para Ingeniería: Funciones extendidas. Departamento de Matemáticas. Intro. e z. ln(z) sen(z) MA3002

Matemáticas Avanzadas para Ingeniería: Funciones extendidas. Departamento de Matemáticas. Intro. e z. ln(z) sen(z) MA3002 MA3002 En esta sección veremos cómo se extienn las funciones que ya conocemos números reales pero ahora al plano complejo. La función exponencial Sea z = x + y i un número complejo. Se fine la función

Más detalles

LA FUNCION SENO CONDOMINIO RESTRINGIDO. F(X)=sen x en el intervalo [, ] es creciente y por lo tanto inyectiva es. y el recorrido es [-1, 1] su grafica

LA FUNCION SENO CONDOMINIO RESTRINGIDO. F(X)=sen x en el intervalo [, ] es creciente y por lo tanto inyectiva es. y el recorrido es [-1, 1] su grafica FUNCIONES TRIGONOMETRICAS INVERSAS Son necesarias para calcular los ángulos de un triangulo a partir de la medición de sus lados,aparecen con frecuencia en las soluciones de ecuaciones diferenciales Sin

Más detalles

Tema 1. Números reales y funciones reales de variable real. Números complejos. Departamento de Análisis Matemático Universidad de Granada

Tema 1. Números reales y funciones reales de variable real. Números complejos. Departamento de Análisis Matemático Universidad de Granada Tema 1. Números reales y funciones reales de variable real. Números complejos Departamento de Análisis Matemático Universidad de Granada Números reales Números reales Universidad de Granada Septiembre,

Más detalles

LA DERIVADA UNIDAD III III.1 INCREMENTOS. y, esto es:

LA DERIVADA UNIDAD III III.1 INCREMENTOS. y, esto es: Página el Colegio e Matemáticas e la ENP-UNAM La erivaa Autor: Dr. José Manuel Becerra Espinosa LA DERIVADA UNIDAD III III. INCREMENTOS Se eine como incremento e la variable al aumento o isminución que

Más detalles

Información importante

Información importante Universia Técnica Feerico Santa María Departamento e Matemática Coorinación e Matemática I (MAT021) 1 er Semestre e 2010 Semana 9: Lunes 17 viernes 21 e Mayo Información importante El control Q2A es el

Más detalles

Funciones, Límites y Continuidad

Funciones, Límites y Continuidad Tema Funciones, Límites y Continuidad Introducción El objetivo fundamental de este tema es recordar conceptos ya conocidos acerca de las funciones reales de variable real, así como de los límites en dichas

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Funciones extendidas. Departamento de Matemáticas. Intro. Exponencial. Nota 1. Logaritmo.

MA3002. Matemáticas Avanzadas para Ingeniería: Funciones extendidas. Departamento de Matemáticas. Intro. Exponencial. Nota 1. Logaritmo. MA3002 En esta sección veremos cómo se extienn las funciones que ya conocemos números reales pero ahora al plano complejo. En lo que sigue, las funciones cuyo nombre está en letra azul son funciones variable

Más detalles

Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 5 de septiembre de f (z) = sen z

Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 5 de septiembre de f (z) = sen z Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática Examen de problemas, 5 de septiembre de 22..5 ptos. Encuentre en C las singularidades de la siguiente función e indique su

Más detalles

1. Hallar la derivada por definición de f ( x) x x 1. Solución: para resolver la derivada aplicaremos la definición de la derivada: f '( x)

1. Hallar la derivada por definición de f ( x) x x 1. Solución: para resolver la derivada aplicaremos la definición de la derivada: f '( x) . Hallar la erivaa por efinición e f ( ) Solución: para resolver la erivaa aplicaremos la efinición e la erivaa: f '( ) lim 0 f ( ) f ( ) f ( ) f '( ) lim 0 ara allar la erivaa meiante efinición ebemos

Más detalles

Derivación de funciones de una variable real

Derivación de funciones de una variable real Capítulo 4 Derivación e funciones e una variable real 4.1. Derivaa e una función 4.1.1. Introucción Definición 4.1.1. Sea f : (a, b) R R y x 0 (a, b). Se ice que la función f es erivable en el punto x

Más detalles

OBJETIVO : Cálculo Diferencial e Integral. Cálculo Diferencial e Integral. Cálculo.

OBJETIVO : Cálculo Diferencial e Integral. Cálculo Diferencial e Integral. Cálculo. . F U N C I O N E S OBJETIVO: EL ALUMNO ANALIZARA LAS CARACTERISTICAS PRINCIPALES DE LAS FUNCIONES REALES DE VARIABLE REAL FORMULARA MODELOS MATEMATICOS. Bibliografía: Cálculo Diferencial e Integral. Arnulfo

Más detalles

Funciones elementales

Funciones elementales Lección 5 Funciones elementales A continuación estudiamos algunos ejemplos de funciones holomorfas que, junto con las racionales, forman la familia de las llamadas funciones elementales de variable compleja.

Más detalles

Funciones Hiperbólicas. Who? Verónica Briceño V. When? noviembre 2013

Funciones Hiperbólicas. Who? Verónica Briceño V. When? noviembre 2013 Funciones Hiperbólicas Funciones Hiperbólicas Who? Verónica Briceño V. When? noviembre 2013 En esta Presentación... En esta Presentación veremos: Definición de Funciones Hiperbólicas En esta Presentación...

Más detalles

Si x lr y > 1-x lr, y lr Dom( R2) = lr, Ran( R2) = lr. X y : y > 1-x. 1 y : y > 0. 2 y : y > RELACIONES. EN EL PLANO CARTESIANO.

Si x lr y > 1-x lr, y lr Dom( R2) = lr, Ran( R2) = lr. X y : y > 1-x. 1 y : y > 0. 2 y : y > RELACIONES. EN EL PLANO CARTESIANO. R = { (, y) A B / + y > } Si lr y > - lr, y lr Dom( R) = lr, Ran( R) = lr Funciones en una variable Real Para aproimar el gráfico realizamos una tabulación: X y : y > -. y y : y > 0. y : y > -.. RELACIONES.

Más detalles

Cálculo Integral Enero 2016

Cálculo Integral Enero 2016 Cálculo Integral Enero 6 Laboratorio # Antiderivadas I.- Halle las siguientes integrales indefinidas. ) ( + + ) ) ( + ) ( ) ) ( w + ) (w ) dw ) ( + ) 5) (y ) dy 6) ( +)( 5) 6 7) + 8) ( +) 5 y+ dy ) (y+5

Más detalles

Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 13 de junio de 2013.

Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 13 de junio de 2013. Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática Examen de problemas, 3 de junio de 23..5 ptos. Encuentre en C las singularidades de la siguiente función e indique su tipo:

Más detalles

x y = x x y = x

x y = x x y = x FUNCIONES ELEMENTALES: Indice: Algebraicas Polinómicas Racionales Irracionales Trascendentes Exponencial Logarítmica Trigonométrica Trigonométricas recíprocas Algebraicas Funciones polinómicas: X f(x)=

Más detalles

SISTEMAS DE COORDENADAS EN EL ESPACIO

SISTEMAS DE COORDENADAS EN EL ESPACIO Matemática Diseño Inustrial Coorenaas en el espacio Ing. vila Ing. Moll SISTEMS DE CRDENDS EN EL ESPCI De forma similar a la vista para el plano, se pueen efinir istintos sistemas e coorenaas. CRDENDS

Más detalles

Análisis Complejo Segundo Cuatrimestre 2011

Análisis Complejo Segundo Cuatrimestre 2011 Análisis Complejo Segundo Cuatrimestre 011 Práctica 1: Números complejos Números complejos 11 Expresar los siguientes números en la forma a + bi, con a, b R: (a) (i + 1)(i 1)(i + 3), (b) (3 i), (c) 1 1+3i,

Más detalles

Por extensión, también se puede hablar de la preimagen de un conjunto. Si B 0 B, la preimagen de B 0 es

Por extensión, también se puede hablar de la preimagen de un conjunto. Si B 0 B, la preimagen de B 0 es Definiciones A La idea de función aparece por todas partes: cada persona tiene una edad o un número de hijos o una cantidad de dinero en el bolsillo. No necesariamente tenemos que referirnos a números,

Más detalles

DEFINICION DE DERIVADA Sea una función definida en un intervalo abierto que contiene a a Diremos que f es Derivable en a si: si este límite existe

DEFINICION DE DERIVADA Sea una función definida en un intervalo abierto que contiene a a Diremos que f es Derivable en a si: si este límite existe DERIVADA DEFINICION DE DERIVADA Sea una función efinia en un intervalo abierto que contiene a a Diremos que f es Derivable en a si: si este límite eiste Dicho límite, cuano eiste, se llama DERIVADA e f

Más detalles

Cálculo:Notas de preliminares

Cálculo:Notas de preliminares Cálculo:Notas de preliminares Antonio Garvín Curso 04/05 1 Recordando cosas Recordaremos los conjuntos con los que vamos a trabajar, en especial R y R n. A fin de cuentas el cálculo trata basicamente de

Más detalles

Funciones. A.1 Definiciones. Dominio, rango e imagen A.1.1

Funciones. A.1 Definiciones. Dominio, rango e imagen A.1.1 Definiciones A La idea de función aparece por todas partes: cada persona tiene una edad o un número de hijos o una cantidad de dinero en el bolsillo. No necesariamente tenemos que referirnos a números,

Más detalles

Logaritmo Natural. x I t dt = ln(x) = ln(x) > 0 para x (1, ) Observación 5. El primer teorema fundamental del Cálculo implica que

Logaritmo Natural. x I t dt = ln(x) = ln(x) > 0 para x (1, ) Observación 5. El primer teorema fundamental del Cálculo implica que Logaritmo Natural Si n ya sabemos que x t n t = n+ xn+ + C, con C una constante. Definición. La regla e corresponencia ln(x) = x t t = x I efine una función con ominio D ln = (0, ). A esta función se le

Más detalles

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL (Curso 00-00) HOJA Ejercicio. Determina en qué recintos es holomorfa la siguiente función: f(x + iy) x + ay + i(bx + cy) En este caso consideramos: u(x, y) x + ay

Más detalles

Funciones reales de variable real

Funciones reales de variable real Tema Funciones reales de variable real Introducción El objetivo fundamental de este tema es recordar conceptos ya conocidos acerca de las funciones reales de variable real.. Conceptos Generales Definición.

Más detalles

Cálculo I. Índice Reglas Fundamentales para el Cálculo de Derivadas. Julio C. Carrillo E. * 1. Introducción 1. 2.

Cálculo I. Índice Reglas Fundamentales para el Cálculo de Derivadas. Julio C. Carrillo E. * 1. Introducción 1. 2. 3.2. Reglas Funamentales para el Cálculo e Derivaas Julio C. Carrillo E. * Ínice 1. Introucción 1 2. Reglas básicas 3 3. El Álgebra e funciones erivables 4 4. Regla e la caena 8 * Profesor Escuela e Matemáticas,

Más detalles

2 = 1, de manera semejante a

2 = 1, de manera semejante a INTRODUCCIÓN (Apuntes en revisión para orientar el aprendizaje) FUNCIONES HIPERBÓLICAS En el campo de las unciones escalares, conocidas como unciones trascendentes, hubo quienes observaron que determinadas

Más detalles

(a) z 1 + i = 1, (b) z + i 3, (c) Re(z i) = 2, (d) 2z i = 4. i 2 2i, z k = 1 zn+1 1 z

(a) z 1 + i = 1, (b) z + i 3, (c) Re(z i) = 2, (d) 2z i = 4. i 2 2i, z k = 1 zn+1 1 z Demostrar que Re z + Im z z para todo z C. Encontrar las soluciones de z = z. 3 Representar cada uno de los siguientes conjuntos: (a) z + i =, (b) z + i 3, (c) Re(z i) =, (d) z i = 4. 4 Demostrar que si

Más detalles

Funciones elementales

Funciones elementales Tema 5 Funciones elementales A continuación estudiamos algunos ejemplos de funciones holomorfas que, junto con las racionales, forman la familia de las llamadas funciones elementales de variable compleja.

Más detalles

Análisis Complejo Primer Cuatrimestre 2009

Análisis Complejo Primer Cuatrimestre 2009 Análisis Complejo Primer Cuatrimestre 009 Práctica 1: Números complejos Números complejos 11 Exprese los siguientes números complejos en la forma a + bi, con a, b R: (a) (i + 1)(i 1)(i + 3), (b) (3 i),

Más detalles

Tema 13. El número complejo Introducción Un poco de historia

Tema 13. El número complejo Introducción Un poco de historia Tema 13 El número complejo. 13.1. Introducción. 13.1.1. Un poco de historia La primera referencia conocida a raíces cuadradas de números negativos proviene del trabajo de matemáticos griegos, como Herón

Más detalles

4.1 Antiderivadas o primitivas e integración indefinida

4.1 Antiderivadas o primitivas e integración indefinida 48 CAPÍTULO 4 Integración 4. Antierivaas o primitivas e integración inefinia Escribir la solución general e una ecuación iferencial. Usar la notación e la integral inefinia para las antierivaas o primitivas.

Más detalles

INTEGRACIÓN POR RESIDUOS

INTEGRACIÓN POR RESIDUOS Capítulo 6 INTEGRACIÓN POR RESIDUOS Problema 6. Halla todas las singularidades de las siguientes funciones y obtén sus correspondientes residuos: z 3 (z + 4), z 2 + 2z +, z 3 3, e z, sen z, (z 3)sen Problema

Más detalles

Fundamentos matemáticos. Tema 4 Funciones de una y varias variables

Fundamentos matemáticos. Tema 4 Funciones de una y varias variables Grado en Ingeniería agrícola y del medio rural Tema 4 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2017 Licencia Creative Commons 4.0 Internacional J.

Más detalles

UNIVERSIDAD CARLOS III DE MADRID. Departamento de Matemáticas CAPÍTULO 3 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO

UNIVERSIDAD CARLOS III DE MADRID. Departamento de Matemáticas CAPÍTULO 3 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO UNIVERSIDAD CARLOS III DE MADRID Departamento de Matemáticas MATEMÁTICAS CAPÍTULO 3 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 2010 2011 Elaborado por Elena Romera Índice general

Más detalles

4.1 Antiderivadas o primitivas e integración indefinida

4.1 Antiderivadas o primitivas e integración indefinida 48 CAPÍTULO 4 Integración 4. Antierivaas o primitivas e integración inefinia Escribir la solución general e una ecuación iferencial. Usar la notación e la integral inefinia para las antierivaas o primitivas.

Más detalles

2. Funciones reales de una variable real Funciones elementales PROPIEDADES

2. Funciones reales de una variable real Funciones elementales PROPIEDADES . Funciones reales de una variable real.1. Funciones elementales.1.1. POPIEDADES Definiciones Se llama función real de una variable real a cualquier aplicación f : D, D, que hace corresponder a cada D

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES 1.- FUNCIONES POLINÓMICAS. Las más importantes son las de grado 0, 1 y 2, también llamadas funciones constantes, afines y cuadráticas. Funciones constantes. Evidentemente, las funciones

Más detalles

Medida de ángulos. Para medir ángulos se utilizan las siguientes unidades:

Medida de ángulos. Para medir ángulos se utilizan las siguientes unidades: Medida de ángulos Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados y al origen común vértice. El ángulo es positivo si se desplaza

Más detalles

Universidad Abierta y a Distancia de México. 2 cuatrimestre. Cálculo diferencial. Unidad 3. Derivación

Universidad Abierta y a Distancia de México. 2 cuatrimestre. Cálculo diferencial. Unidad 3. Derivación Universia Abierta y a Distancia e Méico cuatrimestre Cálculo iferencial Eucación Abierta y a Distancia * Ciencias Eactas, Ingenierías y Tecnologías Ínice Presentación e la unia 3 Propósitos 3 Competencia

Más detalles

FUNCIONES ELEMENTALES.

FUNCIONES ELEMENTALES. Departamento de Análisis Matemático FUNCIONES ELEMENTALES.. Polinomios p : R R : p(x) = a n x n + +a x+a 0, x R, donde a 0,a,...,a n son constantes reales. Propiedades de los polinomios: a) p es continuo

Más detalles

Cálculo Integral Agosto 2016

Cálculo Integral Agosto 2016 Cálculo Integral Agosto 6 Laboratorio # Antiderivadas I.- Realice la antidiferenciación indicada ) ( + 7/ ) ) w ( w + ) dw ) (z / + z /5 + )dz ) + ) (w + w)(w + ) dw ) k (k +) / dk ) (y / + y 5/ )(y +

Más detalles

Cálculo Diferencial en una variable

Cálculo Diferencial en una variable Tema 3 Cálculo Diferencial en una variable 3.1 Introucción Analizaremos en este Tema los conceptos funamentales acerca e las erivaas e las funciones reales e variable real. En el tema siguiente estuiaremos

Más detalles

UNIVERSIDAD DIEGO PORTALES GUÍA N 11 CÁLCULO I. Profesor: Carlos Ruz Leiva DERIVADAS. Derivadas de orden superior. Ejemplos

UNIVERSIDAD DIEGO PORTALES GUÍA N 11 CÁLCULO I. Profesor: Carlos Ruz Leiva DERIVADAS. Derivadas de orden superior. Ejemplos UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS Profesor: Carlos Ruz Leiva GUÍA N CÁLCULO I DERIVADAS Derivaas e oren superior Ejemplos Hallar las siguientes

Más detalles

Toda función es una relación, pero no toda relación es una función. Las relaciones multiformes NO son funciones. Relación uno a uno (biunívoca)

Toda función es una relación, pero no toda relación es una función. Las relaciones multiformes NO son funciones. Relación uno a uno (biunívoca) CONCEPTO TRADICIONAL DE FUNCIÓN Cuando dos variables están relacionadas en tal forma que a cada valor de la primera corresponde un valor de la segunda, se dice que la segunda es función de la primera.

Más detalles

Longitud, áreas y volúmenes. Trigonometría. Circunferencia de radio R Círculo de radio R. 1 Triángulo de base B y altura H A = (BH ) 2

Longitud, áreas y volúmenes. Trigonometría. Circunferencia de radio R Círculo de radio R. 1 Triángulo de base B y altura H A = (BH ) 2 Longitud, áreas y volúmenes Circunferencia de radio R Círculo de radio R A πr L πr Triángulo de base B y altura H A (BH ) Cuadrado de lado L A L Rectángulo de base B y altura H Superficie esférica A 4πR

Más detalles

MATEMÁTICAS BÁSICAS DERIVADA INCREMENTOS x = x - x y2 = f(x2) y = y - y y = f(x )

MATEMÁTICAS BÁSICAS DERIVADA INCREMENTOS x = x - x y2 = f(x2) y = y - y y = f(x ) Faculta e Contauría Aministración. UNAM Derivaa Autor: Dr. José Manuel Becerra Espinosa MATEMÁTICAS BÁSICAS DERIVADA INCREMENTOS Se eine como incremento e la variable al aumento o isminución que eperimenta,

Más detalles

2.4 La regla de la cadena

2.4 La regla de la cadena 0 CAPÍTULO Derivación. La regla e la caena Encontrar la erivaa e una función compuesta por la regla e la caena. Encontrar la erivaa e una función por la regla general e la potencia. Simplificar la erivaa

Más detalles

Curso Introductorio a las Matemáticas Universitarias

Curso Introductorio a las Matemáticas Universitarias Curso Introuctorio a las Matemáticas Universitarias Tema 8: Derivación Víctor M. Almeia Lozano Jorge J. García Melián Licencia Creative Commons 2013 8. DERIVACIÓN En este tema veremos el concepto e erivaa

Más detalles

Gráficos de las Funciones Trigonométricas Hiperbólicas con OpenOffice.org Calc

Gráficos de las Funciones Trigonométricas Hiperbólicas con OpenOffice.org Calc Gráficos de las Funciones Trigonométricas Hiperbólicas con OpenOffice.org Calc A continuación les presento los gráficos de las funciones trigonométicas hiperbólicas. No les indico en detalle cómo utilizar

Más detalles

Funciones elementales básicas

Funciones elementales básicas CAPÍTULO 3 Funciones elementales básicas 3.1 INTRODUCCIÓN La familiaridad que hemos llegado a tener con funciones como la exponencial, el logaritmo, las funciones trigonométricas, pueden habernos hecho

Más detalles

Tema X: LÍMITES Y CONTINUIDAD DE FUNCIONES X.1. Generalidades sobre funciones reales de variable real

Tema X: LÍMITES Y CONTINUIDAD DE FUNCIONES X.1. Generalidades sobre funciones reales de variable real Tema X: LÍMITES Y CONTINUIDAD DE FUNCIONES X.1. Generalidades sobre funciones reales de variable real En la primera parte de este tema vamos a tratar con funciones reales de variable real, esto es, funciones

Más detalles

1. Ceros y singularidades de una función

1. Ceros y singularidades de una función TEMA 6 TEORÍA DE RESIDUOS. Ceros y singularidades de una función. Ceros de una función.2 Singularidades de una función.3 Relaciones entre ceros y singularidades.4 Singularidades y el punto del infinito

Más detalles

Cálculo Diferencial e Integral - Integración por partes. Prof. Farith J. Briceño N.

Cálculo Diferencial e Integral - Integración por partes. Prof. Farith J. Briceño N. Cálculo Diferencial e Integral - Integración por partes. Prof. Farith J. Briceño N. Objetivos a cubrir Integración : Integración por partes. Ejemplo : Integre ln d Código : MAT-CDI.6 Ejercicios resueltos

Más detalles

El proceso de calcular la derivada se denomina derivación. Se dice que ( ) es derivable en c si existe ( ), es decir, lim. existe

El proceso de calcular la derivada se denomina derivación. Se dice que ( ) es derivable en c si existe ( ), es decir, lim. existe DEFINICIÓN DE LA DERIVADA DE UNA FUNCIÓN La derivada de una función () respecto de (x) es la función () (se lee f prima de (x) y está dada por: ()=lim (+h) () h El proceso de calcular la derivada se denomina

Más detalles

1.- CONCEPTO DE FUNCIÓN. DOMINIO Y RECORRIDO

1.- CONCEPTO DE FUNCIÓN. DOMINIO Y RECORRIDO 1.- CONCEPTO DE FUNCIÓN. DOMINIO Y RECORRIDO Definición: Una función es una relación entre dos conjuntos X e Y, que asocia a cada elemento x X un único elemento y Y. Diremos que y es la imagen del elemento

Más detalles

Funciones Trigonométricas Directas.

Funciones Trigonométricas Directas. 2.2. Funciones Trascendentes. 2.2.1. Funciones trascendentes: funciones trigonométricas y funciones eponenciales. Funciones Trascendentes No siempre se puede modelar con funciones del tipo algebraico;

Más detalles

Métodos Matemáticos I ( ) Hoja 1 NúmerosComplejos. 8 (1 i) 5. (3 + 5i) (2 i) (1 + i 3 ) (1 + i) 3

Métodos Matemáticos I ( ) Hoja 1 NúmerosComplejos. 8 (1 i) 5. (3 + 5i) (2 i) (1 + i 3 ) (1 + i) 3 Hoja NúmerosComplejos.- Calcular todos los números z IC tales que: a) z = z 2 b) z = Rez + 2.- Obtener en forma binómica. a) b) c) 8 ( i) 5 (3 + 5i) (2 i) ( + i 3 ) ( + i) 3 3.- Obtener en forma binómica

Más detalles

FUNCIONES DE VARIABLE COMPLEJA

FUNCIONES DE VARIABLE COMPLEJA Análisis Matemático C T.P. Nº7 TRABAJO PRÁCTICO Nº 7 FUNCIONES DE VARIABLE COMPLEJA FUNCIONES ANALÍTICAS ) Identificar los puntos del plano compleo que satisfagan las siguientes relaciones en forma analítica

Más detalles

Capitulo IV. IV.1 Síntesis dimensional de mecanismos. Generación de funciones

Capitulo IV. IV.1 Síntesis dimensional de mecanismos. Generación de funciones Capitulo IV IV. Síntesis imensional e mecanismos. Generación e funciones Cinemática y Dinámica e Máquinas. IV. Síntesis imensional e mecanismos. Generación e funciones Capítulo IV Síntesis imensional e

Más detalles

DERIVADAS (1) LA DERIVADA DE UNA CONSTANTE es cero. Sol: Sol: Sol: Sol: Derivada de una función potencial: Forma simple

DERIVADAS (1) LA DERIVADA DE UNA CONSTANTE es cero. Sol: Sol: Sol: Sol: Derivada de una función potencial: Forma simple DERIVADAS ( Derivada de una constante K K R F ( 0 LA DERIVADA DE UNA CONSTANTE es cero. nº nº nº nº 4 nº 5 nº 6 Derivada de una función potencial: Forma simple r r R r. r LA DERIVADA DE UNA FUNCIÓN POTENCIAL

Más detalles

Es importante tener en cuenta que al terminar una instrucción, debemos cerrarla con un punto y coma para que tenga efecto.

Es importante tener en cuenta que al terminar una instrucción, debemos cerrarla con un punto y coma para que tenga efecto. Maxima es un software libre GNU para cálculo matemático simbólico, esto es, no es una calculadora que opera con números, sino un entorno gratuito que realiza cálculo matemático con variables, constantes,

Más detalles

Módulo 3-Diapositiva 20 Trigonometría. Universidad de Antioquia. Facultad de Ciencias Exactas y Naturales

Módulo 3-Diapositiva 20 Trigonometría. Universidad de Antioquia. Facultad de Ciencias Exactas y Naturales Módulo 3-Diapositiva 20 Trigonometría Facultad de Ciencias Exactas y Naturales Temas Ángulos Medidas de ángulos Razones trigonométricas Ángulos Ángulos Un ángulo es la figura geométrica formada por dos

Más detalles

Funciones de Variable Compleja

Funciones de Variable Compleja f es univaluada (multivaluada) si f(z) es único (múltiple) Función inversa: Límite de una función: Curso 2016/2017 (1er cuatrimestre) Métodos Matemáticos de la Física I 15 Lema 1 Lema 2 Caracterización

Más detalles

TEMA 7: TRIGONOMETRÍA

TEMA 7: TRIGONOMETRÍA TEMA 7: TRIGONOMETRÍA 7.1 MEDIDA DE ÁNGULOS. RELACIÓN ENTRE GRADOS Y RADIANES Dada una circunferencia, el ángulo central tiene su vértice en el centro de la misma sus lados son dos radios. Para medir ese

Más detalles

Capítulo 1: Números y funciones

Capítulo 1: Números y funciones (Fundamentos Matemáticos de la Biotecnología) Departamento de Matemáticas Universidad de Murcia Contenidos Números Primeras clases de números Números reales Operaciones con números reales Ecuaciones e

Más detalles