Matemáticas Avanzadas para Ingeniería: Funciones extendidas. Departamento de Matemáticas. Intro. e z. ln(z) sen(z) MA3002

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Matemáticas Avanzadas para Ingeniería: Funciones extendidas. Departamento de Matemáticas. Intro. e z. ln(z) sen(z) MA3002"

Transcripción

1 MA3002

2 En esta sección veremos cómo se extienn las funciones que ya conocemos números reales pero ahora al plano complejo.

3 La función exponencial Sea z = x + y i un número complejo. Se fine la función exponencial en el plano complejo por la expresión: Propiedas que cumple: = e x cos(y) + e x sen(y) i La función es una extensión la función exponencial real. 1+z 2 = 1 2 La función satisface la ecuaciones Cauchy-Riemann en el plano complejo y d dz ez = La función exponencial es una función periódica con periodo 2 π i: +2 π i =

4 Para probar la ley los exponentes usando la calculadora procemos como en la siguiente figura. Como hemos visto en algún ejemplo anterior, notemos que probar que 1+z 2 = 1 2, nos conviene revisar que 1+z = 0. La expresión a la izquierda tiene muchos términos pero cuando se sarrolla por medio intidas trigonométricas se simplifica a cero.

5 Para comprobar que la función exponencial es entera, es cir, que es rivable en todo complejo usaremos las ecuaciones Cauchy-Riemann. Comprobaremos el cumplimiento las ecuaciones Cauchy-Riemann la función exponencial. Revisaremos también que su rivada es ella misma comprobando que d dz ez es cero. Esto lo ilustramos en las siguientes figuras.

6 Para comprobar que la función es periódica verificamos que +2 π i es cero.

7 La función exponencial ; ejemplos Calcule z 1 = i y z 2 = 0.5 e π/3 i 1

8 La función exponencial ; ejemplos Calcule z 1 = i y z 2 = 0.5 e π/3 i 1 = e 2 (cos(3) + sen(3) i) i

9 La función exponencial ; ejemplos Calcule z 1 = i y z 2 = 0.5 e π/3 i 1 2 = e 2 (cos(3) + sen(3) i) i

10 La función exponencial ; ejemplos Calcule z 1 = i y z 2 = 0.5 e π/3 i 1 2 Como = e 2 (cos(3) + sen(3) i) i z 2 = 0.5 e π/3 i = 0.5 cos(π/3) sen(π/3) i i

11 La función exponencial ; ejemplos Calcule z 1 = i y z 2 = 0.5 e π/3 i 1 2 Como = e 2 (cos(3) + sen(3) i) i z 2 = 0.5 e π/3 i = 0.5 cos(π/3) sen(π/3) i i Así 2 e 0.25 (cos(0.4330) + sen(0.4330) i) i

12 La función exponencial ; ejemplos Calcule z 1 = i y z 2 = 0.5 e π/3 i 1 = e 2 (cos(3) + sen(3) i) i i Como z 2 = 0.5 e π/3 i = 0.5 cos(π/3) sen(π/3) i i Así 2 e 0.25 (cos(0.4330) + sen(0.4330) i) i

13 Los cálculos anteriores puen relizarse en la TI como se ilustra en las siguientes figuras. Al final l primer cálculo se usó la combinación punto ver-enter calcular el valor aproximado. En el segundo ejemplo no hubo necesidad calcular el valor aproximado; ya lo dió aproximado. Esto se be a que en el número complejo dado había un número punto flotante. Esto arrastra la artimética manera que todo se haga en forma aproximada. Si esto no hubiera sido seable, entonces bimos haber puesto 1/2 en lugar 0.5 en nuestro ejemplo.

14 Mapeo asociado a f (z) = (recuer que el periodo es 2 π i 6.28 i) y v 2 π i e 1 i O x e 1 i u

15 La función logaritmo Sea z un número complejo diferente cero cuyo módulo es r y cuyo argumento es θ, se fine como el logaritmo natural z a la expresión = ln(r) + (θ + 2 n π) i n = 0, ±1, ±2,... Propiedas que cumple: La función está finida todo complejo excepto z = 0. La función es una extensión la función logaritmo natural sobre los reales positivos; los reales positivos z = z = r, θ = y n = 0 la fórmula da simplemente. La función logaritmo es la función inversa la función exponencial e = z.

16 Para comprobar que la función logaritmo es rivable en todo punto excepto en z = 0, comprobaremos el cumplimiento las ecuaciones Cauchy-Riemann la función exponencial. Revisaremos también que su rivada es 1/z comprobando que dz d 1/z es cero. Esto lo ilustramos en las siguientes figuras. Note que en la primera las ecuaciones Cauchy-Riemann aparece la rivada l la función signo en y. Esta función vale -1 negativos y vale 1 positivos; es infinida en cero. La rivada esta función es cero cualquier y diferente 0; y en cero no está finida. Pero cuando y = 0 entonces la función logaritmo coinci en su rama principal con ln( x ) el cual es rivable en todo punto excepto en cero. O sea que (x = 0, y = 0) es nuestro problema la rivación; pero no hay problema porque no está en el dominio.

17 La función logaritmo ; ejemplos Calcule z 1 = 4, z 2 = 2 i y z 3 = i:

18 La función logaritmo ; ejemplos Calcule z 1 = 4, z 2 = 2 i y z 3 = i: ln(z 1 ) Como z 1 = 4 e π i, z 1 = 4 y θ = π por tanto: ln( 4) = ln(4) + (π + 2 n π) i

19 La función logaritmo ; ejemplos Calcule z 1 = 4, z 2 = 2 i y z 3 = i: ln(z 1 ) Como z 1 = 4 e π i, z 1 = 4 y θ = π por tanto: ln( 4) = ln(4) + (π + 2 n π) i ln(z 2 ) Como z 2 = 2 e π/2 i, z 1 = 2 y θ = π/2 por tanto: ln(2 i) = ln(2) + (π/2 + 2 n π) i

20 La función logaritmo ; ejemplos Calcule z 1 = 4, z 2 = 2 i y z 3 = i: ln(z 1 ) Como z 1 = 4 e π i, z 1 = 4 y θ = π por tanto: ln( 4) = ln(4) + (π + 2 n π) i ln(z 2 ) Como z 2 = 2 e π/2 i, z 1 = 2 y θ = π/2 por tanto: ln(2 i) = ln(2) + (π/2 + 2 n π) i ln(z 3 ) Como z 3 = 5 y θ = π/2 tan 1 (3/4) por tanto: ln(3 + 4 i) = ln(5) + ( π/2 tan 1 (3/4) + 2 n π ) i

21 Los cálculos anteriores puen relizarse en la TI como se ilustra en las siguientes figuras. Note el uso la las comprobaciones que los resultados encontrados satisfacen la propiedad; este símbolo en la calculadora representa un entero cualquiera. El se obtiene la combinación 2nd

22 Si en la fórmula el logaritmo d tomamos n = 0, el resultado se llama el valor principal l y diferenciarlo se utiliza la notación: Ln(z) = ln( z ) + θ i esta función está finida z que no son reales menor o igual que cero y se cumple: d dz Ln(z) = 1 z

23 y Mapeo asociado a f (z) = usando el valor principal v O ln(0.5) ln(4) x O u

24 Potencias complejas Con base en la igualdad x a = e a ln(x) que se cumple reales positivos se fine: = e α Si se usa Ln(z) en lugar, al resultado se le llama el valor principal. Ejemplo: calcule el valor i 3 i : aquí z = i, z = 1 y θ = π/2: i 3 i = e 3 i ln(i) = e3 i(ln(1)+(π/2+2 π n) I ) = e 3/2 π 6 π n El valor principal queda:n = 0 = e 3/2 π

25 complejos Ejemplo: Calcule las raices cúbicas d 1 = i. Éstas puen calcularse como z 1/3 1 = e 1/3 ln(z1) : como z 1 = 1 y θ = π/4, entonces por tanto z 1/3 ln(z 1 ) = ln(1) + (π/4 + 2 π n) i = 0 + (π/4 + 2 π n) i 0+1/3(π/4+2 π n) i 1 = e 1/3 ln(z1) = e = e 0 (cos (π/ π n/3) + sen (π/ π n/3) i) Para n = 0 r 0 = cos (π/12) + sen (π/12) i Para n = 1 r 1 = cos (3 π/4) + sen (3 π/4) i Para n = 2 r 2 = cos (17 π/12) + sen (17 π/12) i Para n = 2 r 3 = cos (25 π/12) + sen (25 π/12) i = r 0

26 Los cálculos anteriores puen relizarse en la TI como se ilustra en las siguientes figuras.

27 Seno y Coseno complejas Para cualquier numero complejo z = x + y i se fine: sen(x + y i) = sen(x) cosh(y) + cos(x) senh(y) i = ei z e i z cos(x + y i) = cos(x) cosh(y) sen(x) senh(y) i = ei z + e i z Recuer que: La función seno hiperbólico se fine como 2 i 2 senh(t) = 1 ( e t e t) 2 La función coseno hiperbólico se fine como cosh(t) = 1 ( e t + e t) 2

28 Seno y coseno: Resultados Son anaĺıticas en todo el plano complejo. Son periodicas con periodo 2 π. d dz = cos(z) y d cos(z) = dz sen( z) =, cos( z) = cos(z) cos 2 (z) + sen 2 (z) = 1

29 Otras funciones: tan(z) = cos(z), cos(z) cot(z) =, sec(z) = 1 cos(z), csc(z) = 1 senh(z) = ez e z y cosh(z) = ez + e z 2 2 sen 1 (z) = i ln (i z + ) 1 z 2 cos 1 (z) = i ln (z + i ) 1 z ( ) 2 tan 1 (z) = i 2 ln i+z i z

30 Para comprobar que las funciones y cos(z) son enteras y que sus rivadas cumplen las relaciones conocidas, procemos como en la figura.

MA3002. Matemáticas Avanzadas para Ingeniería: Números Complejos. Departamento de Matemáticas. Introducción. Igualdad. Suma y resta.

MA3002. Matemáticas Avanzadas para Ingeniería: Números Complejos. Departamento de Matemáticas. Introducción. Igualdad. Suma y resta. MA300 Propiedas Propiedas Los números complejos simbolizados por C son una generalización los números reales. Una generalización algebraica muy interesante: Toda ecuación polinomial c n z n + c n 1 z n

Más detalles

Funciones elementales

Funciones elementales Funciones elementales 3.1. Función exponencial Ya hemos introducido la exponencial compleja definiéndola como e z = e x (cosy + i sen y) para todo z = x + iy C. Dicha definición fue propuesta por Euler

Más detalles

Definición 3.1 Dado z = x + iy lc se define la función exponencial compleja como. exp(z) = e x (cos(y) + i sen(y))

Definición 3.1 Dado z = x + iy lc se define la función exponencial compleja como. exp(z) = e x (cos(y) + i sen(y)) Capítulo 3 Funciones elementales En este capítulo se introducen la funciones elementales variable compleja: la exponencial, el logaritmo y las funciones trigonométricas e hiperbólicas. Como veremos, muchas

Más detalles

ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 5 - Verano 2009

ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 5 - Verano 2009 ANÁLISIS I MATEMÁTICA ANÁLISIS II (Computación) Práctica 5 - Verano 2009 Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Derivadas de orden superior. Calcular las derivadas

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Números Complejos. Departamento de Matemáticas. Introducción. Igualdad. Suma y resta.

MA3002. Matemáticas Avanzadas para Ingeniería: Números Complejos. Departamento de Matemáticas. Introducción. Igualdad. Suma y resta. MA3002 Los números complejos, simbolizados por C, son una generalización los números reales. Una generalización algebraica muy interesante: Toda ecuación polinomial c n z n + c n 1 z n 1 + + c 1 z + c

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Series de Fourier. Departamento de Matemáticas. Intro. Serie de. Fourier. S k. Convergencia.

MA3002. Matemáticas Avanzadas para Ingeniería: Series de Fourier. Departamento de Matemáticas. Intro. Serie de. Fourier. S k. Convergencia. Series Serie Series MA3002 Series Serie Las Series trigonométricas, o simplemente series fueron sarrolladas por el matemático francés Jean-Baptiste Joseph (21 marzo 1768 en Auxerre - 16 mayo 1830 en París).

Más detalles

Funciones (continuación)

Funciones (continuación) Nivelación de Matemática MTHA UNLP Funciones (continuación) Funciones trigonométricas Consideremos un ángulo x y seleccionemos un punto (a, b) sobre el rayo que determina dicho ángulo Sea R = a + b, la

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Funciones de Variable Compleja. Departamento de Matemáticas. Mapeo. Continuidad. Derivada.

MA3002. Matemáticas Avanzadas para Ingeniería: Funciones de Variable Compleja. Departamento de Matemáticas. Mapeo. Continuidad. Derivada. MA3002 variable compleja Cuando el dominio una función f es un conjunto números complejos y cuando el codominio mismo es también el conjunto números complejos diremos que f es una función variable compleja

Más detalles

La siguiente tabla presenta las medidas en radianes y en grados de varios ángulos frecuentes, junto con los valores de seno, coseno, y tangente.

La siguiente tabla presenta las medidas en radianes y en grados de varios ángulos frecuentes, junto con los valores de seno, coseno, y tangente. Solución. En el primer cuadrante: En el segundo cuadrante: En el tercer cuadrante: En el cuarto cuadrante: cos θ 0, sin θ 0 tan θ 0 cos θ 0, sin θ 0 tan θ 0 cos θ 0, sin θ 0 tan θ 0 cos θ 0, sin θ 0 tan

Más detalles

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica

Más detalles

DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder un único número real, f(x):

DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder un único número real, f(x): 1 FUNCIONES ELEMENTALES CONCEPTO DE FUNCIÓN DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder un único número real, f(x): Lo denotamos por : f : Dom -----> R x

Más detalles

FUNCIONES POLINÓMICAS

FUNCIONES POLINÓMICAS PRÁCTICAS CON DERIVE 28 NUM.de MATRÍCULA FECHA... APELLIDOS /Nombre...PC PRÁCTICA CUATRO. FUNCIONES ELEMENTALES FUNCIONES POLINÓMICAS Dado un entero n 0, la función f(x) =a 0 x n + a 1 x n 1 + a 2 x n

Más detalles

Las Funciones Trigonométricas. Sección 5.3 Funciones Trigonométricas de números reales

Las Funciones Trigonométricas. Sección 5.3 Funciones Trigonométricas de números reales 5 Las Funciones Trigonométricas Sección 5.3 Funciones Trigonométricas de números reales Qué hemos visto? Si el lado inicial de un ángulo,, coincide con la parte del eje de x que se encuentra en el primer

Más detalles

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6 LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE Capítulo 7 Sec. 7.5 y 7.6 El Plano Complejo Se puede utilizar un plano de coordenadas para representar números complejos. Si cada

Más detalles

Matemáticas Empresariales I. Funciones y concepto de ĺımite

Matemáticas Empresariales I. Funciones y concepto de ĺımite Matemáticas Empresariales I Lección 3 Funciones y concepto de ĺımite Manuel León Navarro Colegio Universitario Cardenal Cisneros M. León Matemáticas Empresariales I 1 / 22 Concepto de función Función de

Más detalles

Funciones Hiperbólicas. Who? Verónica Briceño V. When? noviembre 2013

Funciones Hiperbólicas. Who? Verónica Briceño V. When? noviembre 2013 Funciones Hiperbólicas Funciones Hiperbólicas Who? Verónica Briceño V. When? noviembre 2013 En esta Presentación... En esta Presentación veremos: Definición de Funciones Hiperbólicas En esta Presentación...

Más detalles

1. DEFINICIÓN. ax = b, x 2 = b, 2 + 5i, 0 + ( 2)i, 2 + 3i, 5 + 0i, 1 + 1i. 0 + ( 2)i = 2i, 5 + 0i = 5, 1 + 1i = 1 + i.

1. DEFINICIÓN. ax = b, x 2 = b, 2 + 5i, 0 + ( 2)i, 2 + 3i, 5 + 0i, 1 + 1i. 0 + ( 2)i = 2i, 5 + 0i = 5, 1 + 1i = 1 + i. NÚMEROS COMPLEJOS PATRICIA KISBYE 1. DEFINICIÓN En los números reales es posible resolver cualquier ecuación lineal en una variable: ax = b, siempre que a sea distinto de 0. Pero las ecuaciones cuadráticas,

Más detalles

Funciones reales de variable real

Funciones reales de variable real Tema Funciones reales de variable real Introducción El objetivo fundamental de este tema es recordar conceptos ya conocidos acerca de las funciones reales de variable real.. Conceptos Generales Definición.

Más detalles

Matemáticas Avanzadas para Ingeniería: Serie de Taylor. Departamento de Matemáticas. Propiedades. Tma. Taylor. Ejemplos MA3002

Matemáticas Avanzadas para Ingeniería: Serie de Taylor. Departamento de Matemáticas. Propiedades. Tma. Taylor. Ejemplos MA3002 MA3002 Intro Suponga una serie potencias a k (z z o ) k Para un valor z que pertenezca al interior l círculo convergencia dicha serie, el valor ĺımite la serie L es un número complejo perfectamente finido

Más detalles

Curso Propedéutico de Cálculo Sesión 3: Derivadas

Curso Propedéutico de Cálculo Sesión 3: Derivadas Curso Propedéutico de Cálculo Sesión 3: Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico Esquema 1 2 3 4 5 6 7 Esquema 1 2 3 4 5 6 7 Introducción La derivada

Más detalles

FUNCIONES TRIGONOMÉTRICAS

FUNCIONES TRIGONOMÉTRICAS FUNCIONES TRIGONOMÉTRICAS DEFINICIÓN PREVIA: Una función periódica es aquella que se repite una y otra vez en una dirección horizontal. El periodo de una función periódica es la longitud de un ciclo (o

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 10. Funciones exponencial, logarítmica y trigonométricas

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 10. Funciones exponencial, logarítmica y trigonométricas Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN El dominio de la función f(x) x / x es: a) + b) c) [0, ) 9 El período de la función f(x) cos (x + π) es: a) π b) π c) π/ Una sustancia radiactiva

Más detalles

2. El conjunto de los números complejos

2. El conjunto de los números complejos Números complejos 1 Introducción El nacimiento de los números complejos se debió a la necesidad de dar solución a un problema: no todas las ecuaciones polinómicas poseen una solución real El ejemplo más

Más detalles

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales.

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales. Tema 1: Números Reales 1.1 Conjunto de los números Naturales (N): 0, 1, 2, 3. Números positivos sin decimales. Sirven para contar. Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos

Más detalles

Trigonometría Analítica. Sección 6.6 Funciones trigonométricas inversas

Trigonometría Analítica. Sección 6.6 Funciones trigonométricas inversas 6 Trigonometría Analítica Sección 6.6 Funciones trigonométricas inversas Funciones Inversas Recordar que para una función, f, tenga inversa, f -1, es necesario que f sea una función uno-a-uno. o Una función,

Más detalles

FUNCIONES EXPONENCIAL Y LOGARÍTMICA

FUNCIONES EXPONENCIAL Y LOGARÍTMICA FUNCIONES EXPONENCIAL Y LOGARÍTMICA 1. Crecimiento exponencial. La función exponencial. 1.1 La Función Exponencial. Una función exponencial es una expresión de la forma siguiente:,,. Donde es una constante

Más detalles

Ecuaciones de Cauchy-Riemann

Ecuaciones de Cauchy-Riemann Ecuaciones Ecuaciones MA3002 Ecuaciones La manera como se finió la rivada una función compleja ja algunas dudas; mientras que las funciones muy sencillas como los polinomios y los cocientes polinomios

Más detalles

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS C. NÚMEROS COMPLEJOS. C.1 Noción de número complejo.

Más detalles

Contenidos IB-Test Matemática NM 2014.

Contenidos IB-Test Matemática NM 2014. REDLAND SCHOOL MATHEMATICS DEPARTMENT 3 MEDIO NM 1.- Estadística y probabilidad. Contenidos IB-Test Matemática NM 2014. 1.1.- Conceptos de población, muestra, muestra aleatoria, y datos discretos y continuos.

Más detalles

Funciones complejas. (excluyendo del dominio los valores de z en los que el denominador se anula).

Funciones complejas. (excluyendo del dominio los valores de z en los que el denominador se anula). Funciones complejas Una manera natural de definir funciones complejas es extendiendo las funciones reales. Las funciones reales mas sencillas son las lineales, polinomiales y las racionales (cocientes

Más detalles

LA CLASE VIRTUAL LOS NUMEROS COMPLEJOS

LA CLASE VIRTUAL LOS NUMEROS COMPLEJOS LA CLASE VIRTUAL LOS NUMEROS COMPLEJOS La ecuación x 2 +1=0 carece de soluciones en el campo de los números reales. log e (-2) no es un número real. Tampoco es un número real (-2) π Un número complejo

Más detalles

Trigonometría. 1. Ángulos:

Trigonometría. 1. Ángulos: Trigonometría. Ángulos: - Ángulos en posición estándar: se ubican en un sistema de coordenadas XY. El vértice será el origen (0,0) y el lado inicial coincide con el eje X positivo. - Ángulos positivos:

Más detalles

Funciones reales. Números complejos

Funciones reales. Números complejos Funciones reales. Números complejos Funciones reales 1. Encuentra todos los números reales x que verifican: a) (x 1)(x 3) > 1 b) x + 1 > 1 1 x c) x 1 + x + 1 < 1 d) 5 < x 2 14x + 5 < 26 2. Si la gráfica

Más detalles

Métodos Matemáticos III. Grupo 536. Prof. J.V. Álvarez.

Métodos Matemáticos III. Grupo 536. Prof. J.V. Álvarez. Métodos Matemáticos III. Grupo 536. Prof. J.V. Álvarez. Comprobar que la familia de funciones del seno y la del coseno de la forma: Estando definidas entre 0 y L y donde son familias ortogonales por sí

Más detalles

UNIDAD 2. Logaritmos DEFINICION DE LOGARITMO. Definiciones:

UNIDAD 2. Logaritmos DEFINICION DE LOGARITMO. Definiciones: Matemática UNIDAD. Logaritmos Medio GUÍA N 1 DEFINICION DE LOGARITMO Qué valor de x satisface la ecuación x = 7? Fácilmente podemos verificar que x = es una solución para esta ecuación, pues = 7. Pero

Más detalles

Unidad II. 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función.

Unidad II. 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función. Unidad II Funciones 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función. Función En matemática, una función (f) es una relación entre un conjunto dado X (llamado dominio)

Más detalles

EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos.

EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos. EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos. 1. Introducción Los números complejos o imaginarios nacen de la necesidad de resolver

Más detalles

log = = Las ecuaciones de cancelación cuando se aplican las funciones f x = a x y f 1 = log a x, se convierten en:

log = = Las ecuaciones de cancelación cuando se aplican las funciones f x = a x y f 1 = log a x, se convierten en: Función logarítmica Función logarítmica y su representación Si a > 0 y a 0, la función exponencial f x = a x bien se incrementa o disminuye y por eso mediante la prueba de la línea horizontal es uno a

Más detalles

1 Con juntos de Números: Axiomas 1

1 Con juntos de Números: Axiomas 1 ÍNDICE 1 Con juntos de Números: Axiomas 1 LOS CONJUNTOS EN EL ALGEBRA. 1-1 Los conjuntos y sus relaciones, 1.1-2 Conjuntos y variables, 6. AXIOMAS DE LOS NUMEROS REALES. 1-3 Orden en el conjunto de los

Más detalles

REPÚBLICA BOLIVARIANA DE VENEZUELA NÚCLEO COSTA ORIENTAL DEL LAGO PROGRAMA DE INGENIERÍA UNIDAD CURRICULAR: CÁLCULO I

REPÚBLICA BOLIVARIANA DE VENEZUELA NÚCLEO COSTA ORIENTAL DEL LAGO PROGRAMA DE INGENIERÍA UNIDAD CURRICULAR: CÁLCULO I REPÚBLICA BOLIVARIANA DE VENEZUELA NÚCLEO COSTA ORIENTAL DEL LAGO PROGRAMA DE INGENIERÍA UNIDAD CURRICULAR: CÁLCULO I FUNCIONES Instructivo de trabajo Autor: Ing. Roger J. Chirinos S., MSc. Ciudad Ojeda,

Más detalles

Problemas resueltos. 1. Expresa en forma binómica los siguientes números complejos: b) w = 1+i3 (1 i) 3 c) u = 1. = 5 5i. 1 3i 3i 2 i 3 = 1 i

Problemas resueltos. 1. Expresa en forma binómica los siguientes números complejos: b) w = 1+i3 (1 i) 3 c) u = 1. = 5 5i. 1 3i 3i 2 i 3 = 1 i Problemas resueltos 1. Expresa en forma binómica los siguientes números complejos: a) z = ( + i)(1 i) +i b) w = 1+i (1 i) c) u = 1 1+i + 1 1 i a) z = ( + i)(1 i) +i = 5 5i +i (5 5i)( i) = ( + i)( i) =

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

Apéndice 2: Series de Fourier.

Apéndice 2: Series de Fourier. Apéndice 2: Series de Fourier. 19 de noviembre de 2014 1. Conjuntos ortonormales y proyecciones. Sea V un espacio vectorial con un producto interno . Sea {e 1,..., e n } un conjunto ortonormal, V

Más detalles

Forma polar de números complejos (repaso breve)

Forma polar de números complejos (repaso breve) Forma polar de números complejos (repaso breve) Objetivos. pasar la forma polar de números complejos. quisitos. Números complejos, funciones trigonométricas, valor absoluto de números complejos, circunferencia

Más detalles

Solución: Utiliza la definición anterior, también llamada la "clave".

Solución: Utiliza la definición anterior, también llamada la clave. Materia: Matemáticas de 4to año Tema: Definición de Logaritmo Definición de logaritmo Marco Teórico Probablemente puedes adivinar que en y en. Pero, cuánto es si? Hasta ahora, no hemos tenido una relación

Más detalles

NÚMEROS COMPLEJOS: C

NÚMEROS COMPLEJOS: C NÚMEROS COMPLEJOS: C Alejandro Lugon 21 de mayo de 2010 Resumen Este es un pequeño estudio de los números complejos con el objetivo de poder usar las técnicas de solución de ecuaciones y sistemas diferenciales

Más detalles

Materia: Matemáticas de 4to año. Tema: Logaritmos naturales y base 10. Marco Teórico

Materia: Matemáticas de 4to año. Tema: Logaritmos naturales y base 10. Marco Teórico Materia: Matemáticas de 4to año Tema: Logaritmos naturales y base 10 Marco Teórico Aunque una función de registro puede tener cualquier número positivo como base, en realidad sólo hay dos bases que se

Más detalles

Herramientas computacionales para la matemática MATLAB:Introducción

Herramientas computacionales para la matemática MATLAB:Introducción Herramientas computacionales para la matemática MATLAB:Introducción Verónica Borja Macías Marzo 2013 1 Variables predefinidas MATLAB tiene un conjunto de variables predefinidas Variables predefinidas ans

Más detalles

1. Introducción. Fundación Uno. Ejercicio Reto. ENCUENTRO # 33 TEMA: Exponenciales y Logaritmos CONTENIDOS: 1. Ecuaciones Exponenciales.

1. Introducción. Fundación Uno. Ejercicio Reto. ENCUENTRO # 33 TEMA: Exponenciales y Logaritmos CONTENIDOS: 1. Ecuaciones Exponenciales. ENCUENTRO # 33 TEMA: Exponenciales y Logaritmos CONTENIDOS: 1. Ecuaciones Exponenciales. (a) Leyes de los Exponentes (b) Como resolver ecuaciones exponenciales Ejercicio Reto 1. Si a y b las soluciones

Más detalles

PRÁCTICA DE LABORATORIO - trigonometría Funciones trigonométricas y ondas senoides.

PRÁCTICA DE LABORATORIO - trigonometría Funciones trigonométricas y ondas senoides. PRÁCTICA DE LABORATORIO - trigonometría Funciones trigonométricas y ondas senoides. Objetivos: Identificar y familiarizarse con las ondas senoides. construir e identificar claramente las características

Más detalles

Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Enero - Marzo, 2008

Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Enero - Marzo, 2008 Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Enero - Marzo, 8 MA- Practica: semana y/o Ejercicios sugeridos para la semana y/o. Cubre el siguiente material: Propiedades de la

Más detalles

Ejercicios resueltos de trigonometría

Ejercicios resueltos de trigonometría Ejercicios resueltos de trigonometría 1) Convierte las siguientes medidas de grados en radianes: a) 45º b) 60º c) 180º d) 270º e) 30º f) 225º g) 150º h) 135º i) -90º j) 720º 2) Expresa las siguientes razones

Más detalles

Funciones de Una Variable Real II: Cálculo de Primitivas

Funciones de Una Variable Real II: Cálculo de Primitivas Universidad de Murcia Departamento Matemáticas Funciones de Una Variable Real II: Cálculo de Primitivas B. Cascales, J. M. Mira y L. Oncina Universidad de Murcia http://webs.um.es/beca Grado en Matemáticas

Más detalles

Por ser un cociente entre dos longitudes, el radián no tiene dimensión. De la definición obtenemos la relación entre radianes y grados:

Por ser un cociente entre dos longitudes, el radián no tiene dimensión. De la definición obtenemos la relación entre radianes y grados: E.T.S.I. Industriales y Telecomunicación Curso 011-01 Medida de ángulos Unidad Como unidad del tamaño de un ángulo se utiliza el radián, más natural y con más sentido geométrico que el grado. Recordemos

Más detalles

Problemas Tema 2 Solución a problemas de Límite y Continuidad - Hoja 20 - Todos resueltos

Problemas Tema 2 Solución a problemas de Límite y Continuidad - Hoja 20 - Todos resueltos página /0 Problemas Tema 2 Solución a problemas de Límite y Continuidad - Hoja 20 - Todos resueltos Hoja 20. Problema. Sabiendo que x 0 x cos(2 x)+b sen( x) 4 x 2 es finito, calcula b y el valor del límite.

Más detalles

MATEMÁTICA DE CUARTO 207

MATEMÁTICA DE CUARTO 207 CAPÍTULO 1 CONJUNTOS NUMÉRICOS 1 Introducción... pág. 9 2 Números naturales... pág. 10 3 Números enteros... pág. 10 4 Números racionales... pág. 11 5 Números reales... pág. 11 6 Números complejos... pág.

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Transformada Z Inversa. Departamento de Matemáticas. X 1 (z) MFP. Ejemplo 1. Ejemplo 2.

MA3002. Matemáticas Avanzadas para Ingeniería: Transformada Z Inversa. Departamento de Matemáticas. X 1 (z) MFP. Ejemplo 1. Ejemplo 2. MA3002 Inversa La transformada Z inversa una función variable compleja X () se fine como x(n) = 2 π i C X () n d don la integral se calcula sobre una curva cerrada simple C postivamente orientada que encierra

Más detalles

Números Complejos. Números naturales: útiles para contar cosas N={ 0, 1, 2, } Pero con ellos no podemos resolver la ecuación: X+5=2

Números Complejos. Números naturales: útiles para contar cosas N={ 0, 1, 2, } Pero con ellos no podemos resolver la ecuación: X+5=2 Números Complejos Números naturales: útiles para contar cosas N={ 0, 1, 2, } Pero con ellos no podemos resolver la ecuación: X+5=2 Números Complejos Entonces inventamos los números enteros: Z = { -2, -1,

Más detalles

CÁLCULO DIFERENCIAL. Amaury Camargo y Favián Arenas A. Universidad de Córdoba Facultad de Ciencias Básicas e Ingenierías Departamento de Matemáticas

CÁLCULO DIFERENCIAL. Amaury Camargo y Favián Arenas A. Universidad de Córdoba Facultad de Ciencias Básicas e Ingenierías Departamento de Matemáticas CÁLCULO DIFERENCIAL Amaury Camargo y Favián Arenas A. Universidad de Córdoba Facultad de Ciencias Básicas e Ingenierías Departamento de Matemáticas Cálculo Diferencial UNIDAD 1 2. Funciones y modelos 2.1.

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 7: Lunes 22 - Viernes 27 de Abril. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 7: Lunes 22 - Viernes 27 de Abril. Contenidos Coordinación de Matemática I (MAT01) 1 er Semestre de 013 Semana 7: Lunes - Viernes 7 de Abril Cálculo Contenidos Clase 1: Álgebra de límites. Teorema del Sandwich. Cálculo de límites. Límites trigonométricos.

Más detalles

Algebra Lineal: Transformaciones Lineales. Departamento de Matemáticas. Intro. T. Matricial. T. Lineal. Rango

Algebra Lineal: Transformaciones Lineales. Departamento de Matemáticas. Intro. T. Matricial. T. Lineal. Rango Algebra ducción Des el punto vista l Algebra Lineal, las funciones más importantes son las que preservan las combinaciones lineales. Estas funciones se llamarán. Es esta presentación se tratan con los

Más detalles

INSTRUCTIVO PARA TUTORÍAS

INSTRUCTIVO PARA TUTORÍAS INSTRUCTIVO PARA TUTORÍAS Las tutorías corresponden a los espacios académicos en los que el estudiante del Politécnico Los Alpes puede profundizar y reforzar sus conocimientos en diferentes temas de cara

Más detalles

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA La matemática es la ciencia del orden y la medida, de bellas cadenas de razonamientos, todos sencillos y fáciles. René Descartes

Más detalles

CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV

CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV 1. Números reales. Aritmética y álgebra 1.1. Operar con fracciones de números

Más detalles

Trigonometría Radianes

Trigonometría Radianes Trigonometría Radianes Sea C la circunferencia unitaria u 2 + v 2 = 1. La mitad del largo de C lo llamaremos π, aproimadamente 3, 1415. Usaremos largos de segmentos de C para medir ángulos. La unidad de

Más detalles

Problemas de VC para EDVC elaborados por C. Mora, Tema 4

Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Ejercicio Determinar las funciones enteras f para las que Solución f( + w) = f()f(w), w C. En primer lugar, f(0) = f(0 + 0) = f(0)f(0) = f(0) 2,

Más detalles

Familiarizar al alumno con las distintas maneras de expresar números complejos.

Familiarizar al alumno con las distintas maneras de expresar números complejos. Capítulo 2 Aritmética compleja Objetivos Familiarizar al alumno con las distintas maneras de expresar números complejos. Manejar con soltura las operaciones aritméticas con números complejos. 2.1. Representaciones

Más detalles

Números complejos y Polinomios

Números complejos y Polinomios Semana 13 [1/14] 23 de mayo de 2007 Forma polar de los complejos Semana 13 [2/14] Raíces de la unidad Raíz n-ésima de la unidad Sean z C y n 2. Diremos que z es una raíz n-ésima de la unidad si z n = 1

Más detalles

LA CALCULADORA CIENTIFICA CASIO fx-82ms

LA CALCULADORA CIENTIFICA CASIO fx-82ms LA CALCULADORA CIENTIFICA CASIO fx-82ms 1.- Antes de comenzar con las operaciones. Antes de realizar cualquier cálculo debes ingresar el modo correcto. Para realizar cálculos aritméticos debes ingresar

Más detalles

Funciones Parte 1. Prof. Derwis Rivas Olivo

Funciones Parte 1. Prof. Derwis Rivas Olivo Universidad de Los ndes Facultad de Ingeniería Escuela ásica de Ingeniería Departamento de Cálculo Funciones Parte 1 Prof. Derwis Rivas Olivo 1.- Dadas las funciones f : R R / f(x) = x 3 + x 3 y g : R

Más detalles

Límites y continuidad de funciones reales de variable real

Límites y continuidad de funciones reales de variable real Límites y continuidad de funciones reales de variable real Álvarez S., Caballero M.V. y Sánchez M. a M. salvarez@um.es, m.victori@um.es, marvega@um.es Índice 1. Definiciones 3 2. Herramientas 10 2.1. Funciones

Más detalles

f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11

f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11 1. y = x + 11 x + 5 a) ESTUDIO DE f: 1) Dominio: Como es un cociente del dominio habrá que excluir los valores que anulen el denominador. Por tanto: x + 5 = 0 x = 5 ) Simetría: A simple vista, como el

Más detalles

Álgebra y Trigonometría

Álgebra y Trigonometría Álgebra y Trigonometría Conceptos fundamentales del Álgebra Universidad de Antioquia Departamento de Matemáticas 1. Números Reales El conjunto de los números reales está constituido por diferentes clases

Más detalles

Derivadas de Orden superior

Derivadas de Orden superior Derivadas de Orden superior Para una función cualquiera f, al tomar la derivada, obtenemos una nueva función f y podemos aplicar la derivada a f. La función f se suele escrbir f y recibe el nombre de derivada

Más detalles

4 Conjunto de los números reales

4 Conjunto de los números reales Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #4: viernes, 3 de junio de 2016. 4 Conjunto de los números reales 4.1

Más detalles

DERIVADA DE UNA FUNCIÓN

DERIVADA DE UNA FUNCIÓN DERIVADA DE UNA FUNCIÓN 3URI/XLV~xH] Se estudia aquí uno de los conceptos fundamentales del cálculo diferencial: la derivada de una función. Además de la definición y su interpretación, se allarán las

Más detalles

EJEMPLO DE PREGU,TAS

EJEMPLO DE PREGU,TAS EJEMPLO DE PREGU,TAS MATEMÁTICAS PRIMERO, SEGU,DO Y TERCERO DE BACHILLERATO 1. Lógica proposicional Esta competencia se refiere al conocimiento que usted posee sobre el lenguaje de las proposiciones y

Más detalles

La función, definida para toda, es periódica si existe un número positivo tal que

La función, definida para toda, es periódica si existe un número positivo tal que Métodos con series de Fourier Definición: Función periódica La función, definida para toda, es periódica si existe un número positivo tal que para toda. El número en un periodo de la función. Si existe

Más detalles

Lección 3.2. Ángulos de Referenciay Gráficas de Funciones Trigonométricas. 21/02/2014 Prof. José G. Rodríguez Ahumada 1 de 20

Lección 3.2. Ángulos de Referenciay Gráficas de Funciones Trigonométricas. 21/02/2014 Prof. José G. Rodríguez Ahumada 1 de 20 Lección 3.2 Ángulos de Referenciay Gráficas de Funciones Trigonométricas 21/02/2014 Prof. José G. Rodríguez Ahumada 1 de 20 Actividades 3.2 Referencia Texto: Seccíón 6.4 Valores de las Funciones Trigonométricas;

Más detalles

GUÍA N 5 CÁLCULO I. = mx + n, donde m es la pendiente de la recta y

GUÍA N 5 CÁLCULO I. = mx + n, donde m es la pendiente de la recta y UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS GUÍA N 5 CÁLCULO I Profesor: Carlos Ruz Leiva GRÁFICAS DE LAS FUNCIONES Las funciones más usadas en Cálculo

Más detalles

INSTITUTO TECNOLOGICO DE LAS AMERICAS CARRERA DE TECNOLOGO EN DESARROLLO DE SOFTWARE PRECALCULO

INSTITUTO TECNOLOGICO DE LAS AMERICAS CARRERA DE TECNOLOGO EN DESARROLLO DE SOFTWARE PRECALCULO INSTITUTO TECNOLOGICO DE LAS AMERICAS CARRERA DE TECNOLOGO EN DESARROLLO DE SOFTWARE PRECALCULO Nombre de la asignatura: Nomenclatura del Curso: Prerrequisitos: Nomenclatura del prerrequisito Número de

Más detalles

Las Funciones Trigonométricas. Sección 5.3 Funciones Trigonométricas de números reales

Las Funciones Trigonométricas. Sección 5.3 Funciones Trigonométricas de números reales 5 Las Funciones Trigonométricas Sección 5.3 Funciones Trigonométricas de números reales Dominios Se presentan los dominios de las funciones trigonométricas : Campo de valores Para cada θ en el dominio

Más detalles

PRECALCULO INSTITUTO TECNOLÒGICO DE LAS AMÈRICAS CARRERA DE TECNÓLOGO EN MECATRONICA. Precálculo. Nombre de la asignatura: MAT-001

PRECALCULO INSTITUTO TECNOLÒGICO DE LAS AMÈRICAS CARRERA DE TECNÓLOGO EN MECATRONICA. Precálculo. Nombre de la asignatura: MAT-001 INSTITUTO TECNOLÒGICO DE LAS AMÈRICAS CARRERA DE TECNÓLOGO EN MECATRONICA PRECALCULO Nombre de la asignatura: Nomenclatura del Curso: Precálculo MAT-001 Prerrequisitos: Nomenclatura del prerrequisito Ninguno

Más detalles

Calculo.I Tema 2 Derivadas

Calculo.I Tema 2 Derivadas Calculo.I Tema 2 Derivadas 24.Feb.2016. Sea y=f(x) La derivada de la función y=f(x) respecto de la variable x es otra función llamada y = f (x) = que nos indica cuánto se incrementa la función y al hacer

Más detalles

Conjuntos de Vectores y Matrices Ortogonales

Conjuntos de Vectores y Matrices Ortogonales Conjuntos de Vectores y Matrices Ortogonales Departamento de Matemáticas, CCIR/ITESM 28 de junio de 2011 Índice 21.1.Introducción............................................... 1 21.2.Producto interno............................................

Más detalles

Funciones reales de variable real

Funciones reales de variable real 84 Matemáticas I : Cálculo diferencial en IR Tema 8 Funciones reales de variable real 8. Los números reales Los números reales son de sobra conocidos, sus operaciones básicas así como su identificación

Más detalles

f(x) = x 2 Ejercicio 121 Para x = 1/2 formar los cocientes incrementales f/ x para los incrementos entre x = 1 y x = 1+ x de tres maneras diferentes:

f(x) = x 2 Ejercicio 121 Para x = 1/2 formar los cocientes incrementales f/ x para los incrementos entre x = 1 y x = 1+ x de tres maneras diferentes: 22 CAPÍTULO 3. INTEGRALES: CÁLCULO POR MEDIO DE PRIMITIVAS 3.2. La derivada En la sección 3. analizamos los incrementos y cocientes incrementales de varias funciones. En esta sección nos concentraremos

Más detalles

1. dejar a una lado de la igualdad la expresión que contenga una raíz.

1. dejar a una lado de la igualdad la expresión que contenga una raíz. 1. Resuelve las siguientes ecuaciones reales: Solución x 1 + x = 0 ; 3 x = 3 ; ln(x 1) + 4 = ln 3 Ecuaciones con raíces: No todas las ecuaciones de este tipo son sencillas de resolver, pero podemos intentar

Más detalles

Capítulo 4: Derivada de una función

Capítulo 4: Derivada de una función Capítulo 4: Derivada de una función Geovany Sanabria Contenido Razones de cambio 57 Definición de derivada 59 3 Cálculo de derivadas 64 3. Propiedadesdederivadas... 64 3.. Ejercicios... 68 3. Derivadasdefuncionestrigonométricas...

Más detalles

EJERCICIOS PAU MATEMÁTICAS II ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU MATEMÁTICAS II ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com MATRICES Y DETERMINANTES 1- Sea m un número real y considere la matriz: 1 0 0 1 2 1 1 a) Determine todos los valores de m para los que la matriz A tiene inversa. b) Determine, si existe, la inversa de

Más detalles

Ecuaciones exponenciales y logaritmicas

Ecuaciones exponenciales y logaritmicas Ecuaciones exponenciales y logaritmicas Cuando hacemos preguntas relacionadas a funciones exponenciales o logaritmicas generalmente obtendremos una ecuación logarimica o exponencial. Elevé el número 3

Más detalles

UNA ECUACIÓN es una igualdad de dos expresiones algebraicas.

UNA ECUACIÓN es una igualdad de dos expresiones algebraicas. UNA EXPRESIÓN ALGEBRAICA es una combinación de números, variables (o símbolos) y operaciones como la suma, resta, multiplicación, división, potenciación y radicación. Ejemplos. UNA ECUACIÓN es una igualdad

Más detalles

Universidad de Chile Integración por partes. Ingeniería Matemática SEMANA 6: PRIMITIVAS

Universidad de Chile Integración por partes. Ingeniería Matemática SEMANA 6: PRIMITIVAS FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 08- Ingeniería Matemática SEMANA 6: PRIMITIVAS 3.3. Integración por partes Proposición 3. (Fórmula de integración

Más detalles

Métodos Numéricos: los números reales y su representación

Métodos Numéricos: los números reales y su representación Métodos Numéricos: los números reales y su representación Eduardo P. Serrano Versión previa Feb 2012 1. Números reales Empleamos los números reales para expresar cantidades, valores, medidas o magnitudes.

Más detalles

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES 1 er PARCIAL 1. Obtén los valores reales que cumplen las siguientes condiciones: x+ x 3 5 x 1/ =1. Opera y expresa el resultado en notación científic (5,

Más detalles

Suma: (a, b) + (c, d) = (a + c, b + d) AP1.1. Proposición: Se cumple: ii) es una operación en C.

Suma: (a, b) + (c, d) = (a + c, b + d) AP1.1. Proposición: Se cumple: ii) es una operación en C. APÉNDICE 1 Los Números Complejos Estructura de Campo En R la ecuación x 2 = 1 no tiene solución. No puede tenerla además, por que R es un campo (cuerpo) ordenado y por lo tanto 1 es negativo, mientras,

Más detalles

Matema ticas CERO, informacio n detallada

Matema ticas CERO, informacio n detallada Matema ticas CERO, informacio n detallada Consolidar una buena base matemática empezando prácticamente desde cero. En este curso se dejan muy claras algunas definiciones y propiedades que, a pesar de ser

Más detalles

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad y Laterales Curso Propedéutico de Cálculo Sesión 2: y Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico y Esquema Laterales 1 Laterales 2 y Esquema Laterales

Más detalles

CAPÍTULO III. FUNCIONES

CAPÍTULO III. FUNCIONES CAPÍTULO III LÍMITES DE FUNCIONES SECCIONES A Definición de límite y propiedades básicas B Infinitésimos Infinitésimos equivalentes C Límites infinitos Asíntotas D Ejercicios propuestos 85 A DEFINICIÓN

Más detalles

Problemas resueltos de variable compleja con elementos de teoría. Ignacio Monterde, Vicente Montesinos.

Problemas resueltos de variable compleja con elementos de teoría. Ignacio Monterde, Vicente Montesinos. Problemas resueltos de variable compleja con elementos de teoría Ignacio Monterde, Vicente Montesinos. Índice general Introducción V 1. Teoría elemental 1 1.1. Elementos de teoría........................

Más detalles