Matemáticas Avanzadas para Ingeniería: Serie de Taylor. Departamento de Matemáticas. Propiedades. Tma. Taylor. Ejemplos MA3002

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Matemáticas Avanzadas para Ingeniería: Serie de Taylor. Departamento de Matemáticas. Propiedades. Tma. Taylor. Ejemplos MA3002"

Transcripción

1 MA3002

2 Intro Suponga una serie potencias a k (z z o ) k Para un valor z que pertenezca al interior l círculo convergencia dicha serie, el valor ĺımite la serie L es un número complejo perfectamente finido a partir z (aunque el cálculo L sea un dolor cabeza!). En este sentido, se tiene una función matemática variable compleja: el dominio es el interior l círculo convergencia la serie y cuya regla asociación es el cálculo l valor ĺımite la serie el z en el dominio. En este mundo funciones matemáticas finidas por series potencias, Cuáles son sus propiedas? Tendrá su contraparte en este mundo una función tradicional?

3 Suponga que f (z) es la función finida por la serie potencias a k (z z o ) k que tiene como círculo convergencia z z o = R, R 0. Diremos que su dominio D es z z o < R. Entonces f (z) es una función continua en D: Es cir, que si z y z 2 son puntos en el dominio entonces f (z ) f (z 2 ) 0 cuando z z 2 0 f (z) tiene rivada en todo punto D. No sólo eso, hay una función cuyo dominio es también D y que da la rivada f (z), y más aún tal función rivada es también una función finida como una serie potencias (ouch!). Y todavía más (y felicidad nuestra!): f (z) = k a k (z z o ) k k=

4 Más aún, hay una relación entre los coeficientes la serie potencias que fine la función y las rivadas la función en el centro l círculo convergencia: a k = f (k) (z o ) k! ó f (k) (z o ) = k! a k k 0 Por tanto, la serie potencias be tener la forma: f (k) (z o ) k! (z z o ) k Esta serie llama serie. Cuando z o = 0 la serie se llama serie Maclaurin: f (k) (0) k! z k

5 Integración series potencias Si se tiene finida una función variable compleja f (z) por medio una serie potencias en su círculo convergencia a k (z z o ) k, entonces f (z) admite una función primitiva F (z) (es cir, una función que cumple F (z) = f (z)); y más aún F (z) es también una función finida por serie potencias en z z o (ouch!) que pue ser calculada integrando término a término la serie f (z) (aaah!).

6 Unicidad las series potencias Si dos series potencias en z z o : a k (z z o ) k y b k (z z o ) k tienen en mismo radio convergencia y coincin en los valores ĺımite en todo punto l interior l círculo convergencia, entonces a k = b k.

7 Teorema Sea f (z) una función anaĺıtica con dominio D y un punto z o en el interior D. Entonces, f (z) tiene una representación en serie potencias en z z o : f (k) (z o ) k! (z z o ) k que es válida el círculo más gran con centro en z o y que está contenido en D. Zona coincincia f (z) y la serie z o D

8 Ejemplo Determine la serie Maclaurin y su radio convergencia la función dada por la fórmula: + z Obtengamos la serie por el método que da la finición, ello calculemos la fórmula las rivadas: f (z) = d dz ( + z) = ( )! ( + z) 2 f (z) = d dz ( )! ( + z) 2 = ( ) 2 2! ( + z) 3 f (z) = d dz ( )2 2! ( + z) 3 = ( ) 3 3! ( + z) 4 en general, f (k) (z) = ( ) k k! ( + z) (k+) y por tanto, f (k) (0) = ( ) k k! a k = f (k) (0) = ( )k k! = ( ) k k! k!

9 Por tanto, a k z k = ( ) k z k = z + z 2 z 3 + z 4 + Y su radio convergencia se obtiene : R = lim k k ak = lim ( ) k = lim k k k por tanto R = k =

10 Otra forma obtener la serie es recordando que Como Basta usar el sarrollo obtener: z = z k + z = ( z) z + z = ( z) = ( z) k = sustituir z por z y ( ) k z k

11 Otra manera calcular el radio convergencia la serie Maclaurin que representa a /( + z) es la siguiente: como Maclaurin tiene como centro z o = 0 y el único punto infinición /( + z) es z = entonces el radio se pue calcular obteniendo la distancia z o = 0 a z = : R = d(z o, z ) = z o z = 0 ( ) = = Observe que si se tratara sarrollar en serie Maclaurin (z )(z /2) entonces se be buscar en qué puntos hay infinición (z = y z 2 = /2) y se be obtener la menor distancia a ellos ( z o = 0 a z, que es, y z o = 0 a z 2 que es /2). En este caso sería R = Min {d(z o, z ), d(z o, z 2 )} = Min {, /2} = /2

12 Ejemplo 2 Determine la serie Maclaurin y su radio convergencia la función dada por la fórmula Tenemos que: por lo tanto, ( ) d = dz z ( z) 2 ( z) 2, ( z) 2 = d dz ( ) z k = k z k k= Los radios convergencia ambas series son iguales; es cir, R =.

13 Ejemplo 3 Determine la serie Maclaurin y su radio convergencia la función dada por la fórmula: Tenemos que z + z ( z ) + z = z + z = z ( ) k z k Por lo tanto: ( ) k z k+ El radio convergencia es el la serie /( + z), que es R =

14 Ejemplo 4 Determine la serie Maclaurin y su radio convergencia la función dada por la fórmula: 4 2 z Tenemos que ( 4 ( z ) = ) 4 ( z ) k 2 2 Por lo tanto: 4 2 k zk El radio convergencia es doble l radio la serie /( z), que es ; por tanto, el radio nuestra serie Macluarin es 2.

15 Ejemplo 5 Determine la serie en z o = y su radio convergencia la función dada por la fórmula: z Primero obtengamos la serie usando la finición. f (z) = d dz z = ( )! z 2 f (z) = d dz ( )! z 2 = ( ) 2 2! z 3 f (z) = d dz ( )2 2! z 3 = ( ) 3 3! z 4 en general, f (k) (z) = ( ) k k!z (k+) y por tanto, f (k) (z o = ) = ( ) k k! a k = f (k) (z o ) = ( )k k! = ( ) k k! k!

16 Por tanto, a k (z z o ) k = ( ) k (z ) k = (z ) + (z ) 2 (z ) 3 + (z ) 4 + Y su radio convergencia se obtiene : R = lim k k ak = lim ( ) k = lim k k k por tanto, R = k =

17 Una forma alternativa es la siguiente: Así z = z o + (z z o ) = z o ( + z zo z o ) = z = ( ) ( ) k z k zo = z o z o ( z o z k+ o El radio convergencia se obtiene al calcular: R = lim k ( ) k k = z o z k+ o + z zo z o ( ) k (z z o ) k ) por tanto, R = z o que correspon a la distancia z o al polo /z que es z = 0.

18 Ejemplo 6 Determine la serie en z o y su radio convergencia la función dada por la fórmula: Tenemos que a z, a z o a z = (a z o ) (z z o ) = (a z o ) ( ) z zo a z o Por tanto, a z = (a z o ) ( ) z k zo = a z o y el radio convergencia es R = a z o. (a z o ) k+ (z z o) k

MA3002. Matemáticas Avanzadas para Ingeniería: Series de Laurent. Departamento de Matemáticas. Singularidad. Sing. Aislada. S. de Laurent.

MA3002. Matemáticas Avanzadas para Ingeniería: Series de Laurent. Departamento de Matemáticas. Singularidad. Sing. Aislada. S. de Laurent. Ejemplos MA3002 Ejemplos Puntos singulares una función Si una función variable compleja ja ser anaĺıtica en un punto z = z o, entonces se dice que este punto es una singularidad o un punto singular la

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Sucesiones y Series. Departamento de Matemáticas. lim z n. Resultados. Series. Geométrica.

MA3002. Matemáticas Avanzadas para Ingeniería: Sucesiones y Series. Departamento de Matemáticas. lim z n. Resultados. Series. Geométrica. P MA3002 Una sucesión, representada matemáticamente como {z n }, es una función cuyo dominio son los enteros positivos (1, 2, 3, 4,...); en otras palabras, a cada entero n = 1, 2, 3... se le asigna un

Más detalles

Tema 5. Series de Potencias

Tema 5. Series de Potencias Tema 5. Series de Potencias Prof. William La Cruz Bastidas 21 de noviembre de 2002 Tema 5 Series de Potencias Definición 5.1 La sucesión de números complejos {z n } tiene un límite o converge a un número

Más detalles

Matemáticas Avanzadas para Ingeniería: Integrales de Contorno. Departamento de Matemáticas. Intro. Suma. c f (z) dz.

Matemáticas Avanzadas para Ingeniería: Integrales de Contorno. Departamento de Matemáticas. Intro. Suma. c f (z) dz. Integrales ontorno Integrales ontorno MA3002 Integrales ontorno En esta lectura veremos la integral contorno o la integral compleja ĺınea. Recuer la integral ĺınea en dos variables: F dr = f (x(t), y(t))

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Integrales de Contorno. Departamento de Matemáticas. Intro. Suma. Aproximación por TI.

MA3002. Matemáticas Avanzadas para Ingeniería: Integrales de Contorno. Departamento de Matemáticas. Intro. Suma. Aproximación por TI. MA3002 En esta lectura veremos la integral contorno o la integral compleja ĺınea. Recuer la integral ĺınea en dos variables: F dr = f (x(t), y(t)) r (t) dt Datos: 1) función en dos variables f (x, y) 2)

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Sucesiones, Series y Series de Potencias. Departamento de Matemáticas. Convergencia. Resultados.

MA3002. Matemáticas Avanzadas para Ingeniería: Sucesiones, Series y Series de Potencias. Departamento de Matemáticas. Convergencia. Resultados. y y MA3002 y Una sucesión, representada matemáticamente como {z n }, es una función cuyo dominio son los enteros positivos (1, 2, 3, 4,...); en otras palabras, a cada entero n = 1, 2, 3... se le asigna

Más detalles

13. Series de Laurent.

13. Series de Laurent. Funciones de variable compleja. Eleonora Catsigeras. 3 Mayo 2006. 33 3. Series de Laurent. 3.. Definición de serie de Laurent y corona de convergencia. Definición 3... Serie de Laurent. Se llama serie

Más detalles

Teorema de Cayley-Hamilton

Teorema de Cayley-Hamilton Espacio las Teorema - Algebra Espacio las Teorema - Espacio las Teorema - Veamos algunos resultados sobre transformaciones lineales En particular, el teorema - Espacio las Teorema - las Transformaciones

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Funciones de Variable Compleja. Departamento de Matemáticas. Continuidad. Derivada.

MA3002. Matemáticas Avanzadas para Ingeniería: Funciones de Variable Compleja. Departamento de Matemáticas. Continuidad. Derivada. MA3002 variable compleja Cuando el dominio una función f es un conjunto números complejos y cuando los valores que proporciona la función son también números complejos, diremos que f es una función variable

Más detalles

Así tenemos el siguiente teorema: Sea f una función analítica en un disco Entonces f admite la representación de potencias:

Así tenemos el siguiente teorema: Sea f una función analítica en un disco Entonces f admite la representación de potencias: Así tenemos el siguiente teorema: Sea f una función analítica en un disco Entonces f admite la representación de potencias: donde conocida como serie de Taylor (o serie de Maclaurin cuando ). Además la

Más detalles

Series de Laurent. R n (z) = (z z 0) n C. ( z. Para probar esta afirmación partimos de la fórmula integral de Cauchy escrita convenientemente = 1

Series de Laurent. R n (z) = (z z 0) n C. ( z. Para probar esta afirmación partimos de la fórmula integral de Cauchy escrita convenientemente = 1 Semana 3 - lase 37 Series de Laurent. Otra vez Taylor y ahora Laurent Anteriormente consideramos series complejas de potencias. En esta sección revisaremos, desde la perspectiva de haber expresado la derivada

Más detalles

Matemáticas Avanzadas para Ingeniería Resultados sobre Integrales de Contorno en Variable Compleja, problemas resueltos

Matemáticas Avanzadas para Ingeniería Resultados sobre Integrales de Contorno en Variable Compleja, problemas resueltos . alcule la integral indicada: Matemáticas Avanzadas para Ingeniería Resultados sobre Integrales de ontorno en Variable ompleja, problemas resueltos 2+3 i 3 2 i ( 3 3 i + ( 3 + 4 i) z + 3 z 2 ) dz Reporte

Más detalles

Índice. Tema 6 Series de Taylor y de Laurent. Series de Taylor. Observación. Marisa Serrano Ortega José Ángel Huidobro Rojo

Índice. Tema 6 Series de Taylor y de Laurent. Series de Taylor. Observación. Marisa Serrano Ortega José Ángel Huidobro Rojo Tema 6 y de Laurent Marisa Serrano Ortega José Ángel Huidobro Rojo Índice 1 2 2 email: mlserrano@uniovi.es email: jahuidobro@uniovi.es 3 Observación Teorema 6.1 Sea f función analítica en D(z 0, R). Existe

Más detalles

Matemáticas Avanzadas para Ingeniería: Funciones extendidas. Departamento de Matemáticas. Intro. e z. ln(z) sen(z) MA3002

Matemáticas Avanzadas para Ingeniería: Funciones extendidas. Departamento de Matemáticas. Intro. e z. ln(z) sen(z) MA3002 MA3002 En esta sección veremos cómo se extienn las funciones que ya conocemos números reales pero ahora al plano complejo. La función exponencial Sea z = x + y i un número complejo. Se fine la función

Más detalles

Fórmula integral de Cauchy

Fórmula integral de Cauchy Fórmula integral de Cauchy Comentario: de acuerdo con esta fórmula, uno puede conocer el valor de f dentro del entorno, conociendo únicamente los valores que toma f en el contorno C! Fórmula integral de

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Números Complejos. Departamento de Matemáticas. Introducción. Igualdad. Suma y resta.

MA3002. Matemáticas Avanzadas para Ingeniería: Números Complejos. Departamento de Matemáticas. Introducción. Igualdad. Suma y resta. MA3002 Los números complejos, simbolizados por C, son una generalización los números reales. Una generalización algebraica muy interesante: Toda ecuación polinomial c n z n + c n 1 z n 1 + + c 1 z + c

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA25 Clase 5: Series de potencias. Operaciones con series de potencias. Series de potencias Elaborado por los profesores Edgar Cabello y Marcos González Cuando estudiamos las series geométricas, demostramos

Más detalles

Fórmula integral de Cauchy

Fórmula integral de Cauchy Fórmula integral de Cauchy Comentario: de acuerdo con esta fórmula, uno puede conocer el valor de f dentro del entorno, conociendo únicamente los valores que toma f en el contorno C! Fórmula integral de

Más detalles

Matemáticas I Grado de Administración y Dirección de Empresas Examen de Febrero Curso 2011/ ?

Matemáticas I Grado de Administración y Dirección de Empresas Examen de Febrero Curso 2011/ ? Matemáticas I Grado de Administración y Dirección de Empresas Examen de Febrero Curso 011/1 1) (1 punto) Dado el subespacio vectorial,,,,,,,,,,, a) Obtener la dimensión, unas ecuaciones implícitas, unas

Más detalles

Algebra Lineal: Transformaciones Lineales. Departamento de Matemáticas. Intro. T. Matricial. T. Lineal. Rango

Algebra Lineal: Transformaciones Lineales. Departamento de Matemáticas. Intro. T. Matricial. T. Lineal. Rango Algebra ducción Des el punto vista l Algebra Lineal, las funciones más importantes son las que preservan las combinaciones lineales. Estas funciones se llamarán. Es esta presentación se tratan con los

Más detalles

Variable Compleja I ( ) Ejercicios resueltos. Convergencia de series. Series de potencias

Variable Compleja I ( ) Ejercicios resueltos. Convergencia de series. Series de potencias Variable Compleja I (04-5) Ejercicios resueltos Convergencia de series. Series de potencias Ejercicio Calcule el radio de convergencia de la serie de potencias ( ) n z n3. Solución. Observemos primero

Más detalles

SUCESIONES Y SERIES INFINITAS

SUCESIONES Y SERIES INFINITAS de SUCESIONES Y SERIES INFINITAS Sergio Stive Solano Septiembre de 2012 de SUCESIONES Y SERIES INFINITAS Sergio Stive Solano Septiembre de 2012 de Una serie de potencia es aquella que tiene la forma c

Más detalles

Apuntes. Genius, a good idea in Maths Ximo Beneyto. Tema : Derivabilidad. Teorema de Taylor

Apuntes. Genius, a good idea in Maths Ximo Beneyto. Tema : Derivabilidad. Teorema de Taylor Apuntes Genius, a good idea in Maths Ximo Beneyto 1. Hallar el desarrollo de Taylor y la expresión del resto de Lagrange, para las siguientes funciones. 1.1 f(x) = sen x en a =, n = 3 1.2 f(x) = Ln x en

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Funciones extendidas. Departamento de Matemáticas. Intro. Exponencial. Nota 1. Logaritmo.

MA3002. Matemáticas Avanzadas para Ingeniería: Funciones extendidas. Departamento de Matemáticas. Intro. Exponencial. Nota 1. Logaritmo. MA3002 En esta sección veremos cómo se extienn las funciones que ya conocemos números reales pero ahora al plano complejo. En lo que sigue, las funciones cuyo nombre está en letra azul son funciones variable

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Transformada Z Inversa. Departamento de Matemáticas. X 1 (z) MFP. Ejemplo 1. Ejemplo 2.

MA3002. Matemáticas Avanzadas para Ingeniería: Transformada Z Inversa. Departamento de Matemáticas. X 1 (z) MFP. Ejemplo 1. Ejemplo 2. MA3002 Inversa La transformada Z inversa una función variable compleja X () se fine como x(n) = 2 π i C X () n d don la integral se calcula sobre una curva cerrada simple C postivamente orientada que encierra

Más detalles

10. Series de potencias

10. Series de potencias FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 7-2 Basado en el apunte del curso Cálculo (2do semestre), de Roberto Cominetti, Martín Matamala y Jorge San

Más detalles

PLAN DE CURSO PC-01 FO-TESE-DA-09 DIRECCIÓN ACADÉMICA DIVISIÓN DE INGENIERÍA ELECTRÓNICA. Según Corresponda CALCULO INTEGRAL TURNO: 1201/1 251

PLAN DE CURSO PC-01 FO-TESE-DA-09 DIRECCIÓN ACADÉMICA DIVISIÓN DE INGENIERÍA ELECTRÓNICA. Según Corresponda CALCULO INTEGRAL TURNO: 1201/1 251 No. DE EMPLEADO: SEMANA: 5 NO. DE ALUMNOS: O PROPOSITO GENERAL DE LA 1. Teorema fundamental del cálculo. - Contextualizar el concepto de - Visualizar la relación entre cálculo diferencial y el cálculo

Más detalles

15. Teoría de los residuos.

15. Teoría de los residuos. 162 Funciones de variable compleja. Eleonora Catsigeras. 12 Julio 2006. 15. Teoría de los residuos. 15.1. Residuos. Definición 15.1.1. Residuo de una función en una singularidad aislada. Dada una función

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Números Complejos. Departamento de Matemáticas. Introducción. Igualdad. Suma y resta.

MA3002. Matemáticas Avanzadas para Ingeniería: Números Complejos. Departamento de Matemáticas. Introducción. Igualdad. Suma y resta. MA3002 Los números complejos simbolizados por C son una generalización los números reales. Una generalización algebraica muy interesante: Toda ecuación polinomial c n z n + c n 1 z n 1 + + c 1 z + c 0

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Transformada Z. Departamento de Matemáticas. X (z) Z {a n x(n)} Linealidad. Atraso.

MA3002. Matemáticas Avanzadas para Ingeniería: Transformada Z. Departamento de Matemáticas. X (z) Z {a n x(n)} Linealidad. Atraso. {a n u(n)} {n } {a n } { n m=0 } MA3002 {a n u(n)} {n } {a n } { n m=0 } En lo siguiente, representar sucesiones utiliaremos la notación en lugar {x n }; x(i) representará el valor l término i-ésimo la

Más detalles

Series numéricas y de potencias. 24 de Noviembre de 2014

Series numéricas y de potencias. 24 de Noviembre de 2014 Cálculo Series numéricas y de potencias 24 de Noviembre de 2014 Series numéricas y de potencias Series numéricas Sucesiones de números reales Concepto de serie de números reales. Propiedades Criterios

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Números Complejos. Departamento de Matemáticas. Introducción. Igualdad. Suma y resta.

MA3002. Matemáticas Avanzadas para Ingeniería: Números Complejos. Departamento de Matemáticas. Introducción. Igualdad. Suma y resta. MA300 Propiedas Propiedas Los números complejos simbolizados por C son una generalización los números reales. Una generalización algebraica muy interesante: Toda ecuación polinomial c n z n + c n 1 z n

Más detalles

16. Ejercicios resueltos sobre cálculo de residuos.

16. Ejercicios resueltos sobre cálculo de residuos. 7 Funciones de variable compleja. Eleonora Catsigeras. 3 Junio 26. 6. Ejercicios resueltos sobre cálculo de residuos. En esta sección se dan ejemplos de cálculo de integrales de funciones reales, propias

Más detalles

Un resumen de la asignatura. Junio, 2015

Un resumen de la asignatura. Junio, 2015 Un resumen de la asignatura Departamento de Matemática Aplicada a las Tecnologías de la Información y las Comunicaciones ETSIT (UPM) Junio, 2015 1 Los Números Reales(R) Los números Irracionales Continuidad

Más detalles

8. Consecuencias de la Teoría de Cauchy.

8. Consecuencias de la Teoría de Cauchy. Funciones de variable compleja. Eleonora Catsigeras. 8 Mayo 2006. 77 8. Consecuencias de la Teoría de Cauchy. 8.1. Principio del módulo máximo. Definición 8.1.1. Sea f una función continua en Ω. Se dice

Más detalles

Capítulo 4 Desarrollos en Serie de Taylor y de Laurent.

Capítulo 4 Desarrollos en Serie de Taylor y de Laurent. Capítulo 4 Desarrollos en Serie de Taylor y de Laurent. El desarrollo en serie de potencias, que comúnmente se restringe a potencias positivas en el campo real toma forma definitiva en el campo complejo

Más detalles

CÁLCULO II. Grado M+I. Sucesiones y series de funciones. Sucesiones y series de funciones 1 / 27. Grado M+I () CÁLCULO II

CÁLCULO II. Grado M+I. Sucesiones y series de funciones. Sucesiones y series de funciones 1 / 27. Grado M+I () CÁLCULO II CÁLCULO II Grado M+I Sucesiones y series de funciones Sucesiones y series de funciones 1 / Sucesiones funciones. Convergencia puntual Sucesión de funciones Definición Una sucesión de funciones será cualquier

Más detalles

C alculo Noviembre 2010

C alculo Noviembre 2010 Cálculo Noviembre 2010 Series numéricas. Sucesiones Definición Una sucesión es una aplicación a : IN IR. Denotamos simplificadamente a n en vez de a(n). El límite de la sucesión (a n ) es l R si para

Más detalles

Series de Laurent. En la práctica, los coeficientes de una serie de Laurent se obtienen por métodos distintos a las expresiones integrales a n

Series de Laurent. En la práctica, los coeficientes de una serie de Laurent se obtienen por métodos distintos a las expresiones integrales a n Series de Laurent En la práctica, los coeficientes de una serie de Laurent se obtienen por métodos distintos a las expresiones integrales a n y b n dadas anteriormente. Además se puede demostrar que la

Más detalles

6. Teoría de Cauchy local.

6. Teoría de Cauchy local. Funciones de variable compleja. Eleonora Catsigeras. 24 Abril 2006. 59 6. Teoría de Cauchy local. Dado un abierto Ω C, se denota con R Ω a un rectángulo contenido en Ω. R indica el conjunto de puntos que

Más detalles

COLEGIO INTERNACIONAL SEK-CR SOLUCIONARIO SIMULACRO Por: Prof. Álvaro Elizondo Montoya.

COLEGIO INTERNACIONAL SEK-CR SOLUCIONARIO SIMULACRO Por: Prof. Álvaro Elizondo Montoya. COLEGIO INTERNACIONAL SEK-CR SOLUCIONARIO SIMULACRO 0-06 Por: Prof. Álvaro Elizondo Montoa.. (D) La ecuación de una circunferencia de centro C( 0 0 ) radio r es: ( o ) + ( o ) = r determinemos primero

Más detalles

Variable Compleja I ( ) Ejercicios resueltos. Las convergencias puntual y uniforme de sucesiones y series de funciones

Variable Compleja I ( ) Ejercicios resueltos. Las convergencias puntual y uniforme de sucesiones y series de funciones Variable Compleja I (205-6) Ejercicios resueltos Las convergencias puntual y uniforme de sucesiones y series de funciones Recordemos la definición de la convergencia uniforme: f n (z) f (z) en un conjunto

Más detalles

PRÁCTICA 5. #1: LOAD(C:\Derive\Complejos.mth) #2: true EJERCICIO 1. k #3: (z - a) f. 1 d k - 1. #5: ((z - a) f) (k - 1)! dz

PRÁCTICA 5. #1: LOAD(C:\Derive\Complejos.mth) #2: true EJERCICIO 1. k #3: (z - a) f. 1 d k - 1. #5: ((z - a) f) (k - 1)! dz #1: LOAD(C:\Derive\Complejos.mth) #2: true EJERCICIO 1 k #3: (z - a) f d k - 1 k #4: ((z - a) f) dz PRÁCTICA 5 1 d k - 1 k #5: ((z - a) f) (k - 1)! dz 1 d k - 1 k #6: lim ((z - a) f) z a (k - 1)! dz 1

Más detalles

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3!, x x3

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3!, x x3 Cálculo I (Grado en Ingeniería Informática) Problemas resueltos, - y -4 (tercera parte) Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić (coordinadores), Luis Guijarro, Kazaros

Más detalles

PROBLEMA 1 *( ) + SOLUCIÓN: Sea la superficie de la parte esférica superior, parametrizada con coordenadas cilíndricas de la siguiente manera:

PROBLEMA 1 *( ) + SOLUCIÓN: Sea la superficie de la parte esférica superior, parametrizada con coordenadas cilíndricas de la siguiente manera: PROBLEMA 1 A una esfera maciza de radio unidad se le hace una perforación cilíndrica siguiendo un eje diametral de la esfera. Suponiendo que el cilindro es circular de radio, con y que el eje que se usa

Más detalles

La función, definida para toda, es periódica si existe un número positivo tal que

La función, definida para toda, es periódica si existe un número positivo tal que Métodos con series de Fourier Definición: Función periódica La función, definida para toda, es periódica si existe un número positivo tal que para toda. El número en un periodo de la función. Si existe

Más detalles

Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 01/02

Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 01/02 Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 0/02 x 2 + y 4. (a) Comprueba que el siguiente límite no existe lim (x,y) (0,0) x 2 + y. 2 (b) Busca una trayectoria a través de la

Más detalles

Algebra Lineal: Dependencia Lineal. Departamento de Matemáticas. Intro. Dependencia. Ejemplos a) Resultados. Ejemplos b) MA1019

Algebra Lineal: Dependencia Lineal. Departamento de Matemáticas. Intro. Dependencia. Ejemplos a) Resultados. Ejemplos b) MA1019 Algebra MA119 ducción Otro los conceptos clave en Algebra es el concepto penncia lineal. Este concepto aplica a conjuntos vectores y significa que el conjunto tenga redundancia, es cir, que exista en el

Más detalles

Evidentemente, la superficie es un triángulo rectángulo de base 1 y altura también la unidad, por tanto su área es 1/2.

Evidentemente, la superficie es un triángulo rectángulo de base 1 y altura también la unidad, por tanto su área es 1/2. LA INTEGRAL DEFINIDA En los dos temas anteriores se ha hecho el estudio de las primitivas de una función, descubriendo distintos procedimientos para el cálculo de primitivas, es decir, se han encontrado

Más detalles

+ i,... es una sucesión. Otra forma de denotar la misma sucesión es {z n } n N

+ i,... es una sucesión. Otra forma de denotar la misma sucesión es {z n } n N Capítulo 6 Sucesiones y series en C Todo el trabajo de este capítulo esta destinada a mostrar que tiene sentido sumar infinitas funciones de variable compleja. En gran medida es un copy/paste de la versión

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Funciones de Variable Compleja. Departamento de Matemáticas. Mapeo. Continuidad. Derivada.

MA3002. Matemáticas Avanzadas para Ingeniería: Funciones de Variable Compleja. Departamento de Matemáticas. Mapeo. Continuidad. Derivada. MA3002 variable compleja Cuando el dominio una función f es un conjunto números complejos y cuando el codominio mismo es también el conjunto números complejos diremos que f es una función variable compleja

Más detalles

Ma3002. Matemáticas Avanzadas para Ingeniería: Potencias y Raíces de Números Complejos. Departamento de Matemáticas. Introducción.

Ma3002. Matemáticas Avanzadas para Ingeniería: Potencias y Raíces de Números Complejos. Departamento de Matemáticas. Introducción. Raíces Raíces Ma3002 Raíces Raíces Las potencias y las enteras números complejos son muy fáciles calcular cuando el número complejo está en la forma polar. Primeramente, veremos la forma polar un número

Más detalles

PROGRAMA DETALLADO VIGENCIA TURNO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2009 DIURNO INGENIERIA ELECTRICA ASIGNATURA

PROGRAMA DETALLADO VIGENCIA TURNO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2009 DIURNO INGENIERIA ELECTRICA ASIGNATURA PROGRAMA DETALLADO VIGENCIA TURNO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2009 DIURNO INGENIERIA ELECTRICA SEMESTRE ASIGNATURA 3er TRANSFORMADAS INTEGRALES CÓDIGO HORAS MAT-20254

Más detalles

Series y sucesiones de números complejos

Series y sucesiones de números complejos 1 Universidad Simón Bolívar. Preparaduría nº 8. christianlaya@hotmail.com ; @ChristianLaya. Series y sucesiones de números complejos Definición: una sucesión de números complejos tiene un límite si para

Más detalles

( + )= ( ) ( ) tiene periodo si es cualquier periodo de ( ). + =cos( +2 )=cos + = ( +2 )=. cosnt+ sinnt) ( )~ Métodos con series de Fourier

( + )= ( ) ( ) tiene periodo si es cualquier periodo de ( ). + =cos( +2 )=cos + = ( +2 )=. cosnt+ sinnt) ( )~ Métodos con series de Fourier Métodos con series de Fourier Definición: Función periódica La función (), definida para toda, es periódica si existe un número positivo tal que (+)=() para toda. El número en un periodo de la función.

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Series de Fourier. Departamento de Matemáticas. Intro. Serie de. Fourier. S k. Convergencia.

MA3002. Matemáticas Avanzadas para Ingeniería: Series de Fourier. Departamento de Matemáticas. Intro. Serie de. Fourier. S k. Convergencia. Series Serie Series MA3002 Series Serie Las Series trigonométricas, o simplemente series fueron sarrolladas por el matemático francés Jean-Baptiste Joseph (21 marzo 1768 en Auxerre - 16 mayo 1830 en París).

Más detalles

7. Teoría de Cauchy global.

7. Teoría de Cauchy global. 68 Funciones de variable compleja. Eleonora Catsigeras. 25 Abril 26. 7. Teoría de Cauchy global. 7.. Teorema de Cauchy global. Sea un abierto no vacío Ω C. Teorema 7... Teorema de Cauchy global. Sea f

Más detalles

Sistemas Lineales. Tema 5. La Transformada Z. h[k]z k. = z n (

Sistemas Lineales. Tema 5. La Transformada Z. h[k]z k. = z n ( La transformada Z Sistemas Lineales Tema 5. La Transformada Z Las señales exponenciales discretas de la forma z n con z = re jω son autosoluciones de los sistemas LTI. Para una entrada x[n] = z0 n la salida

Más detalles

UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN. Tema: TÉCNICAS DE INTEGRACIÓN

UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN. Tema: TÉCNICAS DE INTEGRACIÓN UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN Tema: TÉCNICAS DE INTEGRACIÓN TÉCNICAS DE INTEGRACIÓN En matemáticas, cada tipo de problema sugiere un tipo de solución. Para calcular la derivada

Más detalles

Expresiones algebraicas

Expresiones algebraicas Epresiones algebraicas Matemáticas I 1 Epresiones algebraicas Epresiones algebraicas. Monomios y polinomios. Monomios y polinomios. Una epresión algebraica es una combinación de letras, números y signos

Más detalles

Introducción. Algebra Lineal: Dependencia Lineal. Departamento de Matemáticas. Intro. Resultado Clave 3. Ejemplo 1. Ejemplo 2. Operativa.

Introducción. Algebra Lineal: Dependencia Lineal. Departamento de Matemáticas. Intro. Resultado Clave 3. Ejemplo 1. Ejemplo 2. Operativa. ducción Amás los conceptos combinación lineal y espacio generado, otro los conceptos clave en Algebra es el concepto penncia lineal. Este concepto aplica a conjuntos vectores y significa que el conjunto

Más detalles

Cálculo Integral Series de potencias. Universidad Nacional de Colombia

Cálculo Integral Series de potencias. Universidad Nacional de Colombia Cálculo Integral Series de potencias Jeanneth Galeano Peñaloza - Claudio Rodríguez Beltrán Universidad Nacional de Colombia Segundo semestre de 2015 Series de potencias Una serie de potencias alrededor

Más detalles

Unidad 8: Derivadas. Técnicas de derivación. Aplicación al estudio y representación de funciones. Primitiva de una función (integración).

Unidad 8: Derivadas. Técnicas de derivación. Aplicación al estudio y representación de funciones. Primitiva de una función (integración). representación de funciones Primitiva de una función (integración) 1 Unidad 8: Derivadas Técnicas de derivación Aplicación al estudio y representación de funciones Primitiva de una función (integración)

Más detalles

Examen final de Cálculo Integral

Examen final de Cálculo Integral Examen final de Cálculo Integral de junio de 11 (Soluciones) Cuestiones C 1 La respuesta es que la función es integrable, como consecuencia del Teorema 1.1 de los apuntes, o el Teorema del Capítulo 5 del

Más detalles

Eje OY (Vertical) => Se hace la x = 0, y se despeja la y. Corte (0,y)

Eje OY (Vertical) => Se hace la x = 0, y se despeja la y. Corte (0,y) Estudio de funciones y su representación gráfica. TIPO I. Funciones Polinómicas. Ejemplo: y 4 1º. Dominio. El dominio de una función es el conjunto de valores para los que está definida la función. En

Más detalles

Marzo DIFERENCIA DE POTENCIAL GISPUD

Marzo DIFERENCIA DE POTENCIAL GISPUD Marzo 2012 http:///wpmu/gispud/ 1.3 DIFERENCIA DE POTENCIAL Ejercicio 3. Diferencia de potencial. Determinar analítica y gráficamente: a) la corriente en función del tiempo. b) la carga en función del

Más detalles

TEORIA MATEMATICAS 5 PRIMER PARCIAL

TEORIA MATEMATICAS 5 PRIMER PARCIAL Def: Grafica de una función TEORIA MATEMATICAS 5 PRIMER PARCIAL Sea:. Definimos la grafica de f como el subconjunto de formado por los puntos, de en los que es un punto de U. Simbólicamente grafica es:

Más detalles

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL (Curso 00-00) HOJA Ejercicio. Determina en qué recintos es holomorfa la siguiente función: f(x + iy) x + ay + i(bx + cy) En este caso consideramos: u(x, y) x + ay

Más detalles

Series de Taylor para funciones de variable compleja

Series de Taylor para funciones de variable compleja Series de Taylor para funciones de variable compleja Marc Farrés Pijuan 2010-11 1 1 Series de Taylor 1.1 Denición Tal y como sabemos para el ámbito de los reales, si dada una función f podemos derivarla

Más detalles

ESCUELA COLOMBIANA DE INGENIERÍA

ESCUELA COLOMBIANA DE INGENIERÍA ESCUELA COLOMBIANA DE INGENIERÍA ASIGNATURA: CÁLCULO INTEGRAL y ECUACIONES DIFERENCIALES DEPARTAMENTO: MATEMÁTICAS PLANES DE ESTUDIO: CÓDIGO: Mnemónico CIED Numérico 1. OBJETIVOS GENERALES Estudiar los

Más detalles

SERIES DE POTENCIAS. Curso

SERIES DE POTENCIAS. Curso Ampliación de Matemáticas (Ingeniería de Telecomunicación) Curso 200/ Curso 2 o. Ingeniero de Telecomunicación. Ampliación de Matemáticas. Lección 9. SERIES DE POTENCIAS. Curso 200- Las series de potencias

Más detalles

sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces,

sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces, Integral indefinida Primitiva e integral indefinida. Cálculo de primitivas: métodos de integración. Integración por cambio de variable e integración por partes. Integración de funciones racionales e irracionales.

Más detalles

PRACTICO: : LÍMITES DE FUNCIONES

PRACTICO: : LÍMITES DE FUNCIONES APUNTE TEORICO-PRACTICO PRACTICO: : LÍMITES DE FUNCIONES UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática 1 Carreras: Lic. en Economía Profesor: Prof. Mabel Chrestia Semestre: 1ero Año: 16 Introducción

Más detalles

DERIVADAS DE FUNCIONES DE UNA VARIABLE

DERIVADAS DE FUNCIONES DE UNA VARIABLE DERIVADAS DE FUNCIONES DE UNA VARIABLE DERIVADAS DE FUNCIONES DE UNA VARIABLE [4.] Estudiar la derivabilidad de la función los puntos en los que esté definida. 3 f( ) y obtener f ( ) en En primer lugar

Más detalles

PROGRAMA INSTRUCCIONAL MATEMÁTICA IV

PROGRAMA INSTRUCCIONAL MATEMÁTICA IV UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA ESCUELA DE COMPUTACIÓN PROGRAMA INSTRUCCIONAL MATEMÁTICA IV CÓDIGO ASIGNADO SEMESTRE U. C DENSIDAD HORARIA H.T H.P/H.L H.A THS/SEM

Más detalles

Límite de una función

Límite de una función Límite de una función El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es decir el valor al que tienden

Más detalles

ax + b (x 1)(x 4). c) (2.0 pto.) Sabiendo que f(0) = 2, escriba el desarrollo de Taylor de orden 3 para f en torno a x 0 = 0.

ax + b (x 1)(x 4). c) (2.0 pto.) Sabiendo que f(0) = 2, escriba el desarrollo de Taylor de orden 3 para f en torno a x 0 = 0. Pauta Control 1 MA1002 Cálculo Diferencial e Integral Fecha: 21 de Abril de 2017 Problema 1. Considere la función f : R \ {1, 4} R, tal que su derivada es f (x) = ax + b (x 1)(x 4). a) (1.0 ptos.) Sabiendo

Más detalles

MA-1111, MODELO II, Enero Marzo 2007 JUSTIFIQUE TODAS SUS RESPUESTAS 1. a) Hallar. b) Definir formalmente. d) Hallar ø. x 1. f) Hallar. lim.

MA-1111, MODELO II, Enero Marzo 2007 JUSTIFIQUE TODAS SUS RESPUESTAS 1. a) Hallar. b) Definir formalmente. d) Hallar ø. x 1. f) Hallar. lim. do Parcial MODELO MATEMATICAS I MA- MA-, MODELO II, Enero Marzo 007 JUSTIFIQUE TODAS SUS RESPUESTAS. a Hallar b Definir formalmente Lim f L c Hallar y representar las asíntotas de la función: - 7 e Hallar

Más detalles

D. Teorema de Cauchy Goursat: Práctica 4

D. Teorema de Cauchy Goursat: Práctica 4 Analiticidad y transformaciones conformes ondiciones de auchy Riemann Transformaciones conformes Integración en el Plano omplejo Parametrización de arcos e integrales de contorno auchy, auchy Goursat y

Más detalles

Sucesiones Introducción

Sucesiones Introducción Temas Límites de sucesiones. convergentes. Sucesiones divergentes. Sucesiones Capacidades Conocer y manejar conceptos de sucesiones convergentes y divergentes. Conocer las principales propiedades de las

Más detalles

APLICACIONES a) Calculo de limites b) Calculo de aproximaciones y estimación del error. c) Criterios de máximos y mínimos.

APLICACIONES a) Calculo de limites b) Calculo de aproximaciones y estimación del error. c) Criterios de máximos y mínimos. INTRODUCCION SERIES a) Seno b) e x c) Cotangente APLICACIONES a) Calculo de limites b) Calculo de aproximaciones y estimación del error. c) Criterios de máximos y mínimos. EXTRAS INTRODUCCION La serie

Más detalles

TEMA 1.- LÍMITES DE FUNCIONES Y CONTINUIDAD.

TEMA 1.- LÍMITES DE FUNCIONES Y CONTINUIDAD. TEMA 1.- LÍMITES DE FUNCIONES Y CONTINUIDAD. 1.LÍMITE DE UNA FUNCIÓN EN UN PUNTO El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes por f de puntos x, cuando los originales

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN EJERCICIOS RESUELTOS Calcula una función real f : que cumple las condiciones siguientes: f (0) = 5, f (0) =, f (0) = 0 y f () = + Como f () = +, integremos esta

Más detalles

Algebra Lineal: Valores y Vectores Propios. Departamento de Matemáticas. Intro. Eigenvalues. Multiplicidades

Algebra Lineal: Valores y Vectores Propios. Departamento de Matemáticas. Intro. Eigenvalues. Multiplicidades Algebra ducción Los valores y vectores propios son muy importantes en el análisis sistemas lineales. En esta presentación veremos su finición y cómo se calculan. vectores propios Sea A una matriz cuadrada,

Más detalles

Sílabo de Matemática I

Sílabo de Matemática I Sílabo Matemática I I. Datos Generales Código Carácter UC0564 Obligatorio Créditos 5 Periodo Académico 2017 Prerrequisito Ninguno Horas Teóricas 4 Prácticas 2 II. Sumilla la Asignatura La asignatura correspon

Más detalles

Guía de Matemática Segundo Medio

Guía de Matemática Segundo Medio Guía de Matemática Segundo Medio Aprendizaje Esperado:. Analizan la ecuación de la recta; establecen la dependencia entre las variables y la expresan gráfica y algebraicamente.. Identifican e interpretan

Más detalles

Funciones de una variable real II Fórmula de Taylor y aplicaciones

Funciones de una variable real II Fórmula de Taylor y aplicaciones Universidad de Murcia Departamento Matemáticas Funciones de una variable real II Fórmula de Taylor y aplicaciones B. Cascales J. M. Mira L. Oncina Departamento de Matemáticas Universidad de Murcia Grado

Más detalles

BORRADOR. Series de potencias y de funciones Sucesiones de funciones

BORRADOR. Series de potencias y de funciones Sucesiones de funciones Capítulo 5 Series de potencias y de funciones 5.1. Sucesiones de funciones En los dos últimos capítulos de la asignatura, deseamos estudiar ciertos tipos de series de funciones, es decir, expresiones sumatorias

Más detalles

CAPÍTULO 2. INTEGRALES: INTRODUCCIÓN Y PROPIEDADES 2.1. Introducción 2.2. Teorema 2.3. Propiedades 2.4. Ejemplos 2.5. Integración de una función

CAPÍTULO 2. INTEGRALES: INTRODUCCIÓN Y PROPIEDADES 2.1. Introducción 2.2. Teorema 2.3. Propiedades 2.4. Ejemplos 2.5. Integración de una función CAPÍTULO. INTEGRALES: INTRODUCCIÓN Y PROPIEDADES.. Introducción.. Teorema.. Propiedades.4. Ejemplos.. Integración de una función compuesta Capítulo Integrales: Introducción y propiedades ( f() g() ) (

Más detalles

Introducción. Algebra Lineal: Dependencia Lineal. Departamento de Matemáticas. Intro. Resultado Clave 2. Ejemplo 1. Ejemplo 2. Operativa.

Introducción. Algebra Lineal: Dependencia Lineal. Departamento de Matemáticas. Intro. Resultado Clave 2. Ejemplo 1. Ejemplo 2. Operativa. ducción Amás los conceptos combinación lineal y espacio generado, otro los conceptos clave en Algebra es el concepto penncia lineal. Este concepto aplica a conjuntos vectores y significa que el conjunto

Más detalles

CAMPOS VECTORIALES. Presenta: M.E.M. Enrique Arenas Sánchez. 21 de septiembre de 2016

CAMPOS VECTORIALES. Presenta: M.E.M. Enrique Arenas Sánchez. 21 de septiembre de 2016 Presenta: M.E.M. Enrique Arenas Sánchez 21 de septiembre de 2016 Definición de Campo Escalar. Se llama campo escalar a una función que asocia a cada punto del dominio de una función un valor escalar. Ejemplo:

Más detalles

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím

Más detalles

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA APLICADA CÁLCULO II SEMESTRE 1/2015 INFORMACIÓN GENERAL

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA APLICADA CÁLCULO II SEMESTRE 1/2015 INFORMACIÓN GENERAL UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA APLICADA CÁLCULO II SEMESTRE 1/2015 INFORMACIÓN GENERAL I. INFORMACIÓN CURRICULAR Código: 0252 Unidades: 5 Horas semanales:

Más detalles

Cálculo II (FMM133) Semana a Semana

Cálculo II (FMM133) Semana a Semana Cálculo II (FMM133) Semana a Semana 7 de marzo de 2015 Resumen Este documento contiene una descripción detallada de los contenidos temáticos de cada semana, incluyendo las referencias a las lecturas obligatorias

Más detalles

Desarrollos en serie de potencias - Residuos

Desarrollos en serie de potencias - Residuos apítulo 7 Desarrollos en serie de potencias - Residuos Existen dos tipos particularmente sencillos de funciones analíticas: los polinomios p (z) a 0 + a z + + a n z n, y las funciones racionales r (z)

Más detalles

Método de integración por fracciones parciales

Método de integración por fracciones parciales Método de integración por fracciones parciales Temas Fracciones parciales. Método de integración por fracciones parciales. Capacidades Descomponer una fracción en suma de fracciones parciales. Conocer

Más detalles

CÁLCULO DE DERIVADAS

CÁLCULO DE DERIVADAS TEMA 4 CÁLCULO DE DERIVADAS Contenidos Criterios de Evaluación 1. Función derivada.. Derivadas sucesivas. 3. Derivadas elementales. 4. Álgebra de derivadas. 5. La Regla de la Cadena. 6. Continuidad y derivabilidad.

Más detalles

DEFINICIÓN DE LÍMITE Sea una función definida en un intervalo abierto que contiene a (salvo posiblemente en ) y un número real. La afirmación : ( )

DEFINICIÓN DE LÍMITE Sea una función definida en un intervalo abierto que contiene a (salvo posiblemente en ) y un número real. La afirmación : ( ) DEFINICIÓN DE LÍMITE Sea una función definida en un intervalo abierto que contiene a (salvo posiblemente en ) y un número real. La afirmación : Significa que para todo existe un tal que si Entonces. TEOREMA

Más detalles

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades:

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades: CAPÍTULO 2: ESPACIOS VECTORIALES 2.1- Definición y propiedades. 2.1.1-Definición: espacio vectorial. Sea un cuerpo conmutativo a cuyos elementos denominaremos escalares o números. No es necesario preocuparse

Más detalles

MATEMÁTICAS II - EXAMEN SEGUNDO PARCIAL - 17/01/2013

MATEMÁTICAS II - EXAMEN SEGUNDO PARCIAL - 17/01/2013 MATEMÁTICAS II - EXAMEN SEGUNDO PARCIAL - 7// Código: Grado: Ing. Electrónica Rob. y Mec. Ing. Energía Ing. Organización Ind. Nombre y Apellidos: Ejercicio. Considera la región R del primer cuadrante que

Más detalles